Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общая энергия

Вторая задача имеет своей целью определение мощности, необходимой для воспроизведения заданного движения машины или механизма, и изучение законов распределения этой мощности па выполнение работ, связанных с действием различных сил на механизм, а также решение вопроса о сравнительной оценке механизмов с помощью коэффициента полезного действия, характеризующего степень использования общей энергии, потребляемой машиной или механизмом, на полезную работу. К этой же задаче относится вопрос об определении истинного движения механизма под действием приложенных к нему сил, т. е. задачи о режиме его движения, а также вопрос о подборе таких соотношений между силами, массами и размерами звеньев механизма или машины, при которых движение механизма или машины было бы наиболее близким к требуемому условию рабочего процесса.  [c.204]


Добавление энергии при температуре и давлении, соответствующих плавлению, приводит к увеличению потенциальной энергии и межатомных расстояний до такой степени, что жесткая структура нарушается, и твердая фаза переходит в жидкую. Увеличение расстояния между частицами позволяет им приобрести некоторое количество поступательной и вращательной энергии. Общая энергия на единицу массы, поглощенная при переходе из твердой фазы в жидкую, называется скрытой теплотой плавления . Так как поступательное и вращательное движение частиц в жидкой фазе при точке замерзания сильно затруднено, то эта фаза почти подобна твердой фазе при тех же температуре и давлении. Однако частицы жидкой фазы при температуре кипения больше удалены друг от друга и имеют большую свободу в поступательном и вращательном движении.  [c.59]

Добавление энергии при температуре кипения и соответствующем давлении настолько увеличивает потенциальную энергию, что позволяет частицам отойти друг от друга на относительно большие расстояния, и вещество из жидкого состояния переходит в газовую фазу. В газовой фазе силы притяжения между частицами слабы, и частицы получают свободу независимого перемещения и вращения. Общая энергия на единицу массы вещества, поглощенная при переходе из жидкой фазы в газовую, называется скрытой теплотой испарения .  [c.59]

Общая энергия частицы — это сумма кинетической и потенциальной энергий  [c.75]

Рассмотрим следующую систему, состоящую из п различных частиц, распределенных по k энергетическим уровням таким образом, что имеется % частиц, каждая с энергией е , частиц, каждая с энергией и частиц, каждая с энергией е. Общее число частиц равно Ей,- общая энергия системы равна Еп,е,-. При занятии частицами энергетического уровня имеется п возможностей для его занятия первой частицей, так как любая из первоначальных п частиц может быть на этом уровне.  [c.92]

Одно возможное распределение десяти частиц на энергетических уровнях таково, что все десять частиц располагаются на энергетическом уровне 2. Общая энергия системы составит тогда 20. Очевидно, имеется только один способ, которым это распределение можно осуществить, т, е. обмен частиц на том же уровне не дает нового состояния системы. Применение уравнения (3-2) дает значение w, равное единице.  [c.94]

Второе распределение может быть получено перемещением одной частицы с уровня 2 на уровень 1 и другой частицы с уровня 2 на уровень 3. Общая энергия равна 20. Теперь применение уравнения (3-2) к этому распределению дает значение w, равное 90. Таким образом, это распределение можно осуществить 90 различными способами.  [c.94]


Если в первоначальном распределении две частицы перемещаются с уровня 2 на уровень 1, а две других частицы — с уровня 2 на уровень 3, то общая энергия составит 20. Однако w теперь равно 1260. При перемещении трех частиц с уровня 2 на уровень 1  [c.94]

В этом случае значения w могут быть вычислены для всех распределений, имеющих общую энергию 20. Результаты приведены в табл. 3. Числа в графе — Уровни энергии показывают число частиц на энергетическом уровне.  [c.95]

Любое перераспределение частиц по энергетическим уровням должно быть выполнено таким образом, чтобы общее число частиц и общая энергия системы оставались неизменными.Условия, определяющие наиболее вероятное распределение частиц по энергетическим уровням (или наиболее вероятное распределение энергии среди частиц), таковы  [c.96]

Общая энергия системы постоянна  [c.96]

Небольшое изменение рассмотренного выше случая имеет место, когда у нескольких энергетических уровней одинаковые или почти одинаковые энергии. Вместо различимых частиц, относящихся к одному уровню энергии Ej, имеется группа различных уровней с энергией е частиц относятся к группе уровней с энергией и т. д. Внутри данной группы на отдельном уровне нет ограничений для числа частиц. Общее число частиц равно Еп,- общая энергия е равна  [c.97]

Для этого случая рассмотрим группу из уровней энергии е , содержащих щ частиц щ < вторую группу уровней энергии Ё2, содержащих Па частиц, и т. д. частицы теперь будем рассматривать неразличимыми и примем, что на уровне не может быть больше одной частицы. Для k групп общее число частиц равно Sn,- общая энергия равна  [c.99]

Общая энергия постоянна  [c.99]

Как и ранее, рассмотрим систему, состоящую из группы gi уровней энергии е , заполненных молекулами, второй группы g2 уровней энергии Ej, заполненных молекулами, и т. д. Примем, что молекулы неразличимы и нет ограничений для числа их на любом энергетическом уровне какой-либо группы. Общее число молекул составляет Общая энергия равна  [c.100]

Для изолированной системы общая энергия и общий объем постоянны  [c.233]

Таким образом, общую энергию системы U можно представить в виде суммы двух частей [уравнения (9-30) и (9-32)1  [c.146]

Из каких величин составляется общая энергия системы  [c.151]

Внешняя энергия деформации будет затрачиваться на преодоление сил отталкивания, возникающих между сближаемыми поверхностными атомами. Когда расстояния между ними будут равны межатомному расстоянию в решетке кристаллов, возникают квантовые процессы взаимодействия электронных оболочек атомов. После этого общая энергия системы начнет снижаться до уровня, соответствующего энергии атомов в решетке целого кристалла, и появится выигрыш энергии, равный избыточной энергии поверхностных атомов кристаллов до их соединения — энергии активации.  [c.12]

Эффективность использования способов сварки плавлением достигается при минимальной ширине шва, что, в свою очередь, определяется концентрированностью источника теплоты (радиусом пятна нагрева) и теплофизическими особенностями проплавления. Эти особенности учитываются при определении энергозатрат на сварку через термический к. п. д. процесса, а полученные выше минимальные оценки удельной энергии составляют лишь часть общей энергии сварки, или е = Учет эффек-  [c.25]

Можно также принять в качестве постулата, что при равновесии существует единственное распределение энергии системы по ее частям, с увеличением общей энергии системы растут и энергии частей. Монотонность функ-  [c.26]

Следует учесть, что при обычных соотношениях размеров балок, когда длина превышает высоту сечения, по крайней мере, в 6-8 раз, энергия сдвига составляет весьма малую долю от общей энергии (меньше 3 %), и ею можно пренебречь.  [c.70]

Отсюда Эйнштейн пришел к следующему фундаментальному выводу общая энергия тела (или системы тел), из каких бы видов энергии она ни состояла (кинетической, электрической, химической и т. д.), связана с массой этого тела соотношением  [c.218]

Большинство раскаленных тел не могут иметь температуру выше 3000 К, так как при такой температуре плавятся почти все металлы. Поэтому коэффициент полезного действия ламп накаливания совсем невелик и в лучшем случае (мощные лампы с вольфрамовой нитью) составляет около 3%. Следует указать, что рассмотренная выше аномалия излучения вольфрама (см. рис. 8.6) является выгодной для повьппения светоотдачи в видимой области, так как меньшая часть общей энергии приходится на бесполезную в целях освещения далекую инфракрасную часть спектра. Для того чтобы уменьшить распыление нити при высокой температуре (Т 3000 К), такие источники света заполняют инертным газом. Все эти усовершенствования позволяют повысить к. п. д. от 2%, характеризующих эффективность  [c.415]


Важнейшим свойством ядерных сил также является зависимость их величины от взаимной ориентации спина и орбитального момента движения каждого нуклона, т. е. спин-орбитальный характер. Спин-орбитальное взаимодействие играет значительную роль в ядрах и составляет примерно 10% от общей энергии взаимодействия. Учет спин-орбитальной связи достаточно правильно передает эмпирическую последовательность энергетических уровней и значения магических чисел (см. 31).  [c.136]

Из изложенного в предыдущих параграфах ясно, что использование раскаленного тела в качестве источника света тем более выгодно, чем выше температура этого тела. Действительно, с повышением температуры не только быстро увеличивается общая излучаемая мощность, но растет также относительная доля лучистой энергии, приходящейся на видимую часть спектра. По закону Стефана — Больцмана суммарная интенсивность возрастает для черного тела пропорционально четвертой степени температуры. Но интенсивность более коротковолновых участков спектра растет гораздо быстрее, особенно при не очень высоких температурах. Так, вблизи температуры красного каления общая энергия видимого спектра платины растет пропорционально тридцатой степени температуры и даже вблизи белого каления — все еще пропорционально четырнадцатой степени температуры. Интенсивность желтых лучей возрастает вдвое, когда температура черного тела изменяется от 1800 до 1875 К, т. е. всего на 4%.  [c.706]

Большим шагом вперед в деле улучшения осветительной техники явилось предложение Лэнгмюра (1913 г.) наполнять баллоны ламп нейтральным газом, например азотом или, еще лучше, аргоном давление газа достигает примерно /3 ат, и присутствие его сильно замедляет распыление волоска, что позволяет увеличить температуру нити до 3000 К и больше без заметного сокращения срока службы лампы (около 1000 час). При этом сильно повышается световая отдача. Однако общий коэффициент полезного действия лампы равен отношению энергии полезной части спектра к общей энергии, питающей лампу, т. е. приходится учитывать не только потери на невидимое излучение, но также на теплопроводность и конвекцию. Последние виды потерь сильно увеличиваются при заполнении колбы лампы газом, так что газонаполненные лампы в смысле увеличения к. п. д. не имели бы преимущества перед пустотными, хотя свет их был бы приятен для глаз, ибо он ближе подходит к составу дневного ( белого ) света. Уменьшения потерь на охлаждение можно достигнуть, заменив прямой волосок тонкой спиральной нитью, отдельные витки которой обогревают друг друга. Именно так и осуществляются современные экономические лампы накаливания, к. п. д. которых значительно выше, чем у пустотных ламп.  [c.708]

Общая энергия Q, выделяемая при делении, равна Q = -I- Qp = 180 + 20 = 200 Мэе (подробнее см. 44, п. 8).  [c.366]

Обмен электронов виртуальным фононом, как мы видели, приводит к их притяжению. Таким образом, появляется возможность образования связанных пар электронов. Энергия притяжения этих электронов дает отрицательный вклад в общую энергию системы, т. е. понижает ее. Но для того чтобы наблюдать это, необходимо обеспечить возможность рассеяния электронов из состояния (ki, кг) в состояние (к/, кг )- Такое рассеяние окажется возможным, если состояние (kj, кг) сначала заполнено, а (к/, кг ) — пусто. Поэтому минимальной энергии при 7=0 соответствует уже неполностью заполненная сфера Ферми, а некоторая размазанная поверхность Ферми. Ряд ячеек в к-пространстве над поверхностью Ферми окажется заполненным, в то время жак некоторые ячейки под поверхностью Ферми будут пустыми.  [c.269]

В этом уравнении две неизвестные величины, v н Мо, и его не достаточно для решения задачи. Но зато в этом случае, в отличие от предыдущего, мы вправе применить закон сохранения энергии, поскольку система является изолированной. В самом деле, выражение (4.16) учитывает не только кинетическую энергию, но и энергию покоя системы. Хотя при неупругом ударе какое-то количество кинетической энергии превращается в тепло, но эта энергия остается в изолированной системе и, значит, на такую же величину возрастает энергия покоя шаров. Поэтому общая энергия до удара должна быть равна общей энергии после удара, т. е. должно выполняться равенство  [c.149]

Представление об этом могут дать следующие наглядные соображения. Закон Бернулли будет приблизительно справедлив в том случае, когда потери энергии на трение малы по сравнению с общей энергией текущей жидкости. Введем среднюю скорость течения жидкости по трубе = Q/nR . Тогда по (16.11)  [c.539]

Если в автоколебательной системе потери энергии на трение малы по сравнению с общей энергией колебаний, то и энергия, необходимая для компенсации потерь, также мала. Поступающая в систему малыми порциями энергия компенсирует потери энергии, происходящие при колебаниях, но при этом очень мало изменяет ход всего процесса. Колебания происходят почти так, как если бы отсутствовали и потери энергии в системе, и поступление энергии в систему. В этом случае автоколебания по форме близки к гармоническим. Вместе с тем и период автоколебаний близок к периоду тех собственных колебаний, которые совершала бы система, если бы потери энергии не компенсировались. Если же потери на трение велики, а значит, велика И энергия, поступающая от источника, то автоколебания могут по форме заметно отличаться от гармонических, и их период может заметно отличаться от периода собственных колебаний. Поэтому, например, в хороших часах, в которых потери на трение малы, маятник совершает колебания, по форме почти не отличающиеся от гармонических и с частотой, почти точно совпадающей с частотой собственных колебаний маятника (этим и обеспечивается точность хода часов). В простых ходиках, в которых потери на трение велики, колебания маятника даже на глаз отличаются от гармонических, и период этих колебаний уже заметно отличен от периода свободных колебаний маятника.  [c.603]


Частные случаи йыражения (1-46) а) при термодинамическом равновесии Д(5х.и=0 AQh=0 б) при луче-прозрачной среде (например, двухатомные газы, сухой воздух без 02)AQh=0, т. е. в этом случае перенос лучистой энергии через элемент дисперсного потока АУц и изменение за счет его общей энергии может происходить лишь путем лучистого взаимодействия дискгретных частиц.  [c.43]

Близость энергии активации миграции к энергии активации самодиффузионных процессов свидетельствует о том, что миграция границ контролируется направленным перемещением вакансий. Другими словами, движение границы представляет процесс обмена местами атомов и вакансий (рис. 13.13). По своему атомному механизму и энергии активации миграция занимает некоторое промежуточное положение между самодиффузией по границам и объему зерен. В случаях малоугловых и специальных большеугловых границ обмен местами атомов и вакансий происходит в малоискаженных приграничных зонах, поэтому энергия активации миграции границы будет близка к энергии активации объемной самодиффузии в решетке. По мере разориентации границы и увеличения степени искажения решеток в приграничных зонах доля энергии активации, связанная с образованием и перемещением вакансий, будет уменьшаться. Общая энергия активации миграции будет приближаться к энергии активации самодиффузии по границам. В соответствии с этим большеугловые границы более подвижны, чем малоугловые и специальные. В условиях неравномерного распределения температуры, например при сварке, отмечают, что наиболее интенсивная миграция границ происходит в направлении тепловых потоков. Это, вероятно, обусловлено направленным потоком вакансий от более нагретого к менее нагретому участку металла.  [c.505]

Общая энергия фотонов, падающих на площадку Nh равна плотности потока электромагнитной энергии, т.е. модулю вектора S, который связан со средней плотностью электромагнитного поля (см. 2.6). Тогда в гтолном С01ла1 ии с результатом, полученным в волновой оптике.  [c.447]

На границе земной атмосферы на высоких широтах в период минимума солнечной активности поток первичной компоненты космических лучей составляет (0,7 — 1,0) част см" сек. С приближением к максимуму солнечной активности этот поток уменьшается в несколько раз. Поток заряженных частиц на уровне моря в среднем составляет 1,75-10 част1см -сек. Общая энергия, приносимая частицами космических лучей на Землю (— 1,5-10 кет), невелика и сравнима с энергией видимого света звезд, поступающего на Землю, а плотность их энергии составляет 1 эз/см и примерно того же порядка, что и для других видов энергии в Галактике.  [c.73]

ПОЛЯ в резонаторе увеличивается. Как было выяснено в 224, по мере роста мощности излучения коэффициент поглощения фильтра и доля поглощенной в нем энергии уменьшается, а доля энергии, прошедшей фильтр, увеличивается, или, как говорят, фильтр просветляется излучением. Если среда фильтра достаточно малоинер-цнонна (для фильтров специально подбираются такие среды), то сказанное относится к мгновенному значению потока, падающего на фильтр чем больше мгновенное значение мощности, тем сильнее просветляется фильтр. В итоге самый сильный выброс будет ослабляться фильтром в меньшей степени, чем все остальные, и в каждом последующем цикле его преимущественно малое ослабление будет все более усугубляться. Процесс выделения наиболее мощного выброса иллюстрируется рис. 40.20, а—в, на котором изображено лишь относительное распределение амплитуды поля и совсем не нашло отражения огромное увеличение общей энергии.  [c.815]

Взаимодействие антинейтрино из ядерного реактора, вблизи которого была расположена установка, с одним из протонов ядер мншени по схеме (83.5) приводит к образованию нейтрона и позитрона. Позитрон вскоре после образования аннигилирует, образуя два Y-кванта (с энергией аннигиляции), которые регистрируются детекторами Д и Д2, включенными в схему совпадений. Нейтрон в результате последовательных столкновений с протонами замедляется, диффундирует и захватывается кадмием, давая несколько Y-квантов (с общей энергией до 10 Мэе), которые также регистрируются детекторами Д1 и Дг-  [c.642]

Иногда требуется, чтобы лазер генерировал только одну моду определенной частоты. В таких случаях принимаются специальные меры подавления нежелательных мод высших порядков (так называемая селекция жо(3). При подавлении колебаний высоких порядков внешняя энергия преобразуется в основную моду и, хотя общая энергия излучения не увеличивается, мощность, сосредоточенная в этой моде, заметно возрастает. Теоретическая оценка монохроматичности в случае, когда лазер работает в одиомодовом режиме, показывает, что ширина линии излучения с выходной мощностью 1 мВт должна быть Атгеп б Гц. На практике же такие эффекты.  [c.281]

Этот дефект массы действительно обнаруживается при сопоставлении результатов измерения масс протона и нейтрона и ядер атомов. Например, для ядра атома гелия дефект массы Ат 5 10 г (масса ядра гелия составляет 7 10 г). Отсюда мы можем определить ту энергию АЕ, на которую уменьшается общая энергия протонов и нейтронов при обра.зовании ядра  [c.140]


Смотреть страницы где упоминается термин Общая энергия : [c.92]    [c.94]    [c.95]    [c.232]    [c.32]    [c.28]    [c.89]    [c.242]    [c.37]    [c.158]   
Основы прогнозирования механического поведения каучуков и резин (1975) -- [ c.0 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте