Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Лазер применения

Явлением провала Лэмба можно воспользоваться для очень эффективной стабилизации частоты лазера [19]. Поскольку ширина провала Лэмба примерно равна однородной ширине линии, а в газовых лазерах она обычно много меньше неоднородной ширины линии (ср. значения и Avg, приведенные для неона в разд. 2.3.3.1 и 2.3.3.2), положение дна лэмбовского провала фиксируется с очень высокой степенью точности. Предположим, что одно из зеркал резонатора укреплено на пьезоэлектрическом преобразователе таким образом, что длина резонатора может очень плавно меняться при приложении электрического напряжения к преобразователю. Тогда с помощью соответствующего электронного устройства обратной связи частоту лазера можно стабилизировать относительно минимума лэмбовского провала. В Не—Ые-лазере применение такого метода позволило получить стабильность и воспроизводимость частоты генерации порядка 10 . Это значение стабильности ограничивается тем, что центральная частота перехода сама по себе не является  [c.277]


В. Полупроводниковые лазеры. Применение фотографических методов для исследования полупроводниковых лазеров затрудняется тем, что они работают при температуре жидкого азота, толщина излучающего слоя составляет всего лишь несколько микронов и необходимо пользоваться фотопленками, чувствительными В инфракрасном диапазоне.  [c.66]

Реальные источники спектральных линий не дают ни бесконечно малой ширины спектра, ни спектра постоянной интенсивности. Поэтому анализ, проведенный выше, может служить только иллюстрацией. Для некогерентного источника с одной спектральной линией в зависимости от времени задержки контрастность уменьшается почти как функция Гаусса, так что точного значения нуля для V %) не существует. Вообще говоря, о форме спектральной линии можно судить по точке, в которой функция видности уменьшается в е раз, в предположении гауссова профиля спектральной линии. Такой метод определения формы линии (и, следовательно, измерения времени когерентности), очевидно, неточен, если контрастность медленно меняется при изменении разности хода (как, например, в газовых лазерах, где контрастность полос не меняется заметным образом при разности хода в несколько сотен метров). Таким образом, хотя принципиально мы можем пользоваться интерферометром Майкельсона для определения времени когерентности лазеров, применение классических методов к газовым лазерам практически  [c.368]

Лазер, применение в высокоскоростных камерах 61  [c.671]

Полупроводниковые лазеры занимают особое место в ряду твердотельных или кристаллических лазеров. Применение полупроводников в качестве рабочих материалов для лазеров привлекло к себе внимание в первую очередь возможностью осуществления непосредственного преобразования энергии электрического тока в энергию когерентного излучения. Полупроводники обладают рядом характерных свойств, среди которых от люминесцентных кристаллов их отличает электропроводность, а от газовых систем — весьма широкие линии излучения и возможность создания высокой концентрации активных частиц. Эти свойства полупроводников дают полупроводниковым лазерам ряд особенностей, главной из которых является высокий к. п. д. полупроводникового лазера, который может быть близок к 100%.  [c.439]


В 1899 г. П. Н. Лебедеву удалось измерить действительное значение светового давления. До тех пор, пока приходилось иметь дело со сравнительно слабыми плотностями энергий, конструкции приборов с использованием светового давления оказывались неудачными. Только после появления оптических квантовых генераторов (лазеров) применение пондеромоторного эффекта оказалось настолько эффективным, что удалось, даже не прибегая к вакуумированию, создать крутильные весы, измеряющие энергию светового пучка. Радиометрический же эффект до сих пор не получил исчерпывающего количественного объяснения и приобрел значение самостоятельной задачи, которой занимались многие известные физики.  [c.26]

При применении лазерной сварки прочность сварных соединений (ширина шва составляет несколько миллиметров) достигает уровня прочности свариваемого материала. Осуществляется автоматическая лазерная сварка кузовов автомобилей, сварка листов титана и алюминия на судостроительных верфях, сварка газопроводов. На ПО ЗИЛ при помощи лазеров на СОг про-  [c.297]

Лазерную резку материалов осуществляют как в импульсном, так и в непрерывном режиме. При резке в импульсном режиме непрерывный рез получается в результате наложения следующих друг за другом отверстий. Наиболее широкое применение получила резка тонкопленочных пассивных элементов интегральных схем, например, с целью точной подгонки значений их сопротивления или емкости. Для этого применяют импульсные лазеры на алюмо-иттриевом гранате с модуляцией дробности, лазеры на углекислом газе. Импульсный характер обработки обеспечивает минимальную глубину прогрева материала и исключает повреждение подложки, на которую нанесена пленка. Лазерные установки различных типов позволяют вести обработку при следующих режимах энергия излучения 0,1. .. 1 МДж, длительность импульса 0,01. .. 100 мкс, плотность потока излучения до 100 мВт/см, частота повторения импульсов 100. .. 5000 импульсов в 1 G. В сочетании с автоматическими управляющими системами лазерные установки для подгонки резисторов обеспечивают производительность более 5 тысяч операций за 1 ч. Импульсные лазеры на алюмо-иттриевом гранате применяют также  [c.299]

В некоторых областях технологического применения с лазером конкурируют электронный луч и полихроматические источники света, что связано прежде всего с более простым в изготовлении и эксплуатации оборудованием для осуществления процессов, в которых используются эти источники.  [c.115]

Различные специальные системы, связанные с конкретным применением лазера.  [c.121]

Физическая основа образования лазерной искры — возникновение в фокальном пятне вследствие нагрева газа термической плазмы, температура которой может достигать 10 К. Неравномерность распределения по объему плазмы электрически заряженных частиц приводит к резкой неравномерности распределения электрического потенциала в этом объеме и, как следствие, — электрическому пробою. Пробой имеет характер миниатюрного взрыва и сопровождается яркой вспышкой. Поскольку на образование лазерной искры расходуется большое количество энергии излучения лазера и в ряде случаев ее образование нарушает ход технологического процесса с применением лазерного излучения (например, сварки), этого явления стараются избегать.  [c.126]

Для удаления корректирующих масс из тела ротора, изготовленного из любого материала, применяется балансировка с использованием лазера [8, т. 6]. Этот способ стал возможным в связи с появлением и разработкой мощных оптических квантовых генераторов. Для повышения производительности применен лазер непрерывного действия и разработана оптическая система, обеспечивающая синхронное следование луча лазера за тяжелой точкой ротора в плоскости коррекции. Практически это осуществлено, например, в автоматическом лазерном балансировочном станке ЛБС-3, принципиальная схема которого приведена на рис. 6.20. Балансируемый ротор Р опирается на неподвижные чувствительные опоры Л и S и приводится во вращение двигателем Д. От него же подается механический сигнал и в блок УБ, приводящий в синхронное с ротором вращение полый щпиндель с оптической призмой П. Сигналы опорных датчиков (t и р перерабатываются в решающем блоке РБ в фазирующий импульс, также посылаемый в управляющий блок УБ, который обеспечивает требуемое фазовое положение призмы П относительно ротора Р. Луч из оптического квантового генератора ОКГ проходит через полый шпиндель и, отражаясь от вращающей-  [c.224]


Особые свойства лазерного излучения — высокая спектральная чистота и пространственная когерентность — позволяют, сильно увеличивая давление света, найти ему разные применения. Это стало возможным благодаря фокусировке лазерного луча в пятно с радиусом, равным одной длине волны. Оказалось, что силы давления, вызываемые сфокусированным лазерным светом, достаточно велики для перемещения маленьких частиц в различных средах. Используя сфокусированный лазерный пучок, удается сообщить как крошечным микроскопическим частицам, так и отдельным атомам и молекулам ускорения, в миллионы раз превосходящие ускорение свободного падения. Подобное увеличение давления света в луче лазера может найти весьма широкие применения в разных областях науки и практики. Так, например, используя такое высокое давление, в принципе возможно производить разделение изотопов, разделение частиц в жидкости, ускорение до больших скоростей электрически нейтральных частиц, проведение анализа атомных пучков и т. д.  [c.353]

В заключение остановимся еще на одном из многочисленных применений лазеров. В лаборатории квантовой радиофизики физического института АН СССР под руководством Л Г. Басова создан  [c.389]

Возможны и процессы, при которых в каждом акте поглощения одновременно участвуют более двух (три и больше) квантов. Такие процессы называются многофотонным поглощением. (Трехфотонное поглощение в кристаллах нафталина было обнаружено еще в 1964 г.) Очевидно, что с увеличением числа фотонов, одновременно участвующих в одном акте поглощения, вероятность соответствующего процесса уменьшится. Поэтому для наблюдения процессов более высокого порядка (например, трехфотонного поглощения) поток энергии падающего света должен быть значительно большим, чем в двухфотонном. В очень сильных световых полях, образуемых при фокусировке излучения мощных лазеров, иногда происходит одновременное поглощение десяти фотонов и больше. В этом случае многофотонное поглощение приводит к отрыву электрона от атома, т. е. ионизации. Этим объясняется возникновение искры — пробоя прн фокусировке излучения мощного лазера в воздухе. Существенный вклад в деле обнаружения и теоретического анализа и применения двухфотонного и многофотонного процессов был сделан академиками Н. Г. Басовым, А. М. Прохоровым, Л. В. Келдышем и их школой.  [c.403]

Лазер 378—390 —, применения 388—390 —, принцип действия 383-386 —, условие генерации 386 Линза 179 и д.  [c.427]

Установленная формальная аналогия, разумеется, не случайна. Как при голографировании, так и при отображении в линзовой либо зеркальной оптической системе речь идет о преобразовании одной сферической волны (предмета) в другую, также сферическую волну (изображения). Формальный вид закона такого преобразования (линейное преобразование кривизны волновых фронтов) предопределен самой постановкой задачи и никак не связан с конкретным способом его реализации. Любой способ, голографический или линзовый, может только изменить кривизну исходного волнового фронта в определенное число раз и добавить к ней новое слагаемое ), но не более того. Анализ физического явления, призванного осуществить эту процедуру, конкретизирует физический смысл соответствующего множителя и слагаемого и их зависимость от характеристик явления и конструктивных особенностей системы. Последнее оказывается очень существенным при сравнительном рассмотрении разных способов. Как уже упоминалось, применение разных длин волн на первом и втором этапе предоставляет голографии неизмеримо более широкие возможности, чем аналогичный фактор в линзовых и зеркальных системах (различие показателей преломления в пространстве изображений и предметов, иммерсионные объективы микроскопов, см. 97), ибо можно использовать излучение с очень сильно различающимися длинами волн, например, рентгеновское и видимое (когда будет создан рентгеновский лазер).  [c.253]

Оптические приборы и оптические методы исследования широко применяются в самых разнообразных областях естествознания и техники. Напомним, например, об изучении структуры молекул с помощью их спектров излучения, поглощения и рассеяния света, а также о применении микроскопа в биологии, об использовании спектрального анализа в металлургии и геологии. Оптические квантовые генераторы неизмеримо расширяют возможности оптических методов исследования. Приведем несколько примеров, иллюстрирующих положение дела. Один из новых методов — голография — подробно описан в главе XI. Изучение атомно-молекулярных процессов, протекающих в излучающей среде лазеров, а также рассеяния света и фотолюминесценции с применением лазеров позволило получить большой объем сведений в атомной и молекулярной физике, равно как и в физике твердого тела. Оптические квантовые генераторы заметно изменили облик фотохимии с помощью мощного лазерного излучения могут производиться разделение изотопов и осуществляться направленные химические реакции. Благодаря монохроматичности излучения оптических квантовых генераторов оказывается сравнительно простыми измерения сдвига частоты, возникающего при рассеянии света вследствие эффекта Допплера этот метод широко используется в аэро- и гидродинамике для излучения поля скоростей в потоках газов и жидкостей.  [c.770]

В области индустрии отметим применения лазеров для сварки, обработки и разрезания металлических и диэлектрических материалов и деталей в приборостроении, машиностроении и в текстильной промышленности. Очень интересны и важны применения лазеров в биологии, медицине, геодезии и картографии, в системах локации спутников и во многих других областях. Следует подчеркнуть, что постоянно расширяется сфера применений оптических квантовых генераторов.  [c.771]


Применение зеркал — не единственный способ осуществления обратной связи в лазерах. Некоторые другие методы мы рассмотрим в 233.  [c.783]

Как уже отмечалось в 225, оптический резонатор лазера обеспечивает коллимацию (направленность) излучения, выходящего из лазера. Хотя при использовании рубиновых стержней трудно достичь дифракционного предела углового раскрытия Х/Д излучаемого светового конуса, но, тем не менее, можно получить расходимость светового пучка, не превыщающую нескольких угловых минут. Это значит, что на экране, расположенном на расстоянии километра от лазера, диаметр поперечного сечения светового пучка составит примерно метр без применения каких-либо фокусирующих оптических систем.  [c.788]

Заканчивая описание лазеров с оптическим возбуждением кристалла, сделаем некоторые замечания общего характера относительно применения этого метода создания активной среды.  [c.791]

Благодаря высокой когерентности гелий-неоновый лазер служит превосходным источником непрерывного монохроматического излучения для исследования всякого рода интерференционных и дифракционных явлений, осуществление которых с обычными источниками света требует применения специальной аппаратуры. Многочисленные варианты гелий-неонового л,азера нашли весьма разнообразные применения в биологических исследованиях, в системах лазерной связи, в голографии, машиностроении и многих других областях естествознания и техники.  [c.794]

Вследствие ограниченности поперечных размеров зеркал и активной среды лазера распространение волн в резонаторе сопровождается дифракционны.ми явлениями. Поэтому применение принципа цикличности к распределению амплитуды поля по волновому фронту сводится к решению дифракционной задачи квантовый генератор формирует когерентный световой пучок с таким поперечным распределением амплитуды, которое с учетом дифракционных явлений должно воспроизводить себя на протяжении одного цикла.  [c.801]

Изложенная схема процессов сильно упрощена, и существует целый ряд факторов, в той или иной мере затрудняющих развитие генерации. 1< числу мешающих факторов относится, например, фотохимическое разложение молекул красителя при высоких значениях освещенности, нагревание раствора, приводящее к безызлучательному затуханию возбужденного электронного состояния, и многие другие. Однако все эти препятствия устраняются специальными методами ), и генерацию удается осуществить с большим числом разных красителей (их насчитывается сейчас около 100) в импульсном и непрерывном режимах, в широкой области спектра (от 350,0 до 1000,0 нм) и с применением в качестве источников возбуждающего излучения ксеноновых газоразрядных ламп и лазеров.  [c.817]

Метод голографической съемки и проекции с помощью комплекта плоских зеркал был предложен Т. Окоши (Япония) в 1976 г. При съемке (рис. 93, а) объект 1 освещается лазерным светом 2, который отражается от объекта и направляется зеркалами 3 на голографический фотослой 4, на который одновременно подается опорный пучок света 5 от того же лазера. Применение нескольких зер-  [c.151]

Группой исследователей под руководством А. Шавлова разработана новая конструкция стержня для лазера, применение которой облегчает требования к интенсивности накачки и облегчает охлаждение стержня. В предложенной ими конструкции используется то благоприятное обстоятельство, что показатель преломления твердого вещества, из которого состоит стержень, обязательно превышает единицу.  [c.442]

В качестве активного вещества применяют также газовые смеси, такие как гелий-неоновая, неоно-кислородная, аргонокислородная, а также все инертные газы, азот, бром, окись углерода, углекислый газ, пары цезия и др. Диапазон длин волн излучения газовых ОКГ примерно от 0,5 до сотен микрон. Однако из-за громоздкости газовые лазеры применения для сварки пока не нашли.  [c.162]

Низкотемпературная плазма (температура IOOOK) находит применение в газоразрядных источниках спета и в газовых лазерах, в термоэлектронных преобразователях тепловой энергии в электрическую и Б магиитогидродннамических (МГД) генераторах.  [c.290]

Получение отверстий лазером возможно в любых материалах. Как правило, для этой цели используют импульсный метод. Производительность достигается при получении отверстий за один импульс с больиюй энергией (до 30 Дж). При этом основная масса материала удаляется из отверстия в расплавленном состоянии под давлением пара, образовавшегося в результате испарения относительно небольшой части вещества. Однако точность обработки одноимлульсным методом невысокая (10. .. 20 размера диаметра), Максимальная точность (1. .. 5 %) и управляемость процессом достигается при воздействии на материал серии импульсов (многоимпульсный метод) с относительно небольшой энергией (обычно 0,1. .. 0,3 Дж) и малой длительностью (0,1 мс н менее). Возможно получение сквозных и глухих отверстий с различными формами поперечного (круглые, треугольные и т. д.) н продольного (цилиндрические, конические и другие) сечений. Освоено получение отверстий диаметром 0,003. .. 1 мм при отношении глубины к диаметру 0,5 10. Шероховатость поверхности стенок отверстий в зависимости от режима обработки и свойств материала достигает/ а — 0,40. .. 0,10 мкм, а глубина структурно измененного, или дефектного, слоя составляет 1. .. 100 мкм. Производительность лазерных установок при получении отверстий обычно 60. .. 240 отверстии в 1 мин. Наиболее эффективно применение лазера для труднообрабатываемых другими методами материалов (алмаз, рубин, керамика и т. д.), получение отверстий диаметром мепее 100 мкм в металлах, или под углом к поверхности. Получение отверстий лазерным лучом нашло особенно широкое применение в производстве рубиновых часовых камней и алмазных волок. Например, успешно получают алмазные волки на установке Квант-9 с лазером на стекле с примесью неодима. Производительность труда на этой операции значительно увеличилась по сравнению с ранее применявшимися методами.  [c.300]

В работах [52, 33] предложен новый метод измерения отношения излучательных способностей in situ. Здесь для измерения отношения поглощательных способностей материалов при двух длинах волн, используемых в пирометре отношения, применен лазер. Это делается с использованием спектрального пирометра, работающего на третьей длине волны, для измерения возрастания температуры образца при освещении лазером поочередно  [c.387]

Наличие оптических квантовых генераторов, даже мощных, работающих на вполне определенных фиксированных частотах, число которых сравнительно невелико, не может удовлетворить все возрастающую в них потребность. Для целесообразного применения в разных областях науки и практики крайне необходимо создать лазеры, способные генерировать мощные когерентные излучения в широких пределах перестраиваемых частот. В этом заключалась одиа из важнейших задач лазерной физики. Поставлеппая задача нашла свое успешное решение в работах С. А. Ахманова, Р. В. Хохлова и независимо от них Н. Кролла в США, проведенных в 1962 г.  [c.407]

За последние годы существенно развилась физика лазеров, включающая в себя как создание новых типов лазеров, так и использование их для решения различных научных и практических задач. Указанные вьппе свойства лазерного излучения (в первую очередь монохроматичность и направленность) определяют возможность применения этих новых источников света для передачи сигналов, взаимодейстьши света с веществом и других актуальнГ)1х задач.  [c.35]


Наиболее, важной особенностью эффекта Керра, обусловившей широкое его применение, является весьма малая инерционность. Это свойство ячейки Керра проверялось в остроумных опытах (схема опытов изображена на рис. 3.11), а в последующем детально исследовалось в большом количеспве экспериментов. Источник света (конденсированная искра) и конденсатор Керра получают напряжение от одного источника тока. Как только произошел пробой газа между электродами (искра) и возник связанный с этим пробоем импульс света, начинает постепенно исчезать эффект Керра, что вызвано релаксацией дипольных моментов. молекул. Системой зеркал можно удлинить путь от источника света до ячейки Керра. Опыты показали, что, пока свет проходит расстояние 400 см, все следы двойного лучепреломления успевают исчезнуть. Отсюда была найдена инерционность процесса, характеризуемая средним временем х 10 с. В последующих прецизионных опытах было учтено время пробоя газа и была установлена еще меньшая инерционность эффекта (г Г 10 с). Таким образом, открылась возможность создания практически безынерционного оптического затвора и тем самым были заложены основы физики очень быстрых процессов ( нано-секундная техника 1 не = 10 с).. За последнее время эта техника приобрела особое значение в связи с возможностью получения очень больших мощностей светового потока в лазерах. Действительно, если возбудить в твердотельном лазере импульс света с энергией 10 Дж и продолжительностью 10" с, то мощность такого импульса составит 10 кВт. Если же с помощью какого-либо быстродействующего устройства (например, ячейки Керра) заставить высветиться эту систему за время порядка 10 с, то мощность импульса составит уже 1 ГВт. Такие гигантские импульс обладают некоторыми совершенно новыми физическими свойствами. Использование подобных сверхмощных световых потоков играет большую роль в области бурно развивающейся нелинейной оптики, а также при решении различных технических задач.  [c.123]

Современный этап развития оптики, начало которого можно датировать 1960 г., характеризуется новыми, весьма своеобразными чертами. Фундаментальные свойства света — волновые, квантовые, его электромагнитная природа — находят все более разнообразные и глубокие подтверждения и применения, продолжая служить основой для понимания всей совокупности оптических явлений. Однако круг этих явлений неизмеримо расширился. В начале 60-х годов были созданы источники с высокой степенью монохроматичности и направленности излучаемого ими света — так называемые оптические квантовые генераторы или лазеры. Распространение лазерного излучения и его взаимодействие с веществом во многих случаях протекает в существенно иных условиях, чем в случае излучения обычных, нелазерных источников, и конкретные явления приобретают совершенно новые, неизвестные ранее черты. Сказанное относится к отражению, преломлению, дифракции, рассеянию, поглощению и к другим основным оптическим явлениям (см. ГЛ. ХЬ, ХЫ).  [c.25]

В настоящее время на основе внешнего и внутреннего фотоэффекта строится бесчисленное множество приемников излучения, преобразующих световой сигнал в электрический и объединенных общим названием — фотоэлементы. Они находят весьма широкое применение в технике и в научных исследованиях. Самые разные объективные оптические измерения немыслимы в наше время без применения того или иного типа фотоэлементов. Современная фотометрия, спектрометрия и спектрофотометрия в широчайшей области спектра, спектральный анализ вещества, объективное измерение весьма слабых световых потоков, наблюдаемых, например, при изучении спектров комбинационного рассеяния света, в астрофизике, биологии и т. д. трудно представить себе без применения фотоэлементов регистрация инфракрасных спектров часто осуществляется специальными фотоэлементами для длинноволновой области спектра. Необычайно широко используются фотоэлементы в технике контроль и управление производственными процессами, разнообразные системы связи от передачи изображения и телевидения до оптической связи на лазерах и космической техники представляют собой далеко не полный перечень областей применения фотоэлементов для решения разнообразнейших технических вопросов в,современной промышленности и связи.  [c.649]

Явления генерации кратных, разностных и суммарных гармоник нашли многочисленные научно-технические применения. Ценность этих явлений для лазерной техники обусловлена тем, что удвоение частоты лазерного излучения или смешивание излучений двух лазеров в нелинейной среде позволяет получать мощный поток когерентного света в области спектра, отличной от исходной. Например, удвоение частоты излучения лазеров на красителях, генерирующих в видимой области спектра (см. 231), обеспечивает когерентное излучение с плавной перестройкой частоты в ультрафиолетовой области. Особый интерес представляет смешивание инфракрасного излучения со светом мощных лазеров (рубинового или неодимового). Дело в том, что приемники инфракрасного излучения значительно уступают по чувствительности и инерционности приемникам, применяемым в видимой и ультрафиолетовой областях. В инфракрасной области очень плохо разработана фотография. Смешивание же излучения, например, с Я, = 4 мкм и 0,694 мкм (рубиновый лазер) дает желтый свет с длиной волны 0,591 мкм, который можно регистрировать и визуально, и фотографически, и с помощью фотоумножителя. Таким способом удается регистрировать даже слабое тепловое излучение.  [c.845]

В технологических применениях все большее значение приобретают компактные и сравнительно дешевые лазеры на YAG Nd с длиной волны 1,06 мкм. Использование ближней ИК области спектра обеспечивает более эффективную доставку энергии к обрабатываемой поверхности, чем в случаях примения СОг-лозеров. Кроме того, что на меньшей длине волны возможна более тонкая фокусировка излучения, важное значение имеет и тот факт, что на длине волны 1,06 мкм ка < (хравило легче забежать экранировки обрабатываемой поверхности плазмой оптического пробоя [I]. Это обеспечивается как более высокими чем для длины волны 10,6 мкм, порогами оптического пробоя, так и тем, что плАзменная чистота при полной однократной ионизации воздуха атмосферного давления недостаточна для того, чтобы плазма становилась полностью непрозрачной для излучения в видимом и ближнем ИК диапазоне.  [c.154]


Смотреть страницы где упоминается термин Лазер применения : [c.115]    [c.299]    [c.402]    [c.616]    [c.73]    [c.191]    [c.580]    [c.225]    [c.388]    [c.409]    [c.803]    [c.128]   
Оптика (1977) -- [ c.388 , c.390 ]



ПОИСК



Другие виды технологического применения лазеров

Конструкция и применение лазеров на гранате с неодимом

Лазер

Лазер применение в для обнаружения кавитации

Лазер — Применение газовый

Лазер, применение в высокоскоростных камерах

ОГС-лазеров в ДГС-лазерах

Области применения лазеров с импульсной накачкой

От открытия голографии до применения лазера

ПРИМЕНЕНИЕ ЛАЗЕРОВ В НАУКЕ И ТЕХНИКЕ Лазеры в геодезии

Полупроводниковые лазеры применение

Применение ДОЭ для коллимации излучения полупроводникового лазера

Применение ЭВМ прн расчете лазеров на конденсированных средах

Применение лазера для определения содержания ингибиторов отложения солей в воде. Целиковский

Применение резонаторов в лазерах на неодимовом стекле

Применение спектрографа для изучения структуры мод твердотельных и полупроводниковых лазеров

Тарасов Л.В. Лазеры и их применение. — М. Радио и связь



© 2025 Mash-xxl.info Реклама на сайте