Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Гамильтоновы (канонические) уравнения движения

Гамильтоновы (канонические) уравнения движения. Перейдем теперь к нахождению подходящей формы уравнений движении консервативной системы, когда состояние движения в какой-либо момент рассматривается как определяемое конфигурацией и обобщенными количествами движения, а не конфигурацией и обобщенными скоростями. Соответствующие формы кинетической энергии мы обозначим, как и в предыдущем параграфе, через Т и Т.  [c.203]


Вторая форма принципа Гамильтона. Гамильтоновы канонические уравнения движения. Пусть Г — какая-нибудь кривая в пространстве QT, соединяющая точки В и В. Мы определим гамильтоново действие вдоль кривой Г следующим интегралом  [c.221]

Сделаем замечание относительно уравнений движения для проекций. Рассмотрим канонически сопряженную пару переменных (р, д) и соответствующую им пару операторов (р, Уравнения движения для классических переменных (р, д) являются гамильтоновыми. Однако уравнения движения для средних (, <д>), вообще говоря, гамильтоновыми не являются. Исключение составляют системы с квадратичным по р, д гамильтонианом (например, линейный осциллятор). Приведем пример, иллюстрирующий сделанное утверждение [147].  [c.167]

Чтобы ввести уравнения движения в пределы гамильтоновой механики недостаточно, чтобы они были каноническими в общем смысле этого термина. Необходимо, чтобы они были гамильтоновыми каноническими уравнениями, т. е. чтобы они порождались некоторой функцией или тензором Гамильтона.  [c.103]

Укажем явный вид преобразования, позволяющего привести канонические уравнения движения систем частиц, движущихся в подвижном газовом потоке, к гамильтоновой форме  [c.168]

Исключение циклических переменных. Хотя канонические уравнения имеют гораздо более простую структуру, чем исходные уравнения Лагранжа, у нас нет общего метода интегрирования этих уравнений. Поэтому при интегрировании уравнений движения по-прежнему необычайно важную роль играют циклические переменные. Как только появляются циклические переменные, становится возможным частичное интегрирование данной механической задачи и сведение ее к более простой. Сам процесс сведения, однако, в гамильтоновой форме механики выглядит гораздо проще, чем в лагранжевой форме.  [c.214]

Практический смысл канонических преобразований состоит в упрощении уравнений движения, в выборе таких новых координат в фазовом пространстве, которые более удобны для решения задачи о движении системы, нежели исходные старые координаты. Метод канонических преобразований является широко распространенным и эффективным методом исследования гамильтоновых уравнений.  [c.338]

В уравнении Гамильтона переменными, которые определяют движение механической системы, являются обобщенные координаты q и обобщенные моменты р. Гамильтонова функция W(p, q), которая входит в гамильтоновы уравнения, обычно является функцией обеих этих переменных. Если мы преобразуем переменные q и р в новые переменные q и р посредством какого-либо произвольного преобразования, общая форма гамильтоновых уравнений изменится. Однако Якоби показал, что существует некоторое преобразование, отличающееся тем свойством, что оно оставляет форму этих уравнений неизменной. Так как уравнения Гамильтона часто называются каноническими уравнениями динамики, то указанным преобразованиям было дано наименование канонических преобразований. Канонические преобразования представляют собой специальный случай касательного преобразования. Касательное преобразование в трехмерном пространстве определяется так  [c.915]


Гамильтоновы системы являются наиболее подходящей моделью для описания движений в динамических системах с потенциальными полями, когда существует так называемая характеристическая функция, зависящая от обобщенных координат и скоростей (импульсов) [159], которая порождает дифференциальные уравнения движения поэтому можно сказать, что она исчерпывающим образом описывает движения в динамических системах. Асимптотическое интегрирование канонических систем так или иначе связано с нахождение. периодических или условно-периодических решений, с изучением окрестности таких решении и с проблемой устойчивости частных решений гамильтоновых систем [12, 91, 160].  [c.195]

Замечание. Преобразования, не нарушающие гамильтонову форму уравнений, называются каноническими. Теорема 6.4 о канонических преобразованиях указывает путь интегрирования уравнений движения и непосредственно приводит к уравнению Гамильтона -Якоби.  [c.202]

Для отыскания периодических решений, на наш взгляд, более естественно использовать уравнения движения в гамильтоновой форме. Для канонических систем дифференциальных уравнений метод малого параметра Пуанкаре хорошо разработан и дает более сильные результаты. Эта идея впервые реализована в работе [34] для случая вращения динамически симметричного тела в ньютоновском поле сил и независимо автором [38] в задаче о движении несимметричного тяжелого твердого тела.  [c.106]

Система уравнений (10), полученная путем канонического преобразования канонических уравнений абсолютного движения, представляет промежуточную запись между последними и уравнениями относительного движения (18), (19). В ней, благодаря внесению слагаемых 11 и ГР в выражение функции Гамильтона, учтены силы инерции потенциального характера, а остальные силы инерции явно не выделены что позволило сохранить гамильтонову форму этих уравнений.  [c.532]

Функции qi=ц,i q ., pi=щ q , рР, ) (г = 1, п) зада-ЮТ уравнения движения гамильтоновой системы в конечной форме. Используя общую формулу для вариации действия по Гамильтону, показать, что преобразование = (pi qj, Pj, 1), р = i qj, Pj, 1) i = = 1, п) является унивалентным каноническим преобразованием, т. е. что движение гамильтоновой системы представляет собой процесс непрерывного канонического преобразования фазового пространства.  [c.242]

Уравнения движения небесной механики, кроме своей автономности, обладают еще некоторыми специфическими свойствами. Они являются консервативными уравнениями, обладающими интегралом энергии , т. е. могут быть записаны в так называемой канонической или гамильтоновой форме  [c.13]

Рассмотрим динамическую систему с одной степенью свободы. Уравнения движения в канонической гамильтоновой форме будут иметь вид  [c.305]

Большинство рассматриваемых в этой книге задач допускает запись в канонической гамильтоновой форме и обладает первым интегралом — интегралом энергии. Однако во многих случаях уравнения движения этих задач удобнее записывать не в канонической форме, а с помощью некоторой системы алгебраических переменных, наиболее приемлемой для исследований — поиска интегралов, частных решений, анализа устойчивости и пр. В этих переменных система не только сохранит многие свойства обычных гамильтоновых систем, но и приобретет некоторые характерные отличия, изучаемые в общей теории пуассоновых структур. С ней можно познакомиться по нашей книге [31].  [c.27]

Вообще говоря, такие преобразования (или подстановки) приводят к сложным и громоздким выкладкам, а поэтому, естественно, следует отыскивать такие формы уравнений движения и такие законы преобразований, которые позволили бы упростить и сократить эти выкладки и связанные с ними вычисления. Это удается осуществить, если уравнения движения записаны в особой форме, называемой лагранжевой, и особенно, когда их удается привести к так называемому каноническому виду (гамильтонова форма). В последнем случае можно осуществить множество преобразований, не изменяющих канонического вида уравнений.  [c.266]

Теперь мы рассмотрим один специальный случай такого преобразования, который приведет нас к особенно удобной и симметричной форме дифференциальных уравнений движения, называемой канонической или гамильтоновой.  [c.290]


Дифференциальные уравнения движения системы взаимно притягивающихся материальных точек можно также записать и в гамильтоновой (канонической) форме.  [c.374]

В работе также рассмотрены примеры непотенциальных систем с конечным числом степеней свободы, уравнения движения которых приводятся к гамильтоновой канонической форме. На основе методов аналитической и статистической механики построена простейшая модель двухкомпонентного потока.  [c.4]

Если удовлетворить условиям (4.70), то уравнения движения будут приведены к канонической гамильтоновой форме.  [c.111]

На основании равенств (4 68) и уравнений (4.70), уравнения движения приобретают гамильтонову каноническую форму  [c.113]

Если построена обобщенная функция Гамильтона и уравнения движения непотенциальной системы приведены к гамильтоновой форме, то для таких систем справедливы все основные теоремы и методы гамильтоновой механики потенциальных систем, в частности теорема Остроградского — Гамильтона — Якоби об интегрировании канонической системы уравнений. На доказательстве этих утверждений не останавливаемся, поскольку оно проводится так же, как указано, например, в работе [16].  [c.169]

Могут спросить, в чем значение канонических уравнений движения. Здесь можно сослаться на два обстоятельства. Первое из них заключается в том, что квантовая механика (как старая квантовая механика, так и современная — волновая или матричная) основывается скорее на гамильтоновом формализме, чем на лагранжевом следует отметить, однако, что лагранжев формализм оказывается чрезвычайно полезным для полевой теории. Второе же обстоятельство состоит в том, что формализм Гамильтона особенно удобен для теории возмущений, т. е. для рассмотрения таких систем, для которых невозможно получить точные решения уравнений движения. Поскольку такие системы являются скорее правилом, чем исключением, то очевидно, что для теории возмущений имеется необъятная область применения — как в классической, так и в квантовой механике. Мы вернемся к теории возмущений в гл. 7, но в оставшейся части этой главы и в следующей главе мы подготовим весь формальный аппарат, необходимый для того, чтобы перейти к теории возмущен и1. Наконец, нельзя не упомянуть и тот факт, что статистическая механика широко использует гамильтонов подход 2s-Mepnoe (р, (7)-простраиство в статистической механике называется фазовым пространством.  [c.126]

Если уравнения движения диссипативных систем свести к гамильтоновой форме, то можно воспользоваться известными методами для исследования диссипативных систем. Это, в частности, позволит указать один из способов обоснования построения кинетического уравнения для непотенциальных систем и построить континуальную модель двухкомпонентного потока. Для этого в первую очередь необходимо построить обобщенную функцию Гамильтона Н (соответственно обобщенную функцию Лагранжа L ), которая учитывала бы диссипативные 9илы и давала бы возможность представить канонические уравнения движения в гамильтоновой форме.  [c.157]

Задаем вид преобразования переменных, коэффициентами которого являются неизвестные функции, подлежащие определению. Затем, предполагая, что канонические уравнения движения непотенциальной системы в новых переменных имеют гамильтонову форму, находим обобщенный гамильтониан, зависящий от искомых функций. Эти функции определяем из системы дифференциальных уравнений, полученных при отождествлении канонических уравнений движения рассматриваемой непотенциальной системы и канонических уравнений движения, соответствующих построенной функции Гамильтона, после перехода в этих уравнениях к старым переменным. Таким образом находим явный вид преобразования, обобщенную функцию Гамильтона, которая позволяет привести канонические уравнения движения непотенциальной системы к гамильтоновой форме, и обобщенную функцию Лагранжа, которая дает возможность привести уравнения движения непотенциаль-  [c.159]

О линейных гамильтоновых системах дифференциальных уравнений. Пусть в системе (1) функция Гамильтона не зависит от времени и система допускает решение, для которого величпньс Qi, Pi (г—1, 2,. .., п) постоянны. Это решение отвечает положеппю равновесия механической системы, имеющей уравнения движения (1). Так как перепое начала координат является каноническим  [c.316]

Может случиться, что в новых переменных система уравнений (1) будет иметь более простую структуру и ее интегрирование будет проще интегрирования исходной системы. В новых переменных уравнения движения могут уже не быть гамильтоновыми. Мы, однако, будем далее рассматривать только такие преобразования (4), которые не нарушают гамильтововой формы уравнений движения. Это будут канонические преобразования. Ниже мы дадим определение канонических преобразований, получим критерии каноничности и укажем способ нахождения функции Гамильтона, отвечающей преобразованным уравнениям.  [c.338]

Канонические уравнения оказывались, по существу говоря, математическим выражением принципа Гюйгенса, рассматриваемого в его первоначальном геометрическом виде. Механическое движение с этой точки зрения рассматривается как непрерывное саморазвертывание касательного преобразования. Глубокая аналогия между идеями гамильтоновой механики, не зависящей от выбора системы координат, и геометрией многомерных пространств привела к геометризации механики. Было выяснено, что разыскание движения голономных систем со связями, независимыми от времени под действием сил, имеющих потенциал, может быть сведено к задаче геодезических линий. Механика Герца, основанная на его принципе прямейшего пути, была геометризована в н-мерном пространстве однако она, несмотря на последовательность построения, оказалась малоплодотворной в силу сложной замены сил связями со скрытыми, вообще говоря, системами.  [c.841]


Сопоставим в заключение методы Гамильтона и Лагранжа. В гамильтоновом формализме основными величинами являются , р, и Н. Гамильтониан можно построить с помощью функции Лагранжа и q и р,. Отсюда непосредственно получаются канонические уравнения и динамические переменные. Однако в гамильтоновом формализме время все же играет особую роль по сравнению с пространственными координатами, являясь, по существу говоря, единственной независимой переменной. С одной стороны, это дает возможность провести далеко идущую аналогию с классической механикой, но, с другой стороны, именно поэтому теория оказывается релятивистски неинвариантной. Напротив, в лагранжевом формализме не вводят функции р,-, Н (хотя это и возможно). В лагранжевом методе исходят из вариационного принципа для лагранжиана системы. Из условий для его экстремума получают уравнения движения, а динамические переменные (энергия — импульс, заряд и т. п.) определяются как инварианты, соответствующие различным преобразованиям системы координат и, в случае теории полей, функций поля. В лагранжевом формализме время входит совершенно симметрично с пространством и теория с самого начала релятивистски ковариантна, но зато аналогия с механикой системы точек оказывается гораздо менее отчетливой.  [c.878]

В 7.4 идеология лагранжевой и гамильтоновой механики обобщается на случай гинердвижения тела неременной массы. Получены уравнения движения в обобщенных независимых координатах нри наличии идеальных голономных связей. Вторая часть параграфа отведена гамильтоновой форме записи уравнений гинердвижения тела переменной массы (в канонических переменных).  [c.207]

Обратимся к ограниченной задаче трех тел, рассмотренной в 5 гл. I. Предположим сначала, что масса Юпитера л равна нулю. Тогда в неподвижном пространстве астероид вращается вокруг Солнца единичной массы по кеплеровским-орбитам пусть орбиты — эллипсы. Удобно перейти от прямоугольных координат к каноническим элементам Делоне Ь,С,1,д если а и е—большая полуось и эксцентриситет орбиты, то Ь = у/а, С = - 0(1 — е ), д — долгота перигелия, I — угол, определяющий положение астероида на орбите, — эксцентрическая аномалия [173]. Оказывается, в новых координатах уравнения движения астероида будут каноническими с гамильтонианом Го = —1/ 2Ь ). При ф О полный гамильтониан Г разлагается в ряд по возрастающим степеням /х F = Fo -Ь fJ.Fi -Ь. .. В подвижной системе координат, связанной с Солнцем и Юпитером, кеплеровские орбиты вращаются с единичной угловой скоростью, поэтому Г згшисит от Ь,С,1 и д — 1. Положим Ух = Ь, у2 = С, Хх = I, Х2 = д — I и Н = Г — С. Функция Н теперь зависит лишь от х, у, причем относительно угловых переменных, Т1, Х2 она 2тг-периодична. В итоге уравнения движения астероида представлены в виде гамильтоновой системы  [c.186]

Настоящая лекция посвящена центральному разделу гамильтонова формализма — теории канонических преобразований. В отличие от лагражева формализма, роль которого сводится лишь к выводу уравнений движения, гамильтонов подход позволяет, в принципе, получить решение как каноническое преобразование, не обращаясь непосредственно к уравнениям. В реальной ситуации приходится использовать приближенные методы теории канонических преобразований, изложенные в лекциях 27-31.  [c.261]

Однако квадратичная часть функции Гамильтона в устойчивом положении равновесия может и не быть знакоопределенной. Простейший пример доставляет функция Я = 9 — р. — Исследование устойчивости систем с такой квадратичной частью должно учитывать члены ряда Тейлора следующих степеней, прежде всего кубические члены функции Гамильтона (т. е. квадратичные члены векторов поля фазовой скорости). Исследование это удобно производить, приводя функцию Гамильтона (и следовательно, гамильтоново векторное поле) к возможно более простому виду подходящей канонической заменой переменных. Иными словами, для изучения решений полезно подобрать систему канонических координат вблизи положения равновесия так, чтобы по возможности упростить вид функции Гамильтона и уравнений движения.  [c.351]

Уравнения (1.1) не являются инвариантными относительно произвольных координатных преобразований. Кроме того, при записи основных уравнений динамики твердого тела в виде (1.1) они теряют алгебраичность и приобретают особенности, не связанные с существом задачи (см. 4 п. 2). Прежде чем привести уравнения движения в более приемлемой форме, сохраняющей основные свойства канонической записи, остановимся на инвариантном изложении гамильтоновой механики.  [c.28]

Канонические уравнения в углах Эйлера и неременных Андуайе-Денри. В углах Эйлера в, (р, ф) и соответствующих им канонических импульсах Ре, Pip, Рф уравнения движения имеют обычную гамильтонову форму  [c.53]

Эта общая теорема позволяет доказать, что в задаче о движении N планет существуют условно-периодические решения, если массы планет достаточно малы и их невозмущенные эллиптические движения происходят в кольцеобразных областях трехмерного пространства, не пересекающихся друг с другом. Последнее условие для всех больших планет (исключая Плутон) выполняется. Применение теоремы Арнольда в небесной механике возможно, если написать уравнения движения в канонических переменных Делоне (см. ч. IV, гл. 1) и воспользоваться теоремой Биркгофа [41] о приведении гамильтоновой системы к нормальной форме. Роль частот соо играют средние движения планет.  [c.803]

Итак, при С 1 =0 вопрос о преобразовании квазиканонических уравнений в гамильтоновы канонические в этом частном случае может быть рещен. Если С1 =т 0, то могут возникнуть осложнения, не позволяющие привести систему уравнений движения к гамильтоновой канонической форме. При некоторых условиях удается свести ее к канонической системе.  [c.114]

Преобразование квазиканонических уравнений движения элемента сплощной среды в канонические, или гамильтоновы канонические в более общих случаях требует отдельного исследования.  [c.114]

Задаем вид обобщенной функции Лагранжа (Гамильтона), зависящей от искомых функций, предполагая, что уравнения движения, определяемые обобщенной функцией Лагранжа, являются уравнениями Лагранжа второго рода с нулевой правой частью (канонические уравнения имеют гамильтонову форму). Отождествляя полученные уравнения и уравнения движения непотенциальиой системы, находим систему дифференциальных уравнений для определения неизвестных функций. Решая эту систему, находим искомые функции, а затем определяем явный вид обобщенных функций Лагранжа и Гамильтона и преобразования переменных.  [c.160]


Смотреть страницы где упоминается термин Гамильтоновы (канонические) уравнения движения : [c.103]    [c.285]    [c.324]    [c.455]    [c.879]    [c.42]    [c.220]    [c.105]    [c.85]   
Смотреть главы в:

Теоретическая механика Том 3  -> Гамильтоновы (канонические) уравнения движения



ПОИСК



Вид канонический

Гамильтон

Гамильтона уравнения

Гамильтона уравнения движения

Зэк гамильтоново

Интегралы движения, преобразование Рауса, канонические уравнения Гамильтона, уравнения Якоби — Гамильтона, принцип Гамильтона — Остроградского

КАНОНИЧЕСКИЕ УРАВНЕНИЯ Канонические уравнения Гамильтона

Канонические уравнения (уравнения Гамильтона)

Канонические уравнения движения (уравнения Гамильтона)

Канонические уравнения движения (уравнения Гамильтона)

Канонические уравнения уравнения канонические

Каноническое уравнение движени

Ковариантность уравнений Гамильтона при канонических преобразовани. 171. Канонические преобразования и процесс движения

Метод вариации постоянных при использовании уравi нений Гамильтона. Канонические уравнения возмущенного движения

Метод вариации постоянных при использовании уравv нений Гамильтона. Канонические уравнения возмущенного движения

Уравнение анергии Q (х, у) 0 и гамильтониан Вторая форма принципа Гамильтона. Гамильтоновы канонические уравнения движения

Уравнения движения Аппеля канонические Гамильтона

Уравнения движения канонические

Уравнения канонические

Уравнения канонические Гамильтона



© 2025 Mash-xxl.info Реклама на сайте