Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Адгезионное взаимодействие

На трение и износ полимерных материалов сильно влияют такие факторы, как температурные условия на поверхности трения, адгезионное взаимодействие контактирующих поверхностей, специфические виды смазки и др. 1200].  [c.265]

Борирование, карбидизация и силицирование ниобия осуществлялись методом диффузионного насыщения по методикам, описанным в работе [6]. Режимы получения достаточно плотных, прочно сцепленных с основой защитных покрытий на ниобии и их характеристика приведены в таблице. Судя по изменению коэффициента адгезии с температурой, взаимодействие ниобия с незащищенным ниобием начинается при 1100° С. С повышением температуры коэффициент адгезии возрастает, достигая при 1300° С значения 0.37. Карбидизация и силицирование ниобия повышают температуру начала адгезионного взаимодействия на 100° С, а борирование — на 200° С. В случае защиты обеих контактирующих поверхностей [7] борирование также более эффективно уменьшает склонность ниобия к схватыванию, чем карбидизация.  [c.189]


Улучшению адгезионного взаимодействия обычно способствуют  [c.146]

Между органической смолой и поверхностью гидрофобного материала, например графита, не обнаружено адгезионного взаимодействия. В этом случае вода не в состоянии участвовать в равновесном связывании компонентов на поверхности раздела и поэтому отсутствует возможность релаксации усадочных папряжений в материале. Это наиболее важно для жестких полимеров, поскольку из конструкционных материалов графит обладает наименьшим коэффициентом линейного расширения. Установлено, что уже до приложения внешней нагрузки жесткие полимеры, армированные углеродным волокном, содержат многочисленные трещины, возникшие между отдельными слоями из-за термических напряжений в материале в процессе охлаждения.  [c.216]

НОЙ к склеиванию поверхности раздела. Для достижения хорошей адгезии необходимо оптимальное сочетание каучука, смолы и силана на границе раздела. Поскольку адгезионное взаимодействие определяется взаимной растворимостью и диффузией молекул, концентрация силана и структура смолы должны быть оптимальными для каждого типа каучука.  [c.222]

Латунное покрытие способствует повышению адгезии между каучуком и металлом, но этот способ крепления имеет ряд недостатков. Адгезия сырой резины к латуни слишком мала при быстрых методах переработки латунное покрытие очень чувствительно к окислению поверхности, что снижает адгезию резины и удорожает технологический процесс. По этой причине покрытую латунью сталь рекомендуется хранить в закрытых высушенных контейнерах. Поверхность нередко защищают от окисления тонким покрытием из синтетических смол, повышающих адгезию. Смола диффундирует в массу каучука в процессе вулканизации, благодаря чему обеспечивается необходимая чистота поверхности латуни, способной к адгезионному взаимодействию.  [c.223]

Механизм адгезионного взаимодействия усложняется также из-за усадочных и термических напряжений, появляющихся вследствие различия коэффициентов термического линейного расширения полимера и наполнителя. Динамическое равновесие процесса образования и разрыва связей в присутствии воды определяет релаксацию напряжений на поверхности раздела на молекулярном уровне. Поэтому вода является необходимым ингредиентом при образовании адгезионной связи между жесткими полимерами и поверхностью минеральных веществ. Высокая адгезия сО Храняет-ся только до тех пор, пока гидролиз на поверхности раздела является обратимым процессом.  [c.225]

Методами радиоактивных индикаторов и ЭПР доказано, что ответственными за адгезионное взаимодействие продуктов переработки углеводородного сырья с поверхностью металлов являются соединения, способные к межмолекулярным взаимодействиям - парамагнитные частицы и полярные соединения. По характеру изотермы адсорбции нефтяного пека показано, что взаимодействие нефтяных остатков с поверхностью металлов происходит по механизму хемосорбции [29].  [c.19]


Возможно нанесение других металлов, например золота, а также одновременно двух металлов, т. е. нанесение смесей. При микроскопическом изучении покрытия, нанесенного смесью порошков серебра и золота, обнаружены частицы обоих металлов. Попытка нанести серебро и золото на неметаллы (органическое и силикатное стекла, полистирол, капрон и другие сорта пластических масс, фарфор, керамика) успехом не увенчалась. Микроскопическими исследованиями на поверхности ни одного из указанных выше материалов после проведения Соответствующих экспериментов не обнаружено даже отдельных порошкообразных частиц. Это объясняется, по-видимому, пониженной величиной адгезионного взаимодействия опробованных материалов с серебром и золотом.  [c.67]

Чрезмерное уменьшение шероховатости поверхности стального и титанового роликов не способствует улучшению характеристик фрикционного контакта модельной пары, так как при этом возрастает фактическая площадь контакта. Это влечет за собой заметное увеличение сил адгезионного взаимодействия, приводящее к надирам на стальной поверхности или к когезионному схватыванию титана с бронзой. Подобные эффекты не наблюдались при контакте бронзы с хромированной поверхностью Ra = = 0,08-5-0,03 мкм), что может быть объяснено большей удаленностью данного фрикционного контакта от порога внешнего трения.  [c.132]

Если При ЭТОМ не изменяется адгезионное взаимодействие, трение повышается, но износ может снизиться благодаря уменьшению локальных контактных напряжений. Если же большую часть сдвиговой деформации вследствие падения контактного давления удастся перевести в полимолекулярный граничный слой, трение резко уменьшится. На реализации этого последнего случая основан принцип двухслойной смазки [17 27 35], о которой будет сказано ниже.  [c.100]

В качестве твердых смазок используются порошкообразные графит, дисульфид молибдена, нитрид бора и др. [44]. Методы создания антифрикционной пленки основаны на закреплении частиц порошков на поверхности деталей за счет адгезионного взаимодействия. Поверхность в таких случаях, как правило, предварительно обрабатывают различными механическими или термохимическими методами (пескоструйная обработка, фосфатирование, сульфидирование и т. п.). Применяется также метод закрепления порошков путем введения их в пленки полимеров.  [c.108]

Согласно молекулярно-механической теории трения сила трения рассматривается как сумма двух составляющих силы, обусловленной молекулярным (адгезионным) взаимодействием поверхностей, и силы, возникающей в результате деформирования поверхностей (механическая составляющая).  [c.118]

Адгезионная составляющая коэффициента трения зависит от сил адгезионного взаимодействия и коэффициента упрочнения образовавшейся связи под нагрузкой  [c.119]

Экспериментально установлено, что для материалов, обладающих сравнительно совершенными упругими свойствами и в условиях, когда температура их существенно не изменяется, коэффициент трения не зависит от скорости. В этом случае совершенная упругость исключает гистерезисные потери и обеспечивает независимость от скорости деформационной компоненты коэффициента трения высокая теплостойкость обеспечивает независимость адгезионного взаимодействия.  [c.123]

Слипаемость. При значительном даиленни горячий металл может как бы прилипать к металлу штампа (явление адгезии), и когда штампуемое изделие отдирается от штампа, то опо всякий n i3 частично разрушает его поверхность. Это явление разрушения будет тем сильнее выражено, чем си 1ьнее адгезионное взаимодействие штампуемого металла и металла штампа. Поэтому подобное взаимодействие штамповой стали с металлом изделия должно быть мпнимальпым.  [c.439]

При трении в вакууме вследствие затрудненного образования защитных адсорбционных слоев и связанного с этим увеличения адгезионного взаимодействия наблюдается, как правило, более сильное трение. В прирабо-точном периоде стабилизация f происходит при более высоком значении, чем начальное, и завершается после изнашивания поверхностных структур, сформированных в процессе предшествовавшей трению обработки поверхностей.  [c.125]

Наиболее сложным является механизм адгезионного взаимодействия полимерных тел с металлическими. Так, Д, Бакли [17] при исследовании контактного взаимодействия атомарно-чистых поверхностей вольфрама и фторопласта-4 с помощью автоионного микроскопа установил наличие интенсивного адгезионного взаимодействия, при котором молекулы фторопласта-4 на поверхности твердого тела представляют собой кластеры из трех атомов. Считается, что при адгезии фторопласта-4 в контакт с поверхностью металла входят атомы, расположенные на торце молекулы, т.е. происходит образование связи между поверхностью вольфрама и фуппой СРт, сюэтому перенос идет кластерами из трех атомов. Вспомним, что макромолекулы фторопласта-4 представляют собой винтообразные цепи, состоящие из 26 групп СРт, которые могут кристаллизоваться с образованием гексагональной рететки.  [c.66]


Основанием для использования непрерывной модели могут служить рассмотренные выше физико-химические процессы при трении. Принимая во внимание, что долговечность трибосистемы определяется характеристиками трения и изнашивания при установивн1емся режиме трения (режиме работы узла трения), ниже обосновывается и рассматривается модель, дающая описание процесса в установившемся режиме трения, т.е. в стационарном термодинамическом состоянии. При установившемся режиме трения, как было показано выше, поверхность металлической детали покрыта полимерной пленкой фрикционного переноса, которая прочно удерживается силами адгезионного взаимодействия. Образование физических и химических связей между полимером и металлом способствует реализации термодинамических процессов переноса энергии и вещества между этими двумя фазами одной термодинамичес-  [c.114]

Приведенные на рис. 7.19 результаты исследований подтверждают эффективность комбинированной модификации, и, как следует из представленных зависимостей, наиболыиий эффект повьппения стойкости твердосплавного инструмента достигается в области высоких скоростей резания, т.е. в условиях активизации адгезионных и диффузионных процессов при изнашивании инструментального сплава. Комбинированная модификация твердосплавного инструментального материала, как показали исследования процесса резания, приводит к уменьшению зоны вторичных деформаций, что является следствием снижения степени адгезионного взаимодействия с обрабатываемым материалом. В результате этого снижается уровень значений составляющей силы резания отражающей характер трения в процессе трибомеханического взаимодействия. Изнашивание модифицированного инструментального материала характеризуется повышенной сопротивляе-  [c.227]

Термореакр1вные полимеры в отвержденном состоянии имеют жесткие пространственные структуры и большие внутренние напряжения. Внутренние напряжения, возникающие в клеевых композициях на основе эпоксидных смол, небольшие 69]. С целью предотвращения возникших напряжений и для регулирования адгезионных взаимодействий в состав композиции вводятся высокодисперсные наполнители минерального происможде-ни .  [c.124]

Л езионное изнашивание связано с возникновением в локальных зонах контакта поверхностей интенсивного молекулярного (адгезионного) взаимодействия, силы которого превосходят прочность связей материала поверхностных слоев с основным материалом. Образование адгезионных связей происходит в процессе  [c.236]

В настоящей работе исследовано адгезионное взаимодействие незащищенных ниобия и молибдена с борированным, карбидизи-рованным и силицированным ниобием при температурах 800— 1400° С, давлении 5 кгс/мм и времени выдержки под нагрузкой 10 мин в вакууме.  [c.189]

Методика испытаний описана в работе [2]. Способность к адгезионному взаимодействию оценивали величиной коэффициента адгезии, представляющего отношение усилия, разрушающего соединение, к величине приложенной сжимающей нагрузки. Этот коэффициент позволяет получать вполне достоверную сравнительную оценку способности материалов к схватыванию [5]. Значения коэффициентов адгезии усредняли на основании результатов 3—5 цзмерений.  [c.189]

Взаимодействие ниобия с молибденом начинается при температуре НОО С. С повышением температуры коэффициент адгезии резко возрастает, а при 1300° С образуется сварное соединение, разрушающееся по плоскости контакта. Борирование ниобия повышает температуру начала адгезионного взаимодействия с молибденом на 200, а карбидизация — на 100° С. В случае силици-рования ниобия температура начала взаимодействия его с молибденом не изменяется. С повышением температуры значения коэффициента адгезии возрастают, однако склонность к схватыванию ниже, чем для пары ниобий—молибден.  [c.190]

Исследовано адгезионное взаимодействие незащищенных ниобия и молибдена с борирован-ным, карбидизированныи и силицированным ниобием. Показано, что нанесение покрытий из тугоплавких соединений позволяет повысить температуру адгезионного взаимодействия на 100—200° С. Установлено, что наиболее низкие значения коэффициентов адгезии наблюдаются при взаимодействии пар ниобий—борированный ниобий и молибден—бориро-ванный ниобий. Лит. — 7 назв., рис. — 2, табл. — 1.  [c.268]

Стерман и Брэдли [11] впервые исследовали физико-химиче- ские характеристики пленки аппрета, адсорбируемой на поверхности стекловолокна. С помощью электронного микроскопа на репликах, изготовленных по методу Брэдли [2], они изучали степень адгезионного взаимодействия и состояние пленок различных силановых аппретов, нанесенных на волокна Е-стекла. (При этом уста- новлено, что полученный на поверхности волокна слой аппрета 1 толстый (по сравнению с размерами молекул), неоднородный и -склонен к образованию агломератов в пространстве между волок-йами. После экстрагирования аппретированных волокон в аппарате Сокслета в течение 4 ч около 80% нанесенного аппрета удаляется, а оставшаяся часть присутствует в виде островнов .  [c.120]

Реакционная способность силанов по отношению к неорганической составляюицей композита. На выяснение механизма адгезионной связи силановых аппретов с поверхностями неорганических материалов и, в частности, стекловолокна затрачены значительные усилия ученых. Почти невозможно получить непосредственные данные о характере механизма адгезионных связей. Поэтому адгезионное взаимодействие силановых аппретов с поверхностью стекловолокна объясняется на основе косвенных данных, которые позволяют предположить следующие механизмы связи  [c.144]

Заметное улучшение свойств многих композитов, в которых по лимер и минеральный наполнитель связаны небольшим количеством реакционноспособных силанов на поверхности раздела, позволяет полагать, что выяснение природы адгезионного взаимодействия в случае применения силановых аппретов может сыграть первостепенную роль в понимании механизма адгезии в целом.  [c.183]


Изучение смачивания обработанного силаном стеклянного волокна существенно для понимания механизм первичного адгезионного взаимодействия силановых аппретов, так как поверхность раздела между аппретом и смолой исчезает в процессе изготовления композита. В идеальном случае остается только одна граница раздела между полимером, который модифицирован силанолом, и поверхностью минерального наполнителя.  [c.195]

Вандербильт и Клейтон [51] изучали адгезионное взаимодействие эластомеров со стеклом при наличии на поверхности раздела реакционноспособного силана и бифункционального мономера. Эффективность действия силана без мономера или с монофункциональным мономером значительно меньше, чем в присутствии бифункционального мономера. По-видимому, сшивание на межфазной границе является условием хорошей адгезии.  [c.206]

Обратимое равновесие процесса адгезионного взаимодействия между смолой и стеклятрным наполнителем становится очевидным при изучении поведения стеклонаполненных композитов в водных растворах кислот и оснований. Эти реагенты известны как актив-  [c.212]

Карбоксильные и гидроксильные группы, присутствующие в эпоксидных смолах, образуют гидролитически обратимые связи с поверхностью большинства минеральных наполнителей, и хотя эти связи могут быть менее прочными, чем в случае силанолов, они устойчивы к воздействию влаги при условии достаточно высокой концентрации функциональных групп на поверхности раздела. В случае эпоксидных смол, отвержденных ангидридами, обеспечиваются оптимальные условия для адгезионного взаимодействия, так как при реакции ангидридов с водой, находящейся на поверхности наполнителя, достигается высокая концентрация карбоксильных групп, ориентированных по на правлению к этой поверхности.  [c.214]

Адгезионное взаимодействие термопластичных эластомеров с олигомерными грунтами, модифицированными силанами, по-видимому, состоит в частичной диффузии смолы в каучук, реагирующей с силаном. Специфической способностью к модификации в данном случае обладают аминосодержащие силаны другие же силаны, указанные в табл. 1, способствуют улучшению адгезионных свойств реакционноспособных смол, но неэффективны как добавки к промоторам адгезии термопластичных каучуков. Поскольку модифицированные силанами смолы эффективны в качестве грунтовок с термопластичными каучуками и неэффективны с термопластичными смолами, адгезионное соединение с поверхностью минерального наполнителя возможно только при наличии способ-  [c.221]

Чамис [35] предложил критерий прочности композита, который позволяет учесть технологические переменные, такие, как содержание и распределение волокон и пустот, адгезионное взаимодействие волокно — матрица, остаточные напря-  [c.157]

Ма. Это, вероятно, связано с тем, что на катоде выделяется водорода намного больше, чем в других электролитах. В случае меднения частицы корунда осаждаются легче из щелочных комплексных электролитов, чем из кислых, не содержащих дополнительных агентов. Можно допустить, что определенные составные части электролита и условия электролиза способствуют или зарастанию покрытием частиц, оказавщихся на поверхности катода, или их выталкиванию. Последнее происходит благодаря предположительному появлению так называемой выравнивающей способности электролита и адгезионного взаимодействия между частицами и катодной поверхностью.  [c.52]

На основании исследования адгезионного взаимодействия составляющих твердого сплава с обрабатываемым материалом (сталь) было установлено, что кобальтовая фаза твердого сплава является наиболее слабым местом. Схватывание ее со сталью начиналось при температуре 150° С. Исходя из вышеизложенного, повышение стойкости инструмента находится в тесной связи с повышением адгезионной инертности кобальтовой составляющей. Для этого было использовано поверхностное упрочнение ее с помощью борирования. Результаты такого исследования показали, что температура начала схватывания борированной кобальтовой связки твердого сплава и отдельных его составляющих повысилась на 200 С по сравнению с температурой для исходных материалов. Кроме того, в 5 раз повысилась микротвердость поверхностного слоя. Последнее обусловило уменьшение фактической площади контакта инструмента и заготовки, что способствовало уменьшению числа химических связей и, в конечном счете, повышению стойкости инструмента. На Киевских заводах Красный экскаватор и станков-автоматов им. А. М. Горького проведены производственные испытания борированных резцов ВК-8 и Т15К6 при обработке барабанов шестишпиндельных автоматов из чугуна СЧ 32-52 и труб гидроци-линдров экскаваторов из стали 45, показавшие повышение стойкости борированных резцов в 2 раза по сравнению со стойкостью инструмента, используемого в условиях указанных заводов.  [c.63]

Коэффициент трения при таком режиме стабилен и лежит в пределах 0,001—0,01, что на десятичный порядок ниже обычного коэффициента граничного трения. В реальных условиях фактическая площадь контакта составляет, вследствие шероховатости, лишь небольшую часть номинальной (геометрической) площади контакта. При этом наиболее нагруженные выступы микрорельефа вступают в прямое адгезионное взаимодействие, в то время как другие участки номинальной площади контакта разделены моно- и иолимолекулярными слоями смазочного вещества. Сила статического граничного трения F (или трения при малых скоростях сдвига, когда температурные и химические эффекты трения пренебрежимо малы) может быть выражена следующим образом [17]  [c.98]


Смотреть страницы где упоминается термин Адгезионное взаимодействие : [c.125]    [c.9]    [c.67]    [c.94]    [c.105]    [c.266]    [c.55]    [c.190]    [c.33]    [c.98]    [c.190]    [c.190]    [c.205]   
Трение и износ (1962) -- [ c.9 , c.10 , c.11 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте