Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Канонические уравнения и канонические преобразования

Значительная часть Второго очерка об общем методе в динамике посвящена построению теории возмущений на основе канонических уравнений и понятия главной функции. Гамильтон предлагает два метода в теории возмущений. Первый метод основан на введении поправок к начальным значениям переменных в невозмущенной задаче. Второй метод, который мы изложим, тесно связан с теорией канонических преобразований уравнений динамики.  [c.14]


Канонические уравнения и канонические преобразования  [c.345]

Рассмотрим, далее, произвольную систему канонических уравнений Гамильтона с некоторым фиксированным гамильтонианом Н и применим к ней преобразование (ИЗ). Может случиться, что полученные уравнения окажутся уравнениями Гамильтона с некоторым гамильтонианом Н. Но может случиться и так, что уравнения, полученные в результате преобразования, уже не будут иметь вид уравнений Гамильтона.  [c.312]

На примере циклических координа.т мы видели (см. 8.4), что успех интегрирования систем дифференциальных уравнений, описывающих движение механических систем, в значительной мере зависит от удачного выбора лагранжевых координат. При переходе от одних лагранжевых координат к другим будут по определенному закону изменяться и обобщенные импульсы, так что в новых фазовых переменных уравнения движения вновь примут вид канонических уравнений Гамильтона. Произвольные преобразования фазовых координат таким свойством, вообще говоря, обладать не будут. Интегральный инвариант Пуанкаре (определение 9.5,1) позволяет, подходя с единых позиций как к преобразованию лагранжевых координат, так и обобщенных импульсов, выделить специальный класс преобразований фазовых переменных, не нарушающих структуру канонических уравнений движения.  [c.680]

Подставляя найденные величины в канонические уравнения и производя некоторые преобразования, получаем  [c.325]

Книга представляет собой углубленный курс классической механики, написанный на современном уровне. Помимо краткого обзора элементарных принципов, в ней изложены вариационные принципы механики, задача двух тел, движение твердого тела, специальная теория относительности, уравнения Гамильтона, канонические преобразования, метод Гамильтона — Якоби, малые колебания и методы Лагранжа и Гамильтона для непрерывных систем и полей. Показывается связь между классическим развитием механики и его квантовым продолжением. Книга содержит большое число тщательно подобранных примеров и задач.  [c.2]

Углубленный курс классической механики долгое время считался обязательной частью учебных планов по физике. Однако в настоящее время целесообразность такого курса может показаться сомнительной, так как студентам старших курсов или аспирантам он не дает новых физических понятий, не вводит их непосредственно в современные физические исследования и не оказывает им заметной помощи при решении тех практических задач механики, с которыми им приходится встречаться в лабораторной практике. Но, несмотря на это, классическая механика все же остается неотъемлемой частью физического образования. При подготовке студентов, изучающих современную физику, она играет двоякую роль. Во-первых, в углубленном изложении она может быть использована при переходе к различным областям современной физики. Примером могут служить переменные действие— угол, нужные при построении старой квантовой механики, а также уравнение Гамильтона — Якоби и принцип наименьшего действия, обеспечивающие переход к волновой механике, или скобки Пуассона и канонические преобразования, которые весьма ценны при переходе к новейшей квантовой механике. Во-вторых, классическая механика позволяет студенту, не выходя за пределы понятий классической физики, изучить многие математические методы, необходимые в квантовой механике.  [c.7]


Наконец, в лагранжевой механике не существует какого-либо общего метода упрощения функции Лагранжа. Не существует никакого систематического приема для получения циклических переменных и их можно получить лишь путем удачной догадки. В гамильтоновой механике может быть предложен определенный метод получения циклических переменных и упрощения функции Гамильтона. Этот метод сводит всю задачу интегрирования к нахождению одной фундаментальной функции, являющейся производящей функцией некоторого преобразования. Он играет центральную роль в теории канонических уравнений и, как будет показано в следующей главе, предоставляет широкие возможности для различных обобщений.  [c.226]

Произвольное точечное преобразование, переводящее qi и Pi в Qi и Pi, могло бы нарушить нормальную форму канонического интеграла, а вместе с ней и канонические уравнения. Мы должны ограничиться, таким образом, преобразованиями, которые сохраняют каноническую форму этих уравнений. Последнее гарантируется в том случае, если варьируемое подинтегральное выражение имеет вид (7.2.2). Любое преобразование, оставляющее инвариантным каноническое подинтегральное выражение (7.2.2), оставляет инвариантными также и канонические уравнения (7.2.1).  [c.228]

Уравнения (7.4.6) являются уравнениями произвольного канонического преобразования, свободного от каких бы то ни было априорных условий. В самой природе канонических преобразований заключено то свойство, что мы не можем получить в явном виде выражения старых переменных через новые переменные, и наоборот, не сделав предварительно  [c.238]

Предположим, что мы сумели найти такое преобразование. Тогда канонические уравнения в новой системе координат легко проинтегрировать. Поскольку функция Гамильтона Н инвариантна относительно канонического преобразования, в новой системе функция Гамильтона Н равна Qn- Это означает, что в новой системе координат все переменные циклические - и можно произвести полное интегрирование уравнений движения.  [c.266]

Наиболее эффективный метод исследования и решения канонических уравнений движения есть преобразование координат, то есть переход к новой системе координат, которая лучше позволяет провести решение, чем первоначальная.  [c.876]

Остроградский придавал большое значение изучению величин, инвариантных относительно преобразований координат. Он отмечает свойство инвариантности канонических уравнений и дает этому факту совершенно правильное объяснение причина заключается в том, что само движение не зависит от выбора системы координат.  [c.218]

Вычисление функции о- Вернемся снова к каноническим элементам и к преобразованию 30. В 78 и 79 мы вывели уравнения (4) и (5). Осталось выразить Р через оскулирующие элементы.  [c.92]

Естественно возникает вопрос по отношению к какому классу преобразований q и р ковариантны уравнения Гамильтона Класс преобразований q, р, по отношению к которым уравнения Гамильтона ковариантны, называется классом канонических преобразований. Разъясним это определение подробнее.  [c.311]

В случае свободных канонических преобразований можно задаваться произвольными старыми и новыми обобщенными координатами <7 и и определить по ним старые и новые импульсы р и р. Старые импульсы находятся из первой группы уравнений (123), а новые импульсы —из второй группы этих уравнений (при подстановке вместо р выражений, полученных ранее из первой группы уравнений).  [c.318]

Переход от системы уравнений второго порядка к системе уравнений первого порядка можно осуществлять разными способами, и в результате будут получаться, вообще говоря, различные эквивалентные системы. Среди них особенно простую и симметричную структуру имеет система канонических уравнений Гамильтона. Свойства этих уравнений лежат в основе метода Гамильтона-Якоби исследования движений механических систем, а также современной теории возмущений. Канонические уравнения получаются с помощью преобразования Лежандра.  [c.626]


Сопоставим в заключение методы Гамильтона и Лагранжа. В гамильтоновом формализме основными величинами являются , р, и Н. Гамильтониан можно построить с помощью функции Лагранжа и q и р,. Отсюда непосредственно получаются канонические уравнения и динамические переменные. Однако в гамильтоновом формализме время все же играет особую роль по сравнению с пространственными координатами, являясь, по существу говоря, единственной независимой переменной. С одной стороны, это дает возможность провести далеко идущую аналогию с классической механикой, но, с другой стороны, именно поэтому теория оказывается релятивистски неинвариантной. Напротив, в лагранжевом формализме не вводят функции р,-, Н (хотя это и возможно). В лагранжевом методе исходят из вариационного принципа для лагранжиана системы. Из условий для его экстремума получают уравнения движения, а динамические переменные (энергия — импульс, заряд и т. п.) определяются как инварианты, соответствующие различным преобразованиям системы координат и, в случае теории полей, функций поля. В лагранжевом формализме время входит совершенно симметрично с пространством и теория с самого начала релятивистски ковариантна, но зато аналогия с механикой системы точек оказывается гораздо менее отчетливой.  [c.878]

В связи с этим, при применении метода Лагранжа изменения произвольных постоянных удобнее и проще пользоваться не кеплеровскими оскулирующими элементами, а элементами Якоби, дифференциальные уравнения для которых в возмущенном движении также имеют канонический вид, что позволяет при исследовании этих уравнений опираться на общие свойства канонических систем и канонических преобразований.  [c.687]

Задаем вид преобразования переменных, коэффициентами которого являются неизвестные функции, подлежащие определению. Затем, предполагая, что канонические уравнения движения непотенциальной системы в новых переменных имеют гамильтонову форму, находим обобщенный гамильтониан, зависящий от искомых функций. Эти функции определяем из системы дифференциальных уравнений, полученных при отождествлении канонических уравнений движения рассматриваемой непотенциальной системы и канонических уравнений движения, соответствующих построенной функции Гамильтона, после перехода в этих уравнениях к старым переменным. Таким образом находим явный вид преобразования, обобщенную функцию Гамильтона, которая позволяет привести канонические уравнения движения непотенциальной системы к гамильтоновой форме, и обобщенную функцию Лагранжа, которая дает возможность привести уравнения движения непотенциаль-  [c.159]

Совершенно аналогичная ситуация возникает и в гамильтоновой форме механики. Мы снова не имеем прямого метода интегрирования канонических уравнений, и наиболее эффективными оказываются координатные преобразования фазового пространства. При этом выясняется, что уравнения Гамнльтопа обладают рядом преимуществ по сравнению  [c.225]

Все дальнейшие рассуждения будут аналогичны рассуждениям предыдущего пункта. Инвариантность дифференциальной формы гарантирует инвариантность канонических уравнений и снова функция Гамильтона Н оказывается инвариантом преобразования. Более того, мы снова можем включить время t в число позиционных координат. .., qn в качестве дополнительной переменной, перейдя к параметрической форме канонических уравнений. В результате получим реономиую форму преобразований Матье, характеризуемую инвариантностью дифференциальной формы  [c.236]

Это и есть уравнения в явном виде для бесконечно малого канонического преобразования. Вместо абсолютных координат qi + А г, Pi + Ар,- в новой системе отсчета могут быть использованы о1носительные координаты Aqi, Ар,-. Эти координаты выражены в явном виде при помощи одной функции В, характеризующей преобразование. В качестве этой функции может быть выбрана произвольная функция переменных qi, pi.  [c.253]

Эти уравнения снова показывают, что два положения движу-щейся фазовой охидкости связаны друг с другом при помош и канонического преобразования. Теперь, однако, можно сказать больше роль W в уравнениях (7.9.10) показывает, что главная функция Гамильтона является производяш,ей функцией того канонического преобразования, которое переводит движущуюся фазовую жидкость из одного состояния в другое, более позднееЧ  [c.259]

Есть русский перевод Г. Голдстейн, Классическая механика, Гостехиздат, Москва, 1957.— Изложение, имеющее целью дать методы, требующиеся в квантовой механике. Используются матричный и векторный аппарат. Специальная теория относительности. Уравнения Гамильтона, канонические преобразования, малые колебания, знакомство с лагран-жевой и гамильтоновой формулировками задач для непрерывных систем и полей.  [c.440]

Прямой метод Ляпунова и каноническое преобразование системы дифференциальных уравнений. Учение Ляпунова об устойчивости движения, в том числе и его второй (ирямой) метод,, подробно изложено в ряде монографий [1, 8, 69, 74, 77, 113]. Ниже дается краткое изложение второго метода без его подробных доказательств в объеме, необходимом для рассмотрения задачи об устойчивости движения описываемого гидропривода объемного управления.  [c.531]

Первое издание книги опубликовано издательством Московского университета в 1988 г. Во втором издании книги приведены решения 160 новых задач. Включена новая глава 11 Релятивистская механика . Теперь сборник содержит решения 560 задач, иллюстрируюш их приложения методов теоретической механики к исследованию широкого круга проблем. Представлены задачи по всем разделам классической механики динамика частицы во внешнем поле и тел переменной массы, динамика системы частиц, уравнения Лагранжа, линейные и нелинейные колебания, динамика твердого тела, электромеханика, уравнения Гамильтона и канонические преобразования. Задачи по электромеханике рассмотрены в рамках лагранжева формализма. Включены также 42 задачи по релятивистской динамике, которые отсутствуют в известных сборниках задач по механике. Ряд задач, представляюш их различные аспекты одной проблемы, представлен в нескольких разделах сборника. Значительно расширен раздел, включаюш ий множество задач, иллюстрируюш их применение новых методов интегрирования систем нелинейных уравнений обш его вида, представленных в гамильтоновой форме.  [c.5]


Н. Н. Бухгольца, И. М. Воронкова, А. П. Минакова и др. Поэтому в данном сборнике задачи по традиционным разделам механики представлены сравнительно слабо и основное внимание уделяется тем ее разделам, которые еще не нашли достаточно полного отражения в учебной литературе, в частности электромеханическим аналогиям, вариационным принципам, интегральным инвариантам, уравнениям Гамильтона, каноническим преобразованиям, методу Якоби и т. д.  [c.6]

Переход от уравнений (Hi) к лагранжевым уравнениям, определяемым функцией Лагранжа (12i), соответствует переходу от координат х, у ж импульсов X = х, Y = у к координатам ф, г и импульсам Ф = Д = г, рассмотренному в 220. В соответствии с изложенным в 49 такой переход представляет собой полностью каноническое преобразование, поскольку мы 1гриходим к ф, г, Ф, Л в результате канонического обобщения преобразования (1). Вместе с тем можно заключить, что переход от Ф, R, ц), г к (28) представляет собой каноническое преобразование с множителем = 1. Это вытекает из определения (см. 104) канонической системы постоянных интегрирования. Сопоставляя эти факты с результатами, указанными в 225, увидим, что переход от импульсов I, ц, и координат g, т], уравнений (33) к  [c.199]

Касательные и, в частности, канонические преобразования позволяют снести описание физических систем к двум группам степеней свободы (2,17), (2.18) и уравнениям (2.3). Причина центра1н.ного места ка-поинческих преобразований в науке в том, что канонические преобразования приводят уравнения классической механики к такой форме, когда действие (то есть информация о системе) становится явной переменной.  [c.114]

Она отличается от болыней части ранее изданных курсов теоретической и аналитической механики систематически проведенным подходом, опирающимся на инвариантность и ковариантность законов и уравнений механики по отношению к преобразованиям систем отсчета. На этой идее базируется как и,зложение основных понятий механики, так п обоснование лагранжева и гамильтонова формализма. Большое внимание уделяется leopeMe Э. Нетер и интегральным инвариантам, которые положены в основу изложения теории канонических преобразований и формализма Гамильтона — Якоби.  [c.2]


Смотреть страницы где упоминается термин Канонические уравнения и канонические преобразования : [c.240]    [c.154]    [c.355]    [c.252]    [c.395]    [c.197]    [c.217]    [c.17]    [c.30]   
Смотреть главы в:

Задачи по теоретической механике Изд2  -> Канонические уравнения и канонические преобразования



ПОИСК



Вид канонический

Интегралы движения, преобразование Рауса, канонические уравнения Гамильтона, уравнения Якоби — Гамильтона, принцип Гамильтона — Остроградского

Канонические преобразования и уравнения ГамильтонаЯкоби

Канонические преобразования уравнения

Канонические преобразования уравнения

Канонические преобразования, производимые каноническими уравнениями. Основной относительный интегральный инвариант

Канонические преобразования. Уравнение Гамильтона Якоби Канонические преобразования определение, основной критерий

Канонические преобразования. Уравнение и теорема Остроградского— Гамильтона — Якоби

Канонические уравнения уравнения канонические

Капопические уравнения, канонические преобразования. Их свойства

Ковариантность уравнений Гамильтона при канонических преобразовани. 171. Канонические преобразования и процесс движения

Метод вариации канонических постоянных Производящие функции канонических преобразований Линейные канонические преобразования. Диагонализация гамильтониана. Операторная форма канонических преобразований. Канонические преобразования в классической теории магнитного резонанса Уравнение Гамильтона-Якоби

Преобразование Лежандра. Гамильтониан. Канонические уравнения. Функционал уравнений Гамильтона. Скобки Пуассона. Теорема Пуассона. Расширенное фазовое пространство. Интегрируемость гамильтоновых систем. Фазовый поТеоремаЛиувилля Канонические преобразования

Преобразование каноническо

Преобразование каноническое

Преобразование уравнений

Преобразование уравнений возмущенного движения системы регулирования к канонической форме

Преобразование уравнения параболоида к каноническому виду

Преобразование уравнения параболоида центральной поверхности к каноническому виду

Преобразование уравнения параболоида центральных линий к каноническому

Преобразование уравнения параболоида центральных линий к каноническому виду

Преобразования канонически

Уравнения Гамильтона Канонические уравнения и канонические преобразования

Уравнения канонические



© 2025 Mash-xxl.info Реклама на сайте