Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механические характеристики и свойства материалов

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И СВОЙСТВА МАТЕРИАЛОВ  [c.131]

Для удобства пользования приводимой информацией целесообразно физико-механические характеристики и свойства изучаемых материалов приводить не в сводной таблице, а конкретно по каждому материалу, причем не осредненные для каждой группы материалов, а конкретные данные для вполне определенных материалов, при исследовании обрабатываемости которых и получены все приводимые ниже рекомендации. Что касается применения этих данных при обработке других модификаций исследуемых материалов (различных типов стекло-, боропластиков и др.), то, как показывает опыт, с достаточной для практики точностью они применимы для всей группы материалов, имеющих одинаковый наполнитель, даже без введения поправочных коэффициентов.  [c.8]


Однако расчеты прочности по номинальным напряжениям с использованием перечисленных характеристик не отражают значения таких важных факторов, как местная механическая, а также тепловая статическая и вибрационная напряженность, длительность, повторность и нестационарность эксплуатационных режимов, исходная и развивающаяся дефектность, действие рабочих сред, изменение структуры и свойств материалов, начальная неоднородность механических свойств в композиционных материалах.  [c.18]

Литература, посвященная свойствам конструкционных материалов при различных условиях работы, весьма обширна, и поток ее непрерывно возрастает. Приводимые ниже данные по изменению механических характеристик наиболее распространенных материалов (металлов, бетона, пластмасс и др.) носят иллюстративный характер и не претендуют на полноту. В случае необходимости их легко уточнить, обратившись к библиографии цитируемых источников, а также специальным справочникам и журналам.  [c.13]

Материалы сильфонов. Материалы для сильфонов с U-образ-ным гофром должны обладать хорошими механическими характеристиками и быть достаточно пластичными для штамповки. Сварные сильфоны требуют наряду с хорошими механическими свойствами хорошей свариваемости материалов (фиг. 5).  [c.112]

Проведенные одноразовые испытания хотя и не позволяют сделать окончательные выводы о выборе наиболее надежной уплотнительной пары трения, все же могут до некоторой степени служить основанием для выбора дальнейшего направления исследований. Наличие большого количества факторов, влияющих на трение и износ, вызывает необходимость изучения их начиная со стадии создания уплотнительных материалов. При этом оценивается влияние физико-механических характеристик и режимов работы на антифрикционные свойства пар трения. Как показал  [c.87]

При определении механических характеристик вязко-упругих материалов проводят опыт, суть которого показана на рис. 22.21. Образец, находящийся в условиях ползучести, в момент времени t мгновенно разгружают. Упругие деформации Бе исчезают, а составляющая полных деформаций, обусловленная ползучестью, начинает со временем убывать. Такой процесс называется релаксацией деформаций или последействием. При этом в зависимости от свойств материала и условий проведения опыта диаграмма, соответствующая участку релаксации деформаций, может стремиться к нулю (кривая 1), что соответствует  [c.520]

Однако названные критерии оценивают стойкость материала против коррозионного растрескивания без учета его исходных механических характеристик и степени их изменения, а следовательно, без учета затрат на достижение получаемых коррозионно-механических свойств. Поэтому некоторые исследователи применяют в качестве критериев приведенные показатели, которые показывают степень изменения свойств материалов под воздействием коррозионной среды.  [c.108]


Техническая характеристика и работоспособность приборов во многом зависят от правильности выбора материалов для отдельных деталей. В приборостроении применяют обширную номенклатуру технических материалов. Специфика их работы состоит в том, что они испытывают разнообразные внешние воздействия механическую нагрузку, электрические и магнитные поля, световые потоки, радиационное облучение и т. д, Часто эти факторы действуют одновременно, поэтому при выборе материалов для отдельных деталей приборов приходится учитывать до 20— 30 характеристик разных свойств материалов.  [c.5]

Деградация наиболее характерна для полимерных материалов. Она приводит к необратимому изменению свойств под воздействием механических или термических напряжений, солнечного света, газовых и жидкостных химических сред, ионизирующих излучений и других факторов. Причины старения полимерных материалов — химические и структурные превращения макромолекул. Следствие старения — ухудшение механических характеристик и последующее разрушение полимерного изделия.  [c.185]

Определение механических характеристик и технологических свойств неметаллических материалов необходимо для установления возможности изготовления из них деталей методами листовой штамповки, а также для выявления их эксплуатационных возмож-46  [c.46]

Качество и свойства материалов и полуфабрикатов должны удовлетворять требованиям соответствующих стандартов или технических условий на них должны иметься сертификаты за-водов-изготовителей. В сертификатах обычно указывают способ производства, режим термической обработки, химический состав, механические свойства, результаты испытаний технологических свойств и исследований структуры металла. Комплекс характеристик металла, приводимых в сертификате, определяется стандартом или техническими условиями на поставку. На полуфабрикатах должна быть маркировка.  [c.7]

В машиностроении для изготовления деталей общего назначения широко применяют сталь (табл. 0.2), чугун (табл. 0.3), сплавы цветных металлов (табл. 0.4), пластмассы (табл. 0.5), резину. Свойства, методы получения, обозначения этих материалов рассмотрены в курсе Технология металлов . В табл. 0.2- .5 приведены маркировка, механические характеристики и для некоторых материалов дано примерное применение. Правильный выбор материала может быть сделан только на основе расчетов, а также сопоставления нескольких вариантов. В дальнейшем при изучении конкретных деталей будет отмечаться, из каких  [c.16]

Вторая — материалы, изменяющие свои свойства при приложении рабочих нагрузок. Это материалы нестабильного, мартенситно-старею-щего и дисперсионно-твердеющего класса. В результате воздействия рабочих нагрузок в этих материалах протекают фазовые превращения, которые повышают физико-механические характеристики и снижают  [c.422]

Механические характеристики материалов зависят от многих факторов. На свойства металлов и сплавов существенное влияние оказывают химический состав, технология их получения, термическая и механическая обработки, условия эксплуатации — температура, среда, характер нагрузки и др.  [c.111]

Испытание материалов производится в целях определения механических характеристик, таких, как предел текучести, предел прочности, модуль упругости и пр. Кроме того, оно может производиться в исследовательских целях, например для изучения условий прочности в сложных напряженных состояниях или, вообще, для выявления механических свойств материала в различных условиях.  [c.505]

Применение конструкционных низколегированных сталей повышенной и высокой прочности, теплоустойчивых и жаропрочных хромомолибденованадиевых, нержавеющих хромоникелевых сталей, биметаллов и композиционных материалов для изготовления аппаратов актуализирует проблему механической неоднородности. Механическая неоднородность, заключающаяся в различии механических характеристик зон (шва Ш, зоны термического влияния ЗТВ и основного металла) сварного соединения, является, с одной стороны, следствием локализованных температурных полей при сварке структурно-неравновесных сталей, с другой - применения технологии сварки отличающимися по свойствам сварочных материалов с целью повышения технологической прочности.  [c.93]


Значения характеристик механических свойств материалов Од, а ] и т. д. находят по результатам испытаний образцов определенной формы, размеров, при определенной температуре и шероховатости поверхности, поскольку все эти факторы влияют на механические свойства деталей. Детали реальных механизмов имеют различные формы, размеры, шероховатости поверхности и работают при различных температурах. Это необходимо учитывать при определении предельных и допускаемых напряжений.  [c.154]

В предыдущих главах был рассмотрен вопрос о различных видах деформаций бруса было выяснено, возникновением каких напряжений сопровождается каждый вид деформации и, наконец, были получены формулы, позволяющие вычислять напряжения в любой точке поперечного сечения нагруженного бруса. Однако, для того, чтобы ответить на главный вопрос сопротивления материалов, прочна или не прочна рассчитываемая деталь, недостаточно знать только лишь численное значение максимальных напряжений, возникающих в опасном сечении рассчитываемого элемента конструкции, необходимо также знать прочностные характеристики того материала, из которого изготовлен данный элемент. Механические свойства, т. е. свойства, характеризующие прочность, упругость, пластичность и твердость материалов, определяются экспериментальным путем при проведении механических испытаний материалов под нагрузкой. Следовательно, цель механических испытаний материалов — определение опытным путем механических характеристик различных материалов.  [c.273]

Вихретоковые методы основаны на взаимодействии внешнего электромагнитного поля с электромагнитным полем вихревых токов, которые наводятся возбуждающей катушкой в электропроводящем контролируемом объекте. Иначе данные методы назьшаются электромагнитными методами контроля. При контроле используется зависимость амплитуды, фазы, переходных характеристик и спектра частот токов, возбуждаемых в изделии, от сплошности материала изделия, его физико-механических свойств, расстояния до датчика, скорости перемещения датчика и т. д. Метод контроля используют для обнаружения непроваров, трещин, несплавлений в изделиях из алюминиевых, сплавов, низколегированных сталей, титановых сплавов и других немагнитных и ма1 нитных электропроводных материалов.  [c.198]

Все другие механические свойства в большей или меньшей степени структурно, чувствительны и анизотропны. Резкая анизотропия упругих и других механических характеристик присуща многим неметаллическим материалам, что определяется их ориентированным строением. Некоторая анизотропия свойственна и большинству металлических материалов. Уровень прочности, пластичности, выносливости и характеристик разрушения обычно в продольном направлении относительно оси деформации полуфабриката выше, чем в поперечном. Однако для некоторых, например титановых, сплавов характерна обратная анизотропия. Наблюдается значительная разница в пределах текучести при растяжении и сжатии у большинства магниевых деформируемых сплавов  [c.46]

Можно указать на несколько факторов, вызывающих появление подобных дефектов. К ним относятся в первую очередь кинетические факторы, связанные с тем, что кристалл не успевает стать идеальным в процессе кристаллизации и последующей обработки. Далее следует указать, что при не слишком низких температурах из-за конкуренции энергетического и энтропийного факторов присутствие в кристалле некоторого количества дефектных мест будет отвечать термодинамическому равновесию. Наконец, уже созданные идеальные кристаллы могут оказаться испорченными под влиянием факторов (механической обработки, действия радиации), нарушающих строгую периодичность расположения атомов. По этим причинам реальные кристаллы имеют дефекты, и физические свойства кристалла формируются под совместным действием строгой периодичности и отступлений от нее. Можно привести немало примеров, свидетельствующих о важности учета вклада дефектов в формирование свойств материалов. Так, без учета этого вклада оказалось невозможным построение теории прочности и пластичности материалов, поскольку эти характеристики определяются степенью сопротивления тела действию сил, смещающих разные части тела относительно друг друга. Под действием радиации (мощные световые потоки, пучки электронов, нейтронов, заряженных ядер и т. д.). отдельные атомы или группы атомов оказываются выбитыми из своих правильных положений, и поэтому структура и свойства облученных материалов необъяснимы без оценки роли дефектов и т. д. В связи с этим важной составной частью физики твердого  [c.228]

Перспективность использования аморфных металлических сплавов определяется их возможной большей технологичностью и возможностью получения материалов с новыми физическими свойствами. В настоящее время больше других изучены электрические, магнитные, антикоррозионные, механические свойства, и в этом параграфе будет дана краткая характеристика этих свойств.  [c.287]

Одной из основных технологических операций, позволяющих изменять в нужном направлении свойства материала, является термообработка. Из данных, приведенных в табл. 1.1, видно, например, что закалка резко повышает прочностные характеристики стали и одновременно снижает ее пластические свойства. Для большинства широко применяемых в машиностроении материалов хорошо известны те режимы термообработки, которые обеспечивают получение необходимых механических характеристик материала.  [c.90]

Испытания материалов проводят с целью определения механических характеристик, таких, как предел текучести, временное сопротивление, модуль упругости и т.д. Кроме того, их можно проводить в исследовательских целях, например для изучения условий прочности в сложных напряженных состояниях или выявления механических свойств материала.  [c.541]


Влияние свойств материала на изменение области существования иераспространяющихся усталостных трещин, возникающих в результате ППД, исследовано на многих широко применяемых в машиностроении сталях, имеющих существенно различные прочностные характеристики. В табл. 31 и 32 приведены химический состав, режим термических обработок и механические характеристики всех исследованных материалов.  [c.145]

Вследствие дисперсии свойств и состава применяемого сырья, вариации параметров технологического процесса, структурной неоднородности асбофрикцион-ных материалов их физико-механические свойства не являются строго детерминированными. При определении физико-механических характеристик асбофрнк-ционных материалов, как правило, наблюдается большой разброс результатов. Разброс показателей зависит также от погрешностей методов испытаний, обусловленных погрешностью контрольно-измерительных приборов, неточностью считывания их показаний, наличием значительных допусков на параметры условий испытаний и другими причинами. Поэтому каждый отдельный результат испытаний или среднее значение, полученное при нескольких испытаниях, в известной мере случайная величина. Для определения таких величин необходимо дополнительно указывать доверительный интервал и доверительную вероятность (коэффициент надежности).  [c.167]

Перспективным является создание на рабочих поверхностях деталей тонких пленок материалов с повышенными физикохимическими и механическими характеристиками. Нанесение на материалы однослойных и многослойных тонкопленочных покрытий из металлов и их соединений позволяет создать изделия с уникальными электрофизическими, теплофизическими и физико-механическими свойствами. Выбирая материал покрытия и технологические режимы его нанесения, можно изменять в широких пределах основные поверхностные свойства твердость, коэффициент трения, теплопроводность и электрическую проводимость, коэффициент отражения, износостойкость и коррозионную стойкость, при этом сохраняя выро-кие свойства материала основы. С этой точки зрения ши] о-кие возможности связаны с использованием физических методов упрочнения и нанесения тонкопленочных покрытий в вакууме, находящих широкое применение в нашей стране и за рубежом.  [c.109]

Механические характеристики. Для конструкционных материалов в первую очередь необходима информация об их деформационных свойствах. Основные технологические и эксплуатационные свойства полимеров в широком температурном интервале оценивают методом термомеханических кривых, предложенным А. П. Александровым и Ю. С. Ла-зуркиным для периодических деформаций (1939 г.), В. А. Каргиным и Т. И. Со-головой для статических деформаций (1949 г.). На рис. 2.2 приведены термо-  [c.64]

На протекание процесса анодпо-механической обработки влияют следующие основные факторы электрические параметры режима (напряжение, плотность тока, характер и форма кривой тока) состав рабочей жидкости и интенсивность её подачи удельное давление инструмента на обрабатываемую поверхность линейная скорость перемещения инструмента относительно обрабатываемой иоверхности характер и свойства материалов инструмента и изделия конструкция ипструмента физикохимические и механические характеристики анодной плёнки способ отвода продуктов разрушения величина площади контакта между инструментом и изделием.  [c.944]

Эпоксидные смолы находят применение для получения блок-полимеров с фенолоформальдегидными, полиамидными, полиэфирными и кремнийорганическими смолами, В сочетании с последними эпоксисмолы дают смолы с повышенной нагревостойкостью, улучшенными механическими характеристиками и пониженной температурой отверждения. Отвержденные эпоксидные смолы обладают хорошей нагревостойкостью, мало гигроскопичны, имеют малую усадку при отверждении. Ценным свойством их является очень высокая адгезия к металлам (особенно легким сплавам), керамическим материалам, стеклу, термореактивным пластмассам, благодаря чему эпоксидные смолы широко применяются в качестве склеивающего материала. Плохую адгезию имеют эпоксидные смолы к термопластичным материалам. Они применяются также для высококачественной монолитной изоляции (пропитка и заливка) различных деталей и аппаратов, в том числе высоковольтных, например измерительные трансформаторы тока. Кроме того, эпоксидные смолы применяются для производства слоистых пластиков.  [c.176]

Брошюра содержит основные сведения о свойствах электротехнических материалов, применяемых при ремонте электрических машин и трансформаторов. Приводятся основные физико-химические и механические характеристики и указываются области применения электронзо-ляционпых, проводниковых и магнитных материалов, припоев, флюсов и клеев. Даны в кратком виде, сведения об условиях поставки и правилах хранения электротехнических материалов. Брошюра предназначена для мастеров и рабочих, занятых ремонтом электрооборудования.  [c.2]

Сун1.естБснное влияние на механические характеристики оказывает также анизотропия сварных швов, наличие мягких и твердых прослоек и других отклонений, в >1званных особенностями металлургических процессов и физико-механических свойств материалов.  [c.113]

Эксплуатационные показатели машин и других изделий определяются уровнем и стабильностью характеристик рабочего процесса размерами, формой и другими геометрическими параметрами деталей и сборочных единиц уровнем механических, физических и химических свойств материалов, из которых изготовле11Ы детали, и другими факторами. Неизбежные погрешности параметров и изменения свойств материалов влияют на параметры рабочего процесса и эксплуатационные показатели машин, поэтому для ответственных деталей и составных частей взаимозаменяемость необходимо обеспечивать не только по размерам, форме и другим геометрическим параметрам, показателям механических свойств материала (особенно поверхностного слоя деталей), но и по электрическим, гидравлическим, оптическим, химическим и другим функциональным параметрам (в зависимости от принципа действия машины).  [c.18]

Стандартизация упругих элементов (пружин, мембран и др.) предусматривает обеспечение взаимозаменяемости как по присоединительным размерам, так и по характеристике, выражаюш,ей зависимость перемещения (деформации) торца пружины или рабочего центра другого элемента от приложенной силы. Оптимальное значение параметров и стабильность характеристики упругих элементов определяются точностью их размеров и формы, механическими свойствами материалов, а также конструктивными и технологическими факторами. Упругие элементы должны иметь мппимальное упругое последействие (т. е. минимальную остаточную обратимую деформацшо, исчезающую в течение некоторого времени после снятия нагрузки) и наименьшую петлю гистерезиса (несовпадение характеристик при нагружении и разгружении, определяемое максимальной разностью между деформациями при нагружении и разгружении упругого элемента). Для определения влияния геометрических, механических и других параметров на работу упругих 76  [c.76]


Отличительной особенностью сварных соединений оболочковых конструкций является наличие в них механической неоднородности, проявляющейся в различии свойств металлов отдельных учкстков и зон соединений. Последнее является, с одной стороны, следствием структурно-химических изменений материала под воздействием термодеформационного цикла сварки и, с другой стороны, применением для сварки материалов с различным уровнем механических характеристик. Участки (зоны) соединений, металл которых имеет пониженные по сравнению с основным металлом конструкции прочностные характеристики (предел текучести а,, временное сопротивление, твердость НУ и др.), как отмечалось во введении, принято называть мягкими прослойками, а N ia TKH, металл которых имеет более высокие характеристики  [c.73]

Из всего сказанного можно сделать интересный вывод, расширяюш,ий наши представления о механических свойствах материалов. Если прежДе мы с полным основанием утверждали, что для хрупких материалов такая важная характеристика, как предел текучести, не имеет смысла, то теперь с неменьшим основанием мы можем сказать и обратное. Имеет смысл. Предел текучести хрупкого материала можно определить, если проводить испытания в условиях высокого гидростатического давления. Но такие испытания требуют уникального сборудования и нужны только для решения специальных задач, выходяш,их за рамки инженерных расчетов на прочность.  [c.92]

В век научно-технической революции бурно развиваются все отрасли промышленности и каждая из них нуждается в новых материалах, обладающих различными физико-механическими свойствами. Для авиации, например, нужны легкие и прочные материалы, получаемые на основе алюминия и титана. Судостроению необходимы материалы высокой прочности и с хорошими антикоррозийными свойствами, а атомному энергостроению — материалы, не теряющие прочностных характеристик в результате непрерывной бомбардировки тяжелыми частицами внутренней структуры оболочек, закрывающих атомный реактор и т. д. Современная технология пока не позволяет получать в широком масштабе абсолютно чистые металлы, обладающие значительно более высокими прочностными характеристиками, чем металлы, используемые в практике. Процесс же получения чистых металлов и совершенствования их свойств бесконечен, а следовательно, исследование этих свойств требует все более точных методик, машин и установок.  [c.48]

При испытании электроизоляционных материалов на атмосферостой-кость образцы пoдвepгaюf в заданных условиях (температура, влажность, состав газа, давление) воздействию определенных доз солнечной радиации, а при ускоренных испытаниях — воздействию ультрафиолетовой радиации. После этого фиксируют изменение электрических и механических характеристик материалов. Помимо обнаружения необратимых изменений свойств материалов (эти изменения остаются после прекращения воздействия излучения), в ряде случаев представляет интерес определение электрических свойств материала непосредственно во время облучения, что значительно более сложно и требует специально приспособленной аппаратуры. Кроме того, надо иметь в виду, что большое влияние на изменения в материале может оказывать среда, в которой находятся образцы во время облучения (воздух, нейтральный газ, вакуум и т. п.).  [c.195]


Смотреть страницы где упоминается термин Механические характеристики и свойства материалов : [c.19]    [c.127]    [c.450]    [c.158]    [c.214]    [c.245]    [c.8]   
Смотреть главы в:

Прикладная механика  -> Механические характеристики и свойства материалов



ПОИСК



228 — Характеристики механических свойств

434, 436 — Характеристики свойств

434, 436 — Характеристики свойств свойств

812 — Материалы — Свойства механические

КОНСТРУКЦИОННЫЕ МАТЕРИАЛЫ Механические свойства конструкционных материалов, характеристики нержавеющих сталей

МЕТОДЫ И СРЕДСТВА ИССЛЕДОВАНИЯ ЗАКОНОМЕРНОСТЕЙ ДЕФОРМИРОВАНИЯ И РАЗРУШЕНИЯ ПРИ МАЛОЦИКЛОВОМ НАГРУЖЕНИИ Методы определения механических свойств материалов и характеристик сопротивления деформированию и разрушению

Материал характеристики механические

Материалы авиационные, механические свойства и характеристики

Материалы композиционные — Преобразование характеристик при повороте системы координат алюминия — Матричные составляющие 83, 84 — Механические свойства

Материалы — Вероятностные характеристики механических свойств при

Материалы — Вероятностные характеристики механических свойств при к концентрации напряжений и масштабному фактору

Материалы — Вероятностные характеристики механических свойств при статическом растяжении 139, 140 ‘Характеристика чувствительности

Материалы — Характеристики

Механическая характеристика

Основные механические характеристики и свойства материалов

Проволока пружинная термически обработанная холоднодеформированная — Материал для изготовления — Отпуск 201 Характеристики механических свойств 199 Прокаливаемое» стали 313 Способы определения

Свойства материалов

Сравнительная характеристика механических свойств пластичных и хрупких материалов

Сравнительная характеристика механических свойств пластичных и хрупккх материалов

Характеристики механических свойств конструкционных материалов

Характеристики механических свойств материала, определяющие его чувствительность к концентрации напряжений 153 — Критические значени



© 2025 Mash-xxl.info Реклама на сайте