Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ПЛАСТИЧЕСКАЯ ДЕФОРМАЦИЯ И МЕХАНИЧЕСКИЕ СВОЙСТВА Виды напряжений

Таким образом, раскрытие закономерностей любого вида изнашивания при ударе неизбежно связано с необходимостью учета сложных взаимосвязанных процессов, происходящих при ударе упругопластической деформации, высокоскоростного нагрева и охлаждения, фазовых и структурных превращений, упрочнения и разупрочнения, развития усталостных явлений и др. Ударные нагрузки нарастают и снижаются в очень короткий промежуток времени (тысячные доли секунды) и порождают волны напряжений, которые исходят из зоны контакта. При многократных соударениях деталей в процессе эксплуатации современных машин, различных аппаратов и приборов возможно возникновение в одной детали одновременно упругих и пластических волн растяжения и сжатия. По-видимому, сложность явлений, сопровождающих соударение поверхностей, и связанное с этим принятие различных упрощающих предположений, отклонение реальных механических свойств от их абстрактных механических моделей служат причиной несогласованности результатов теоретических и экспериментальных исследований удара. Структура и механические свойства одного и того же металла существенно различаются при динамическом и статическом нагружении [22].  [c.22]


Сопротивление разрушению при различных типах напряженных состояний определяется механическими свойствами и условиями прочности в зависимости от возможного характера разрушения. При этом следует различать два основных вида разрушения I) хрупкое, протекающее без значительных пластических деформаций, и 2) вязкое, сопровождающееся пластическими деформациями. Один и тот же материал в зависимости от типа напряженного состояния (степени его объемности) и условий деформирования (температура, скорость нагружения, агрессивная среда) может давать хрупкое п вязкое разрушение (211, [40].  [c.437]

Сопротивление разрушению при различных типах напряженных состояний определяется механическими свойствами и условиями прочности в зависимости от возможного характера разрушения. При этом следует различать два основных вида разрушения 1) хрупкое, протекающее без значительных пластических деформаций, и 2) вязкое, сопровождающееся пластическими дефор маниями. Один и тот же материал в зави-  [c.483]

Испытания на твердость отличаются от других способов механических испытаний главным образом методом приложения внешних нагрузок, передающихся специальным наконечником на поверхность исследуемого материала, т. е. путем создания контактных напряжений. Твердый наконечник той или иной формы (шарик, конус, пирамида и т. д.) по-разному воздействует на образец и вызывает различного вида деформацию поверхностного слоя образца. Обычно это воздействие распространяется на весьма малые объемы материала. Как и при других видах механических испытаний, при определении твердости можно замерять упругие свойства, сопротивление малым или большим пластическим деформациям и т. п.  [c.364]

Предельно накопленная материалом общая энергия пластической деформации находится в зависимости от действующих напряжений и механических свойств материала. При мягком нагружении эта зависимость может быть выражена в виде (1.57), где IV — общая предельно накопленная энергия пластической деформации (за предельно накопленную энергию принята энергия, поглощенная материалом до нестационарного участка кривых изменения ширины петли гистерезиса или накопленной деформации от числа циклов нагружения) Отах — среднее максимальное напряжение по циклам до нестационарного участка С ж т. — постоянные материала N— число циклов до нестационарного участка.  [c.19]


Существующее многообразие принципов классификации механических испытаний [16, 45, 46] позволяет сравнительно свободно решать самые различные задачи. В частности, при изучении процесса деформационного упрочнения важно проводить испытания так, чтобы металл имел возможность максимально проявить свои пластические свойства. Предложенная Фридманом [1] оценка жесткости разных видов механических испытаний через коэффициент мягкости а, основанная на анализе всех возможных видов напряженного и деформированного состояния, позволяет расположить наиболее распространенные из них в следующий ряд (по степени увеличения способности металла к пластической деформации) трехосное растяжение — двухосное растяжение — одноосное растяжение — кручение — одноосное сжатие — трехосное сжатие.  [c.30]

При оценке влияния дефектов на работоспособность материала путем механических испытаний следует учитывать сильную зависимость этого влияния от ориентировки дефектов и их распределения, а также то, что различные условия разрушения — скорость нагружения, податливость нагружающей системы, наличие концентратора напряжений и т. д. — могут значительно изменить вид излома и замаскировать некоторые дефектные свойства материала. Так, в частности, особенности строения изломов, связанные с неоднородностью материала и разной способностью к пластической деформации неоднородных зон, т. е. изломы шиферные, черные , расслоения в изломах лучше выявляются в достаточно пластичном состоянии материала, чем в хрупком.  [c.185]

Большее внимание следует уделять вопросам качества механической обработки, в первую очередь финишным опера-циям. Широкое внедрение алмазно-абразивной обработки, а также развитие электрофизических и электрохимических методов позволяют значительно ускорить проведение и повысить качество финишных операций, обеспечивающих получение необходимой шероховатости поверхности и точности обработки. Для тонкостенных деталей имеет значение применение методов финишной обработки с минимальной силой, воздействующей на обрабатываемое изделие. Таким требованиям удовлетворяют электрохимическая, ультразвуковая, гидроабразивная и другие виды обработки. Наряду с финишной обработкой, осуществляемой путем удаления слоя металла, следует более широко применять методы тонкой пластической деформации, при которых точность формы и требуемое состояние поверхности изделия достигаются уплотнением наружных слоев металла. Тонкое пластическое деформирование позволяет получить не только необходимую макро- и микрогеометрию поверхности, но и повысить износостойкость и создать благоприятные напряжения, способствующие в ряде случаев повышению эксплуатационных свойств машин.  [c.5]

Вследствие разнообразия видов и условий приложения внешних нагрузок разрушение конструкционных материалов связано с реализацией различных механизмов зарождения и распространения трещин, однако независимо от силового воздействия способность материала сопротивляться разрушению в первую очередь будет определяться механическими свойствами материала и напряженным состоянием в зоне распространения трещины, ограничивающим пластическую деформацию.  [c.144]

В металле, подвергнутом сварке, возникают необратимые физико-химические процессы, определяющие надежность конструкции в целом. Под действием сварки происходит а) изменение свойств металла вследствии процессов плавления и кристаллизации в сварном шве, структурных, фазовых изменений и разупрочнения в зоне термического влияния б) ухудшение напряженного состояния ввиду возникновения полей собственных упругих остаточных напряжений и пластических деформаций, геометрической технологической и конструктивной неоднородности в) концентрация в зоне сварного соединения различного вида неоднородностей — химической, структурной, фазовой собственных напряжений и деформаций геометрической, связанной как с опасностью возникновения технологических концентраторов, так и наличием конструктивных концентраторов. Как следствие указанных видов неоднородности возникает неоднородность механических, электрохимических и физических свойств, что определяет повышенную чувствительность сварных соединений к воздействию эксплуатационных сред, особенно в условиях сложного напряженного состояния.  [c.122]


Возникновение науки о механических свойствах в начале XX века базировалось на осредненных и статических представлениях, что каждой величине напряжения соответствует определенная величина деформации. При этом по аналогии с другими физическими свойствами предполагалось, что механические свойства материала могут быть измерены в чистом виде , как некоторые константы данного материала наподобие его плотности, параметров кристаллической решетки, коэффициента теплового расширения и т. п. Исходя из этих предположений, был получен ряд важных результатов опытное построение и применение в расчетах обобщенной кривой Людвика, лежащей в основе многих положений математической теории пластичности измерение сопротивления отрыву и его применение для различных схем перехода из хрупкого в пластическое состояние (Людвик, Иоффе, Давиденков, диаграммы механического состояния) и др. Однако дальнейшее более глубокое изучение показало ограниченную справедливость (а в ряде случаев и ошибочность) подобных представлений. Это, в частности, привело к понятию структурной чувствительности многих механических характеристик.  [c.15]

Величина расчетного момента внутренних сил зависит от принимаемой схемы напряженного состояния деформир уемого материала, а момент можно определить из условия сложного или простого (линейного) напряженного состояния с учетом или без учета упрочнения и упругой зоны в средней части трубы. Для упрощения расчетов применительно к сталям средней и высокой прочности распространена схема аппроксимации диаграммы растяжения в виде ломаной линии, образованной двумя прямыми отрезками (рис. 2, а и б). В обеих диаграммах первый участок соответствует упругому состоянию, его наклон определяется модулем нормальной упругости . Второй участок на рис. 2, а параллелей оси абсцисс и показывает, что материал не упрочняется (идеально упруго-пластичен). Более пологий участок (рис. 2, б) отвечает состоянию линейного упрочнения, и его наклон соответствует модулю упрочнения Ег. Точка пересечения этих прямых характеризуется пределом упругости или пределом текучести которые обычно считают в таких случаях условно совпадающими. В действительности изменение механических свойств после появления пластических деформаций определяется не одной точкой на диаграмме (допустим, точкой пересечения прямых на схеме), а переходной зоной упруго-пластических де рмаций. Эпюра продольных напряжений при изгибе трубы имеет вид, показанный на рис. 2, г и д.  [c.8]

Самым распространенным видом испытаний при определении физико-механических свойств материалов являются испытания на твердость. Под твердостью подразумевают характеристику сопротивляемости материала местному, сосредоточенному на его внешней поверхности напряжению [19]. Таким образом, испытание на твердость всегда производится на поверхности и носит характер внедрения в материал какого-либо другого тела. Твердость всегда определяют в результате сообщения материалу некоторой пластической деформации в пределах весьма небольшого объема. При этом возникают высокие напряжения. Только этим можно объяснить возможность получения пластических состояний при определении твердости любых, даже вовсе не пластичных материалов (стекло, алмаз и т. д.). Последнее дает возможность применять испытания на твердость там, где другие испытания не применимы.  [c.164]

Повыщение температуры сильно влияет на все механические свойства оно понижает модуль упругости (вследствие уменьщения межатомных сил сцеплений), пределы текучести и прочности и особенно модуль упрочнения в процессе пластической деформации. При этом следует иметь в виду, что в условиях малой скорости нагружения разрушение происходит при более низких напряжениях, чем при обычных статических испытаниях.  [c.316]

Относящаяся примерно к тому же времени попытка обобщить гипотезы первой динамической теории пластичности, применив их к объемной деформации, была предложена Морисом Леви во второй динамической теории. Однако к этому вопросу Морис Леви подошел чисто формально, считая, что при пространственной деформации, как и при плоской, максимальное скалывающее напряжение будет постоянно по всему объему тела и что значение его будет определяться механическими свойствами данного материала. На основании ряда специально поставленных впоследствии экспериментальных исследований, это положение второй динамической теории было отвергнуто, так как при пространственной задаче уже в момент перехода материала в пластическую зону значение максимального скалывающего напряжения оказывается различным при различных видах пространственной деформации (заметим, что плоская задача связана всегда с одним и тем же вполне определенным видом деформации, а именно — сдвигом).  [c.18]

Произведенные при указанной аппроксимации экспериментальных диаграмм расчеты показывают, что значение амплитуды сингулярности К для материала с зависимостью деформационных свойств от вида напряженного состояния оказывается существенно ниже соответствующего значения К , полученного при решении той же задачи в предположении несжимаемости материала К/К = 0.7942. Таким образом, учет пластической сжимаемости среды и чувствительности ее механических свойств к изменению вида напряженного состояния вносит существенную поправку в распределение напряжений, деформаций и перемещений по сравнению с соответствующим решением для несжимаемой среды с тем же показателем упрочнения.  [c.72]


Испытания проводят при различных видах напряженного состояния и различных температурах. Испытания могут быть выполнены при кратковременном или длительном приложении нагрузок, а также с учетом влияния среды, в которой происходит работа деталей машин и конструкций, технологии их изготовления и других факторов. Однако свойства материалов, определенные при простейших напряженных состояниях и на образцах, в значительной степени отличаются от свойств реальных деталей машин и конструкций при их натурных стендовых испытаниях или в процессе эксплуатации. Реальные детали машин и конструкции находятся иод действием сложной системы напряжений, часто имеют сложную конструктивную форму и для них экспериментально трудно определить напряжения, при которых начинаются пластические деформации или наступает процесс разрушения материала. Поэтому возможно большее приближение методов механических испытаний к работе реальных изделий является одной из основных задач, решение которых позволит повысить долговечность и надежность работы деталей машин и конструкций.  [c.11]

Внутренние напряжения возникают под совместным действием силовых и тепловых факторов. Силовые факторы (пластические деформации) вызывают образование сжимающих напряжений, тепловые — растягивающих. Как будет показано в дальнейшем, различные параметры качества поверхности, в том числе и внутренние напряжения, оказывают большое влияние на эксплуатационные свойства особенно деталей, восстанавливаемых различными способами. Поэтому важное значение имеет выбор видов и режимов чистовой механической обработки, которые давали бы минимальное  [c.42]

Механическая теория ползучести может оказаться полезной не только в технических приложениях, но и при анализе другого круга задач, о которых здесь следует по крайней мере упомянуть. Можно вызвать остаточные деформации в поликристаллических неметаллических твердых (хрупких) веществах, не доводя их до разрушения, т, е. эти вещества можно привести в пластическое состояние. Поэтому можно ожидать, что при длительном воздействии напряжения при повышенной температуре они будут обнаруживать, аналогично тягучим металлам, свойства медленной ползучести. Рассмотренные условия имеют место на больших глубинах в естественных горных породах, в твердых верхних слоях земной коры (следует иметь в виду наличие геотермического градиента в наружных слоях земной коры, где при увеличении глубины на каждые 100 м температура возрастает в среднем на 3°С). Таким образом, теория ползучести металлов может пролить свет на родственные законы медленной текучести горных пород и на некоторые фундаментальные проблемы геомеханики, такие, как медленные процессы деформации глубинных слоев земной оболочки, связанные с образованием горных хребтов за долгие геологические эпохи. Можно также рассмотреть движение материков под влиянием лунного притяжения, обусловленное повышенной подвижностью слоев горных пород на глубинах 40—50 км, где температура достигает высоких значений порядка 1200—1500° С, и другие проблемы геомеханики.  [c.624]

Научная и практическая актуальность проблемы исследования физических закономерностей пластической деформации и разрушения поверхностных слоев твердого тела обусловлена тем обстоятельством, что свободная поверхность, являясь специфическим видом плоского дефекта в кристалле, оказьтает сзш1ественное влияние на его физико-механические свойства, в частности на упругую стадию деформирования, предел пропорциональности и предел текучести на общий характер кривой напряжение—деформация и различные стадии деформационного упрочнения (на коэффициенты деформационного упрочнения и длительность отдельных стадий) на процессы хрупкого и усталостного разрушения, ползучести, рекристаллизации и др. Знание особенностей и основных закономерностей микродеформации и разрушения поверхностных слоев материалов необходимо не только применительно к обычным методам деформировани (растяжение., сжатие, кручение, изгиб), но и в условиях реализации различного рода контактных воздействий, с которыми связаны многочисленные технологические процессы обработки материалов давлением (ковка, штамповка, прокатка и др.), а также процессы трения, износа, схватывания, соединения материалов в твердой фазе, поверхностных методов обработки и упрочнения, шлифования, полирования, обработки металлов резанием и др.  [c.7]

Единственное не связанное с данной работой исследование по определению свойств материала для анализа возможности его применения в опытах по динамической фотопластичности изложено в работах [12, 13]. Были рассмотрены технические полиэфир-полистирольные соединения и полиэфир в виде смеси жесткой и эластичной смол с техническим названием ламинак испытания проводили при квазистатических скоростях, динамические пластические деформации при этом не возникали. Данное исследование было начато с тщательного анализа большого числа потенциально пригодных для изготовления моделей материалов, испытанных при квазистатических скоростях нагружения [14], отбора наиболее перспективного из них — сополимера стирола с полиэфиром—для дальнейших испытаний при средних скоростях деформации [15] и экспериментального определения физических и фотомеханических соотношений для этого материала при изменении скоростей деформирования в 80 раз вплоть до значения 10 с [16, 17]. Динамические фотопластические деформации вызывались в стержнях из этого материала при помощцч удара снарядом по промежуточному стержню. Для анализа образцов наблюдали картину полос при двойном лучепреломлении и скорости ее изменения по кадрам высокоскоростной съемки, затем при помощи данных фотомеханики переходили к распределению деформаций и скоростей деформаций и, наконец, для вычисления напряжений численно интегрировали механические уравнения состояния материала.  [c.215]

Предельные напряжения, при дсстижении которых появляются пластические деформации (если материал пластичный) или признаки хрупкого разрушения (если материал хрупкий). Эти напряжения определяются при механических испытаниях материалов и зависят от его свойств и вида деформации (растяжение, сжатие и т.д.).  [c.9]

При достаточно высокой степени деформации (е> >80- -90%) максимальная разориентация соседних ячеек превышает 5—10° при средней разориентации 2—3°. Имеется критический угол 0кр разориентировки границы ячеек. При 0<0кр<2н-5° границы ячеек оказывают сопротивление движению дислокаций по типу сопротивления дислокаций леса . Если 0> 2-4-5°, границы ячеек становятся столь же эффективными барьерами для передачи скольлсения, как и границы зерен, повышая тем самым деформирующее напряжение. Передача пластической деформации через такие границы сопровождается нагромождением дислокаций. В отличие от разных стадий пластической деформации, когда длина плоскости нагромождения ограничена размером металлографически выявляемого зерна, при больших деформациях длина плоскости нагромождения ограничена размером ячейки. Формирование ячеистых дислокационных структур зависит от условий деформации, среди которых главными являются температура, степень и скорость деформации, вид напряженного состояния. Многочисленные экспериментальные данные дают основание утверждать что снижение температуры деформации, повышение скорости деформации, легирование (при условии, что легирование не сильно влияет на величину энергии дефекта упаковки) или загрязнение металла, повышая напряжение течения, одновременно затрудняют формирование ячеистой структуры. Ячеистая структура оказывает непосредственное влияние на свойства деформированного металла, причем структурно чувствительные механические свойства зависят не только от размера ячейки, но и от угла 0 между соседними ячейками.  [c.251]


При описании механических свойств материалов принято различать два основных вида деформации упругую и пластическую. Упругая деформация обратима, т. е. она исчезает либо одновременно со снятием напряжения, либо постепенно во время отдыха материала после paзгpyз и (это явление называют также возвратом или обратной ползучестью). Пластическая деформация необратима, т. е. она не исчезает после снятия напряжения. Если упругая или пластическая деформация связана с напряжением вне зависимости от временных характеристик процесса нагружения, то такую деформацию называют мгновенно-упругой или соответственно мгновенно-пластической. Простейшим примером закона мгновенноупругого деформирования является линейный закон Гука. В более сложном случае, когда соотношение, связывающее деформацию с напряжением, включает в качестве дополнительного параметра физическое время, эту деформацию называют вязкоупругой или, соответственно, вязкопластической. Обе мгновенные деформации часто называют склерономными (т. е. независимыми от времени), а обе вязкие деформации — реономными (зависимыми от времени).  [c.6]

На рис. 1.8 приведена наиболее простая механическая модель, впервые использованная А. Ю. Ишилинским [13, 86], объясняющая эффект Баушингера с феноменологических позиций, но вместе с тем отражающая в очень схематизированной форме вероятную физическую причину этого явления. Развитие микро-пластических деформаций в дискретных и различно ориентированных полосах скольжения, принадлежащих отдельным зернам, должно сопровождаться возникновением поля остаточных напряжений, снижающих сопротивление материала пластическому деформированию при изменении его направления. Упругое звено 1 работает параллельно со звеном сухого трения 2 в виде ползунка. Кроме того, имеется еще одно упругое звено 5, соединенное последовательно с первыми двумя. Диаграмма циклического деформирования (рис. 1.9) элемента гипотетического материала с механическими свойствами, отвечающими данной модели, строится на основании элементарного расчета. При а < С , где — предельное сопротивление проскальзыванию в звене 2, происходит только линейно-упругая деформация звена 2 по закону е = = Oi/Ei (линия О А на рис. 1.9). При ст > Са деформацию, приобретающую характер упругопластической, претерпевают звенья 2 и /. Закон деформирования (линия АВ) приобретает такой вид  [c.16]

При пластической деформации выступов фактическая площадь контакта почти не зависит от микрогеометрии поверхности, определяется пластическими свойствами материала и нагрузкой. Упрочнение материала влияет на формирование фактической площади контакта, которая при этом зависит от нагрузки в степени. В случае упругой деформации шероховатостей на фактическую площадь контакта существенно влияют геометрические характеристики шероховатости и упругие свойства материала. Площадь в этом случае пропорциональна нагрузке в степени 0,7-0,9. В узлах трения механизмов и машин, приборов, оборудования часто встречающимися видами износа являются адгезионный, абразивный, коррозионно-механический, усталостный. При воздействии потока жидкости, газа возникает эрозионное изнашивание. Наиболее интенсивно изнашивание протекает в процессе заедания. Поверхности трения при малых колебательных пере-меще1шях подвержены фреттинг-коррозии. В условиях кавитационных явлений возникает кавитационное изнашивание. Механизм физико-химических связей при адгезионном взаимодействии и интенсивность поверхностного разрушения непосредственно зависят от величины площади фактического контакта [4, 8—12]. Значительный рост интенсивности изнашивания наблюдается при достижении контактными нормальными напряжениями величины предела текучести материала. Энергия адгезии увеличивается при физически чистом контакте материалов и совпадающих по структуре материалов. Гладкость поверхностей способствует увеличению адге-  [c.158]

Однако введение механической обработки не решает проблему эффективного использования материалов. Не говоря з же об увеличении затрат по изготовлению детали, механическая обработка часто усугубляет потерю прочности материала вследствие возникновения новых микро- и макротрещин, вырывов и др. Различный вид нагружения при точении, резании, фрезеровании, шлифовании и пр. обусловливает изменение текстуры, деформацию и степень проявления пластичности и хрупкости материала. Наряду с изменением физико-механических свойств поверхностного слоя металла наблюдается возникновение остаточных растягивающих напряжений. Механизм возникновения этих дефектов и их влияние на свойства деталей достаточно полно освещены в работах М. О. Якобсона, С. В. Серенсена, Г. В. Карпенко, Н. Ф. Сидорова, А. Д. Манасевича и других специалистов. Причинами возникновения остаточных напряжений являются неравномерный локальный нагрев поверхностных слоев металла и его неоднородная пластическая деформация. Их величина и знак зависят от физико-механических свойств обрабатываемого металла, теплового и силового воздействия  [c.7]

Микромеханизмы возникновения мгновенных пластических деформадий и развивающихся во времени деформаций ползучести тесно связаны между собой, поэтому необходимо учитывать взаимодействие процессов ползучести и пластического деформирования, которое усиливается с ростом температэфы. Кроме того, механические свойства конструкционных материалов изменяются с температурой не только как мгновенная реакция на ее текущее значегше, но и о некоторым запаздыванием вследствие постепенной перестройки микроструктуры материала со скоростью, которая также пропорциональна множителю вида (4.1.1). Все это затрудняет при повышенных температурах раздельное определение характеристик пластичности и ползучести материала в экспериментах и заставляет учитывать взаимное влияние процессов ползучести и пластического деформирования на напряженно-деформированное состояние и работоспособность теплонапряжегшых конструкций [28].  [c.176]

В монографии [10] приведены результаты исследования методом локального приближения (модифицированный вариант) механического поведения однонаправленных композитов на основе титана с волокнами бора, борсика, молибдена и высокопрочной стали при осевом растяжении в поперечной плоскости. Вычислены эффективные упругие постоянные и коэффициенты теплового распшрения с учетом частного вида анизотропии механических свойств, построены эпюры напряжений в характерных сечениях ячейки периодичности. Исследованы закономерности процессов зарождения и развития пластических деформаций в титановой матрице в зависимости от свойств и объемного содержания волокон.  [c.99]

Попутно не вредно обсудить вопрос о так называемых константах материала, термине, широко употребляемом в механике сплошной среды. Константы или постоянные материала действительно существуют, пока материал рассматривается на уровне кристаллической решетки. Чем больше по масштабной шкале (укрупняя объем) мы уходим от параметров решетки, тем менее константы остаются таковыми. Для уяснения степени постоянства укажем на введенное Я.Б. Фридманом деление механических свойств на докритические, критические и закритические [261]. Все они в равной мере относятся к трем, последовательно возникающим и параллельно идущим вплоть до полного разрушения, видам деформации — упругой, пластической и разрушения. Докритические определяются по допуску на величину данного вида деформации или на появление нового, и это на стадии возрастающей несущей способности. Папример, условный предел текучести определяется по допуску на величину появившегося на фоне упругой деформации, нового вида деформации — пластической. Докритические характеристики можно считать постоянными материала. Па стадии упругой деформации модули упругости и коэффициент Пуассона — докритические характеристики и, следовательно, постоянные материала. По, например, критическое напряжение Эйлера сжатого упругого стержня есть механическая характеристика, отражающая свойства упругости в момент потери устойчивости и, как и положено критической характеристике, зависит не только от докрити-ческих характеристик, но и от формы и размеров стержня и условий закрепления. Аналогично предел прочности (временное сопротивление) является критической характеристикой, поскольку шейкообразо-вание представляет собой смену форм равновесия и сопровождается прекращением роста несущей способности. Естественно, что предел прочности должен зависеть и зависит от размеров, формы образца и схемы приложения нагрузки. По привычка считать предел прочности постоянной материала (естественно, имеется в виду неизменность условий нагружения, скорости, температуры, среды и т.п.) есть результат стандартизации метода его определения. Изменив габариты, форму сечения, взяв, наконец, вообще реальную конструкционную деталь, получим сильно различающиеся значения пределов прочности, что и должно быть для критической характеристики. Поэтому неудивительно, что при разрушении реальной детали напряжение в  [c.14]


Главное, что нас интересует с точки зрения прочности, это напряжения, при которых в материале наступают качественные изменения механических свойств, т.е. когда в пластичном материале наступает текучесть, а в хрупком — разрушение. Такие напряженные состояния мы будем называть предельными. При внешнем разнообразии наблюдаемых в эксперименте видов предельных состояний все они, по суш еству, могут быть сведены к трем видам. Первый из них наблюдается при испытаниях образцов из хрупких материалов на растяжение. Это разрушение отрыва по плоскости, нормальной по отношению к растя-гиваюш им напряжениям. Будем называть такое предельное состояние хрупким отрывом. Второй вид предельного состояния соответствует разрушению по плоскостям действия максимальных касательных напряжений хрупких образцов при сжатии, т.е. по плоскостям максимальных сдвигов. Это предельное состояние хрупкого сдвига. И, наконец, предельное состояние текучести, которое возникает при испытаниях образцов из пластичного материала и сопровождается пластическими деформациями за счет скольжения но плоскостям действия максимальных касательных напряжений.  [c.347]

Различают два вида малоциклового (упругопластического) яагружения жесткое, когда постоянной в цикле поддерживается заданная амплитуда деформаций, и мягкое — с поддержанием заданной амплитуды нагрузки (напряжений). Как правило, и в том, и в другом случае имеет место изменение знака действующих на-лряжений, т. е. деформирование осуществляется как в области упругопластического растяжения, так и упругопластического ожатия, причем в первом случае а О, а во втором (У < 0. Имея 3 этом случае характеристики механических свойств материала Ру ш Е ш диаграмму циклического деформирования для продольной деформации (петлю пластического гистерезиса в координатах  [c.119]

Свойство конструкционных материалов упрочняться при пластическом деформировании часто используется на практике для повышения их механических характеристик (механическое упрочнение) и несущей способности конструкций (например, автофретирование). Материал подвергается упрочнению в процессе технологических операций — гибки, ковки, штамповки, которые приводят к деформационной анизотропии материала, оказывающей заметное влияние на его последующее поведение под нагрузкой. В связи с этим актуальное значение приобретают экспериментальные исследования предыстории нагружения на процессы деформирования при разных видах напряженного состояния, а также опытное определение предельных состояний при различных величинах допуска на пластическую деформацию.  [c.278]

В тепловой стабилизации можно видеть и процессы релаксации сгост-Как известно, механическая обработка вызывает образование пластической деформации при съеме стружки, а следовательно зарождение на поверхности внутренних остаточных напряжений —сгос. з сжатия. Поэтому есть основание считать, что при тепловой стабилизации одновременно протекает процесс релаксации этих напряжений. Как указывалось выше, необходимым условием получения остаточных искривлений при релаксации осевых СТост является асимметричность их распределения по поперечному сечению. Различие СТост по наружной поверхности может быть вызвано, всегда присущей крупным поковкам, неоднородностью структуры и свойств металла. Могут возникнуть и другие обстоятельства, вызывающие асимметричность ст сг-Так например, искривление крупных валов при термической обработке может привести к различию в градиентах пластической деформации при эксцентричном съеме стружки.  [c.71]

По механическим свойствам полимерные материалы отличаются от низкомолекулярных кристаллических веществ (металлов, силикатов). Они имеют меньщий модуль упругости (10—10" МПа против 10 МПа), менее прочны при сжатии, однако нередко выдерживают большие напряжения при растяжении и обладают несравненно более высокой деформируемостью. Последнее связано с рыхлостью упаковки и длинноцепочечным строением молекул полимеров. Вследствие больших размеров такие молекулы гибки и в процессе деформации образца способны изменять свою форму. Для полимеров свойственны три вида деформаций упругая, высокоэластическая и остаточная (пластическая)  [c.67]

ХРУПКОСТЬ МЕТАЛЛОВ, свойство металла при статической нагрузке рваться, ломаться или разрушаться без заметной остаточной деформации. Если металл перед разрывом обнару- кивает пластич. деформации (см. Деформация пластическая), а остаточных деформаций не получается только при ударной нагрузке, то это свойство называется ударной хрупкостью. X. м. при низких и обыкновенных иногда называется холодноломко-с т ь ю, а X. м. в раскаленном состоянии—к р а с-н о л о м к о с т ь ю. Хрупкость зависит от целого ряда факторов от структуры металла, ориентации кристаллитов, от примесей, от самого метода испытания и т. д. Один и тот же слиток металла в одном направлении м. б. хрупким, а в другом пластичным. Начиная приблизительно с 1920 года, металловедение сделало большие успехи благодаря тому, что был открыт ряд способов получения металлич. монокристаллов, т. е. одиночных кристаллов, в виде стержней. Детальные исследования механических свойств этих монокристаллов, произведенные нем. физиками (Полани, Э. Шмид, Закс и их сотрудники) и англ. металловедами (Тейлор, Карпентер, мисс Элам и др.), дали весьма ценные ре-. ультаты для понимания механизма хрупкости и пластичности (см.). Эти исследования показали, что в металлич. монокристаллах существуют вполне определенные кристаллографич. плоскости—плоскости с наиболее плотной упаковкой атомов, по к-рым начинается трансляция, или скольжение, одних слоев относительно других. Это явление начинается тогда, когда с двигающее, или скалывающее, напряжение в данной плоскости и по вполне определенному направлению достигает некоторого критич. значения 5. Кристаллографич. направление в плоскости скольжения, по которому атомы расположены наиболее близко друг к другу, является направлением скольжения.  [c.319]

Особое место занимают процессы, связанные с концентрацией напряжений и деформаций. Этот фактор имеет двоякое значение. Во-первых, возникающая концентрация пластических деформаций во время сварки переводит металл в состояние, близкое к разрушению, или к изменению механических свойств в неблагоприятную сторону, например по механизму деформационного старения. Во-вторых, концентратор напряжений наряду с изменением свойств металла вызьшает концентрацию эксплуатационных напряжений [168, 11, 223]. На рис.11.2.1,б можно видеть, что при ступенчатом нагружении образца со сквозным надрезом 1 = 25 мм без шва развитие полос скольжения начинается при сравнительно высоком уровне напряжений от внешней нагрузки и размеры зоны деформации возрастают при дальнейшем увеличении нагрузки сравнительно медленно. Напротив, в образце с наплавленным валиком (рис.11.2.1,с,в) интенсивное развитие пластической деформации начинается при весьма низком уровне напряжений 0,15) и быстро возрастает по мере увеличения внешней нафузки [81].  [c.413]

Полистирол выпускают в виде тонкого порошка или в виде гранул. Изготавливают полистирол двумя способами эмульсионным и блочным. Блочный полистирол отличается от эмульсионного более высокими диэлектрическими свойствами, но и несколько худшими показателями механической прочности. Полистирол — аморфный прозрачный бесцветный полимер, легко окрашиваемый в различные цвета. При обычной температуре полистирол тверд и стекловиден, выше 80° С в нем начинают преобладать эластические деформации, постепенно сменяющиеся пластичностью. Максимальная пластичность проявляется при 200—220° С, выше 260° С начинается термическая деструкция полимера. Кислород воздуха не оказывает на полистирол заметного окислительного действия. Изделия формуют при 200—210° С литьем нри удельном давлении 700—1500 кПсм в зависимости от типа изделий. Существенные затруднения при литье изделий из полистирола, особенно крупногабаритных, вызваны сочетанием сравнительно низкой упругости материала с высоким коэффициентом термического расширения его и малой теплопроводностью. Нагретый до пластического состояпия полистирол продавливается в холодную форму, касается ее стенок, и поверхность изделия, быстро охлаждаясь, фиксирует контуры формы. Вследствие малой теплопроводности внутри изделия еще сохраняется высокая температура. Это вызывает большие внутренние напряжения, что при недостаточной упругости материала приводит к растрескиванию толстостенного или крупногабаритного изделия. Поэтому из полистирола обычно изготавливают сложные и сложноармированные, но мелкие детали приборов общего, электро- и радиотехнического назначения. Для снятия внутренних напряжений детали рекомендуется подвергать отжигу. Отжиг проводят при 65—70° С с постепенным охлаждением изделий до нормальной температуры.  [c.40]


Смотреть страницы где упоминается термин ПЛАСТИЧЕСКАЯ ДЕФОРМАЦИЯ И МЕХАНИЧЕСКИЕ СВОЙСТВА Виды напряжений : [c.12]    [c.242]    [c.245]    [c.184]    [c.190]    [c.89]    [c.140]    [c.44]    [c.88]   
Смотреть главы в:

Металловедение и термическая обработка металлов  -> ПЛАСТИЧЕСКАЯ ДЕФОРМАЦИЯ И МЕХАНИЧЕСКИЕ СВОЙСТВА Виды напряжений



ПОИСК



597 — Деформации и напряжения

Виды деформаций и напряжений

Виды напряжении

Деформация и механическое напряжение

Деформация пластическая

Деформация — Виды

Механические свойства деформация

Напряжение Свойства

Напряжение механическое

Напряжения механические — Виды

Напряжения при пластической деформации

Пластическая деформаци

Пластическая деформация и механические свойства

Пластические напряжения

Пластические свойства



© 2025 Mash-xxl.info Реклама на сайте