Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сопротивление металлов зонная структура

Электрические свойства. По электропроводности аморфные металлы ближе к жидким металлам, чем к кристаллическим. Удельное сопротивление р аморфных металлических сплавов при комнатной температуре составляет (1—2) 10- Ом-см, что в 2—3 раза превышает р соответствующих кристаллических сплавов. Это связано с особенностями зонной структуры аморфных металлов. В кристаллических металлах длина свободного пробега электрона составляет примерно 50 периодов решетки даже при Т, близкой к температуре плавления. Отсутствие дальнего порядка в металлических стеклах обусловливает малую длину свободного пробега, соизмеримую с межатомным расстоянием. Следствием этого является повышенное удельное сопротивление и слабая зависимость его от температуры.  [c.373]


При контактной сварке, или сварке сопротивлением, металл нагревается проходящим по нему электрическим током при этом значительное влияние на процесс сварки имеет сопротивление контакта между соединяемыми деталями. Контактная сварка почти всегда выполняется как сварка давлением с осадкой разогретых деталей. Нередко осадка сочетается с полным расплавлением основного металла, и зона сварки имеет структуру литого металла, например при точечной контактной сварке.  [c.12]

Можно заметить, что в наших расчетах продольное электрическое поле оказалось в точности одинаковым как при наложении магнитного поля, так и без него. Этот результат перестает быть верным, когда энергетическая зонная структура анизотропна. В последнем случае продольное электрическое поле также зависит от магнитного поля и обычно растет с ним. Это дополнительное сопротивление, возникающее при приложении магнитного поля, называется магнетосопротивлением ). Измерение в магнитном поле, в частности, эффекта Холла дает определенную информацию о топологии поверхности Ферми в металлах. Мы не будем вдаваться в детали этого метода изучения ферми-поверхностей.  [c.294]

Наконец, можно вычислить и сопротивление р, исходя из тех же самых параметров, т.е. из значений ф, и зонной структуры чистого металла. Эти расчеты довольно сложны, и мы их не будем здесь приводить, отсылая читателя к статьям [83, 84, 87].  [c.456]

Эффективное сопротивление изнашиванию поверхностей трения в условиях высоких температур оказывают теплоустойчивые металлы, которые способны сохранять свою исходную структуру и твердость при высоком нагреве, а также интенсивный отвод тепла в тончайших поверхностных объемах металлов с зоны максимальных температур вглубь металла или в окружающую среду. Повышение механической прочности, твердости поверхностных слоев металлов не оказывает действенного сопротивления изнашиванию в условиях схватывания второго рода.  [c.24]

Сварные соединения труб из углеродистой стали при толщине стенки более 35 мм подвергают отпуску при 600—650° С. Время выдержки при этой температуре 2— 5 мин на каждый миллиметр толщины стенки трубы. В процессе выдержки происходит снятие остаточных напряжений. В случае подкалки структура всех подкалив-шихся участков превращается при 600—650° С в сорбит отпуска. До 300° С охлаждение после отпуска проводят медленно. Для этого на сварном стыке либо оставляют выключенную переносную печь сопротивления, либо покрывают стык асбестом. Охлаждение ниже 300° С можно вести на воздухе, без особых предосторожностей. Твердость металла шва и околошовной зоны в результате отпуска снижается. Прочность и пластичность приближаются к прочности и пластичности основного металла, однако одинаковой прочности металла шва и основного металла добиться не удается, так как металл шва сохраняет литую структуру. Обычно в металле шва содержится несколько меньше углерода и больше марганца и кремния, чем в основном металле. Прочность металла шва получается выше прочности основного металла, а пластичность — ниже. При испытании на растяжение разрушение происходит обычно по основному металлу.  [c.205]


В целом, проведенные исследования показывают, что процесс шлифования титановых сплавов сопровождается существенными изменениями структуры материала поверхностных слоев, обработанных по разным технологическим режимам. Структурное состояние, формируемое в поверхностном слое при конкретных режимах шлифования, является наиболее важным в комплексе параметров, определяющих эксплуатационные характеристики промышленных изделий. Особую роль в формировании структуры металлических систем при поверхностной обработке и сопротивлении разрушению деталей при нагружении в условиях эксплуатации отводят диффузионным процессам. Диффузия легирующих элементов в зоне металла, подвергнутого поверхностной обработке, как показали приведенные результаты, в наибольшей степени влияет на долговечность изделий в целом. В связи с этим контроль структурного состояния поверхностных слоев с точки зрения диффузионного перераспределения основных легирующих элементов сплава и изменения фазового состава, а также развивающейся пластической деформации в этих слоях, накопления различного рода нарушений структуры-является важным в решении задачи повышения качества материала после поверхностной технологической обработки деталей.  [c.150]

Распределение магнитного потока в зоне КН (зоне высокого магнитного сопротивления) аналогично приведенному на рис. 7.4, а характер изменения нормальной и касательной составляющих показан на рис. 7.10. Вдоль линии КН нередко происходит повышение твердости металла. Металлографические исследования в этом случае выявляют повреждения структуры металла в той или иной степени.  [c.117]

Металлы состоят из кристаллических зерен правильной структуры. Так как, однако, на границах зерен в процессе кристаллизации возникают препятствия со стороны соседних зерен, эта правильность структуры нарушается, и граничные зоны по своей структуре уподобляются аморфным веществам. В определенном диапазоне температур и при небольших напряжениях неупругие деформации происходят лишь в указанных зонах, имеющих весьма малый объем по сравнению с телом зерен. Поэтому, пока напряжения не достигнут определенной величины, зависящей от соотношения сопротивлений тела зерен сдвигу и граничных зон — вязкой деформации, вязкая деформация поли-кристаллического тела оказывается настолько незначительной, что практически может не учитываться. Названное выше соотношение существенно зависит от температуры. При определенной для данного материала температуре даже в результате не-  [c.418]

Большое число случаев хрупкого разрушения относится к сварным конструкциям. Трещины образуются обычно у дефектов сварных швов и распространяются в зоне сварочного нагрева. Эта особенность разрушения сварных конструкций связана не только с наличием макроскопических дефектов в соединениях, но также с существенным изменением структуры и свойств основного металла в зоне сварки под действием сварочного тепла и влиянием остаточных сварочных напряжений. Наиболее важными структурными факторами, определяющими сопротивление сварных соединений распространению хрупких трещин, являются размер зерна и фазовые превращения в металле шва и околошовной зоне.  [c.179]

Усталостное разрушение происходит обычно внезапно, после большого числа повторных нагружений и при напряжениях, заметно меньших предела прочности материала, соответствующего однократному статическому нагружению. Особенно низко сопротивление усталостному разрушению при многократно повторяющейся нагрузке противоположного направления, когда напряжение в опасной точке сечения меняется от - -а до —о (симметричный цикл). Усталостному разрушению подвергаются такие важные детали, как коленчатые валы, поршневые пальцы и клапанные пружины двигателей, оси железнодорожных вагонов, стыки рельсов, лопатки турбин, гребневые винты пароходов и т. д. Как показывает статистика, более 80% поломок всех указанных металлических деталей происходит именно в результате разрушения от усталости. Усталостное разрушение проявляется в возникновении повреждений. При этом, помимо концентрации напряжений, вследствие резкого изменения формы сечения и плохой обработки поверхности (царапины), следует иметь в виду концентрацию напряжений от структурных дефектов самого металла (микропоры, шлаковые включения и т. д.). Если никаких принципиальных изменений в строении металла в зоне усталостного излома не происходит, то все же определенное изменение структуры металла (как показывают микроскопические и рентгенографические исследования) имеет место.  [c.263]


Структурные напряжения в зоне термического влияния шва при сварке закаливающихся сталей. Образование закалочной структуры мартенситного типа сопровождается объемным расширением металла, встречающим сопротивление смежных незакаленных участков. Возникающие при этом скалывающие напряжения способствуют образованию мелких трещин. Появление микротрещин объясняют также на-  [c.662]

Упомянутые факторы являются причиной ярко выраженной структурной микронеоднородности, заключающейся в существовании крайне разнородных структур в центре зерна, в пограничных зонах и на границах, резко отличающихся по своим свойствам. Эти отличия относятся как к сопротивлению пластическим деформациям, так и к сопротивлению вязкому течению в условиях постоянно действующих внутренних остаточных напряжений. Очень часто наиболее низким сопротивлением указанным видам деформации обладают границы зерен и прилегающие к ним зоны металла.  [c.242]

В литом состоянии лучшие механические свойства имеет металл слитка в зоне столбчатых кристаллов. Однако в связи с тем, что по границам этих кристаллов располагаются примеси и другие включения, при последующей обработке давлением места стыков столбчатых кристаллов являются плоскостями наименьшего сопротивления пластической деформации и металл в них разрушается. Поэтому наличие столбчатой структуры в слитке, как правило, нежелательно.  [c.42]

Сварка сопротивлением дает соединения с невысокими механическими свойствами по причинам, изложенным выше, а также вследствие большой зоны нагрева и образования в этой зоне крупнозернистой структуры металла. Поэтому сварку сопротивлением используют для соединения проволоки и прутков диаметром до 20 мм, в частности для изготовления цепей.  [c.28]

В более сложных структурах технических металлов, например мягкой стали, в которой по границам зерен феррита выпадают карбиды и концентрируются чужеродные атомы, границы зерен обладают более высоким сопротивлением деформации и оказывают существенное влияние на общие пластические деформации деталей. Это объясняет повышение предела текучести стали по сравнению с напряжением скольжения феррита и то, что наклон диаграммы деформирования стали в зоне пластической деформа-  [c.179]

При сварке особо ответственных конструкций, не подвергающихся последующей термообработке, в тех случаях, когда равнопрочность не является обязательным условием, используют сварочную проволоку с высоким содержанием легирующих элементов, обеспечивающих получение металла шва с аустенитной структурой и с временным сопротивлением до 55 кгс/мм. Обладая гране-центрированной решеткой, металл шва с аустенитной структурой отличается высокой пластичностью и вязкостью даже при грубой литой структуре. Он не теряет этих свойств ни при низких температурах, ни при ударном приложении нагрузки. Сварные соединения с аустенитными швами применяют в самых ответственных и тяжелонагруженных конструкциях. Весьма ценным их свойством является высокая стойкость против образования трещин в околошовной зоне.  [c.552]

Среднеуглеродистые и низколегированные стали с содержанием 0,25...0,45 % С, а также стали с суммарным содержанием легирующих элементов до 2,5 % имеют невысокое р 25 10" Ом см, среднее значение теплопроводности Я. и 40 Вт/(м К) и относительно высокое сопротивление пластической деформации при низких температурах (см. рис. 5.20). Повышенное содержание углерода и легирующих элементов обусловливает высокие прочность и твердость этих сталей в начальной стадии нагрева, склонность к образованию кристаллизационных трещин в ядре и склонность к закалке. Структуры закалки (например, мартенсит) повышают хрупкость и снижают пластичность сварных соединений в зоне термического влияния. Рекомендуется использовать для сварки металл в отожженном или нормализованном состоянии и режимы, обеспечивающие относительно медленный нагрев и охлаждение зоны соединения.  [c.324]

Отличительной характеристикой процесса является его кратковременность и значительная плотность сварочного тока, которые обеспечивают локализованный нагрев, минимальное оплавление и изменение структуры металла по длине свариваемых деталей. Электрическое сопротивление свариваемых деталей при этом не оказывает влияния на количество тепла, выделяющегося в зоне сварки поэтому можно легко осуществлять сварку деталей с различными физическими свойствами, например меди с алюминием, нержавеющей сталью и т. п.  [c.110]

Практически для всех сварных соединений характерна та или иная степень различных неоднородностей зон металла шва, зоны сплавления, участков зоны термического влияния, основного металла, вызываемых как их различием в химическом составе, так и в структуре. В общем случае сварное соединение в направлении, перпендикулярном сварному шву, может рассматриваться как чередование прослоек металла различной толщины с различными свойствами (временным сопротивлением, пределом текучести, твердостью, пластичностью, иногда модулем нормальной упругости), завершающееся зоной эталонного по свойствам основного металла. При этом отдельные прослойки могут быть прочнее основного металла (в некоторых случаях металл шва или какие-то участки зоны термического влияния) или менее прочными (участки разупрочнения в зоне влияния или менее прочный шов). Могут иметь место и более сложные случаи зона термического влияния прочнее основного металла, а металл шва менее прочен, чем основной металл.  [c.28]


Более высокие значения ар min металла околошовной зоны, по-видимому, можно объяснить повышенным сопротивлением сдвигу металла с а -струк-турой, ее большей химической однородностью в сравнении с отожженной структурой а-фазы, а также эффектом деформационного старения вследствие блокировки готовых полос скольжения и границ зерен примесными атомами (О, N)b интервале температур 300—150° в процессе охлаждения при сварке.  [c.39]

Зонная структура твердого тела является результатом взаимодействия волновой функции электрона с рещеткой. Зонная структура позволяет найти частоты и направления, для которых волновая функция электрона может или не может проходить через решетку. Отражение электронной волны под углами Брэгга от кристаллографических плоскостей является идеально упругим и не вносит вклада в электрическое сопротивление. Для каждого кристалла и каждой электронной конфигурации условия Брэгга налагают определенные ограничения на направление волнового вектора и значения энергий, которые может принимать электронная волна. Эти ограничения в направлениях и значениях энергий приводят к появлению щелей в почти непрерывном спектре энергий и направлений. Именно эти щели (порядка 1 эВ для полупроводников и 5 эВ или больше для хороших диэлектриков) обусловливают сильнейшие различия между металлами, полупроводниками и диэлектриками (рис. 5.2). Для металлов характерно, что уровень Ферми оказывается внутри зоны, имеющей вакантные энергетические уровни. Полупроводники имеют полностью заполненную разрешенную зону. Ширина запрещенной зоны у них невелика, н поэтому ие большое число электронов при тепловом возбуждении может перейти в расположенную выше разрешенную зону. Диэлектрик отличается от полупроводника тем, что его запрещенная зона очень велика, и практически ни один возбужденный электрон не может ее преодолеть.  [c.190]

Общепринятая технология сварки с подогревом приводит к образованию широких гвердых участков подкалки в около-шовных зонах с крупноигольчатой мартенситной структуро й Укрупнение зерен, наряду с сопутствующими закалочными процессами, способствует скоплению на их границах дефектов кристаллической структуры, росту внутренней энерг ии i снижению сопротивления коррозионному разрушению Структура аустенитного металла шва при этом более 1етеро-генная и вторичные избыточные фазы образуют замкнуплс цепочки. Подогрев при сварке способствует росту количества избыточных фаз в структуре металла шва.  [c.150]

Существуют другие доказательства правильности гипотезы о том, что поверхность Ферми касается границ зоны, связанные с тем, что электрическое сопротивление при низких температурах, по-видимому, более удобно для таких исследований, чем любые другие свойства. Термоэлектрические свойства одновалентных металллов (см, гл. III, а также [178]—[180]) дают качественное указание на то, что их зонная структура сильно отличается от простой модели в случае благородных металлов и в меньшей степени от модели в случае цезия, рубидия и калия. Изменение электрического сопротп-нления в магнитном поле также чувствительно к геометрии поверхности Ферми, Согласно Колеру [181], изменение электрического сопротивления одновалентных металлов с кубической структурой в сильном поперечном магнитном поле должно быть изотропным (постоянным при вращении ноне-  [c.271]

Другая возможность, которая, как мы теперь считаем, является наиболее реальной, состоит в том, что с переходом в сверхпроводящее состояние связано движение ионов. Автор [60] в свое время предположил, что имеются незначительные периодические смещения решетки, которые образуют очень большую элементарную ячейку в реальном пространстве и мелкозернистую структуру зон Бриллюэна в к-пространстве. Предполагалось, что смещения приводят к небольшой энергетической хцели у поверхности Ферми и, следовательно, к уменьшсЕгию энергии занятых состояний. Известно, что некоторые сплавы (например, сплавы в / фазе) имеют сложную структуру, обладающую вблизи поверхности Ферми плоскостями разрыва. Предполагалось, что если зонная структура является мелкозернистой, то нечто подобное может иметь место во многих металлах при низких температурах независимо от того, насколько сложна поверхность Ферми. Первые грубые оценки показали, что уменьшение энергии электронов вблизи поверхности Ферми достаточно для компенсации энергии, необходимой для смещения ионов однако более тщательные оценки, сделанные позже, показали, что уменьшение энергии на порядок меньше требуемой величины. Наиболее подходящими являются металлы с сильным взаимодействием между решеткой и электронами и, следовательно, с большим сопротивлением в нормальном состоянии. Диамагнитные свойства могли бы быть объяснены очень малой эффективной массой электронов и дырок с энергиями, близкими к поверхности Ферми (см. п. 24). Так как лучшие оценки, по-видимому, свидетельствуют о том, что переходы такого типа являются маловероятными, то детали теории никогда не были опубликованы. Некоторые идеи были использованы в более поздней теории [16, 118], основанной на динамическом взаимодействии между электронами и колебаниями решетки, о котором свидетельствовал изотопический эффект.  [c.754]

Существует класс полупроводниковых приборов, выполненных на основе смешанных окислов переходных металлов, которые известны под общим названием термисторов. Термин термистор происходит от слов термочувствительный резистор . Толчком к разработке термисторов послужила необходимость компенсировать изменение параметров электронных схем под влиянием колебаний температуры. Первые термисторы изготавливались на основе двуокиси урана ПОг, но затем в начале 30-х годов стали использовать шпинель MgTiOз. Оказалось, что удельное сопротивление MgTiOз и его температурный коэффициент сопротивления (ТКС) легко варьируются путем контролируемого восстановления в водороде и путем изменений концентрации MgO по сравнению со стехиометрической. Использовалась также окись меди СиО. Современные термисторы [60, 61] почти всегда представляют собой нестехиометрические смеси окислов и изготавливаются путем спекания микронных частиц компонентов в контролируемой атмосфере. В зависимости от того, в какой атмосфере происходит спекание (окислительной или восстановительной), может получиться, например, полупроводник п-типа на поверхности зерна, переходящий в полупроводник р-типа в глубине зерна, со всеми вытекающими отсюда последствиями для процессов проводимости. Помимо характера проводимости в отдельном зерне, на проводимость материала оказывают существенное влияние также процессы на границах между спеченными зернами. Высокочастотная дисперсия у термисторов, например, возникает вследствие того, что они представляют собой сложную структуру, образованную зонами плохой проводимости на границах зерен и зонами относительно высокой проводимости внутри зерен.  [c.243]

Было установлено, что основной металл разрушенной трубы по химическому составу соответствовал техническим условиям, однако имел пониженную ударную вязкость (при 0°С — 4,05 кгм/см , а при минус 40°С — 3,3 кгм/см , тогда как техническими условиями регламентируются значения не менее 8 и 3,5 кгм/см соответственно). Металл продольных заводских швов по химическому составу также соответствовал требованиям технических условий, а по механическим свойствам (особенно металл ремонтных швов) имел недопустимо высокое временное сопротивление разрыву (до 750 МПа при максимально допустимых по техническим условиям 690 МПа) и низкую пластичность (относительное удлинение для ремонтных швов составляло 2,9% при минимально допустимых 18%, а ударная вязкость при температурах 0 и минус 40°С — 1,45 и 0,69 кгм/см соответственно. В заводских продольных швах имелось много микропор и мелких шлаковых включений, являющихся источниками зарождения микротрещин, величина которых, однако, соответствовала техническим условиям. Металл поперечного монтажного шва содержал хрома на 0,18% больше верхнего допустимого предела и имел неудовлетворительные характеристики пластичности (ударная вязкость при температуре 0°С — 4,96 кгм/см а при минус 40 С — 1,36 кгм/см ). В связи с повышенной чувствительностью стали 14Г2САФ к перегреву в заводских продольных ремонтных швах и поперечных автоматических монтажных швах присутствовали участки металла с крупными ферритными зернами, а в зоне термического влияния — участки с мартенситной структурой. Эти участки металла имели низкую стойкость к коррозионному растрескиванию.  [c.59]


Диффузионные слои, содержащие алюминий, эффективно повышают сопротивление сталей против газовой коррозии, однако при длительном высокотемпературном воздействии концентрация алюминия в поверхностных зонах слоев снижается из-за его диффузии в основной металл и образования оксидов. Указанные процессы приводят к изменению структуры диффузионных слоев, их физикохимических и прочностных свойств. Увеличить стабильность диффузионных слоев на алитированной углеродистой стали можно путем легирования формирующихся в слоях ннтерметаллидов металлами V группы, в частности ниобием.  [c.191]

Для обеспечения надежности холоднодеформированных гибов паропроводов из стали 15Х1М1Ф и оценки их ресурса необходима разбраковка гибов по структуре с целью выявления браковочной. Критериями оценки является микроструктура и временное сопротивление од, определенное безобразцовым методом на растянутой зоне гиба примерно в средней ее части. Значение од для металла с феррито-карбидной структурой составляет 480-530 МПа.  [c.224]

Коленчатый вал двигателя — одна из основных деталей, определяющая вместе с другими деталями шатуино-поршневой группы ресурс двигателя в целом. Срок службы коленчатого вала зависит от двух независимо действующих факторов сопротивления усталости и износостойкости. В процессе эксплуатации двигателя в результате неравномерности износа, кратковременных перегрузок, смещения опор блока из-за старения металла и ряда других причин возникают ситуации, при которых вал работает в условиях перегрузок. При этом в структуре металла накапливаются усталостные повреждения в наиболее напряженных зонах детали.  [c.419]

Если судить о работоспособности сварных конструкций только по критериям сопротивления однократной статической или динамической нагрузкам, то можно впасть в серье зные ошибки. Опасное снижение прочности в сварных конструкциях может происходить не только вследствие концентрации напряжений, обусловленных формой, но и вследствие ряда других неблагоприятных факторов непроваров, резкой неоднородности свойств в зоне соединения, обезуглероживания металла, неблагоприятного нарушения структуры металла, проявления остаточных напряжений и других причин, специфических для сварочного процесса.  [c.3]

В сплавах со структурой твердых растворов удельное электросопротивление при 20 °С в зависимости от состава, согласно правилу Н.С. Кур-накова, изменяется по нелинейной зависимости (рис. 18.5). Сплав приобретает максимальное значение р в большинстве случаев при концентрации элементов, равной 50 % (ат.). Видимо, в таком сплаве примесное рассеяние вследствие искажений кристаллической решетки и нарушения периодичности энергетических зон достигает максимального значения. В тех сплавах, в которых хотя бы один из элементов является переходным металлом, температурный коэффициент ар может принимать отрицательные значения, т.е. электрическое сопротивление при нагреве несколько уменьшается. В тех случаях, когда необходим материал с повышенным электрическим сопротивлением, следует использовать сплавы со структурой твердых растворов.  [c.573]

Диффузионные процессы в микрообъемах металла, примыкающих непосредственно к поверхности трения или к пленкам вторичных структур, могут приводить к значительным структурным изменениям в этих микрообъемах. Фрикционный нагрев способствует протеканию в поверхностном слое процессов отпуска, возврата и рекристаллизации, что приводит к разупрочнению поверхности, снижению ее несущей способности, усилению схватывания. В тяжелых условиях трения (высокие скорости и давления, отсутствие смазки), когда имеет место интенсивный фрикционный нагрев, в поверхностном слое стали может происходить а -> Y превращение. Возникает так называемый аустенит трения. И. М. Любарский с сотр. обнаружил на поверхности трения стали 20Х2Н4А аустенитный слой толщиной в несколько микрометров. После прекращения трения в процессе охлаждения этот аустенит полностью или частично распадался [20.40]. Аустенит трения в ряде случаев обладает повышенной устойчивостью и может сохраняться в структуре после охлаждения до комнатной и более низких температур. Это объясняется высоким уровнем его легированности, а также стабилизирующим влиянием деформационного и фазового наклепа. Поверхностный слой обогащается легирующими элементами в результате их диффузии из глубинных слоев металла (термодиффузия, восходящая диффузия), а также из окружающей среды. Так, при термическом разложении смазки в зоне контакта поверхность металла может насыщаться углеродом и другими элементами, содержащимися в смазке. Аустенит трения, обладая повышенной прочностью, теплостойкостью, может, увеличивать сопротивление стали изнашиванию. Образование аустенита при трении и его ускоренное охлаждение (вторичная закалка) приводят к формированию нетравящихся ( белых ) слоев на поверхности стальных деталей. Белые слои обладают высокой микротвердостью Я = 9 — 15 ГПа и значительной хрупкостью. Структура белых слоев и условия их возникновения при трении были рассмотрены в работах Б. Д. Грозина, К- В. Савицкого, И. М. Любарского и др. Установлено, что белые слои характеризуются высокой дисперсностью структуры, химической неоднородностью и сложным фазовым составом. В них присутствуют аустенит (20—80%), так называемый скрытноигольчатый (или мелкокристаллический) мартенсит и карбиды. В условиях динамического нагружения белые слои из-за высокой хрупкости интенсивно выкрашиваются, что и ведет к ускоренному повреждению поверхности.  [c.396]

Применение температурно-кинетического метода при изучении анодного растворения при повышенных плотностях тока алюминиевого сплава показало, что при небольшой величине потенциала преобладают ограничения, обусловленные химической поляризацией. При высоких скоростях обработки электрохимический механизм торможения скорости процесса переходит в диффузионный, и все больщую роль начинает играть отвод продуктов реакции из зоны обработки [130]. Наибольшее сопротивление транспортированию вещества при этом оказывает, по-видимому, покрывающая анод фазовая пленка с довольно рыхлой структурой. На основе анализа закономерностей анодного растворения металлов следует подчеркнуть сложность данного процесса, особенно при повышенных плотностях тока, и необходимость его разностороннего исследования в каждом конкретном случае, так как общетеоретические положения не дают практических рекд-мендаций по выбору оптимальных режимов процесса,  [c.37]

Механическая обработка шва. Зачистка и снятие методами резания усиления шва способствует повышению усталостной прочности соединений вследствие снижения концентрации напряжений. Эффективным средством повышения сопротивления усталости стыковых соединений из низколегированной стали 15ХСНД и среднелегированных сталей 34ХМ, 40ХН и др. является сочетание механической зачистки шва и термической обработки (снятие остаточных напряжений и улучшение структуры металла околошовной зоны).  [c.116]

Сталь применяют после прокатки и не подвергают термической обработке после сварки. В этом состоянии обычно используют малоуглеродистые стали и некоторые простейшие строительные низколегированные стали, не подверженные сколько-нибудь существенной закалке при сварке. Свойства сварных соединений таких сталей в основном определяются степенью развития рекристаллизации и огрубления структуры околошов-ной зоны и шва. Режимы их сварки выбирают по скорости охлаждения ха о внутри некоторого оптимального интервала Дшопт, который обычно устанавливают по данным валиковой пробы [4, с. 141—160 7] таким образом, чтобы ударная вязкость в зоне термического влияния при отрицательных температурах была не ниже 0,3 Мдж1м (3 кГ м1см ). При этом в основном металле должно ограничиваться содержание газов (<0,005% О, <0,005% N и <0,0005% Н) в противном случае возможно старение и снижение сопротивления хрупкому разрушению. Для предупреждения образования горячих трещин в этих сталях ограничивают содержание серы и некоторых других вредных примесей соотношение между количеством марганца и серы определяется содержанием углерода -  [c.41]

При термитной сварке сталеалюминиевого или алюминиевого провода алюминий в зоне сварки загрязняется и превращается из первичного во вторичный алюминий, удельное сопротивление которого само по себе больше удельного сопротивления первичного алюминия. Кроме того, изменяется структура металла провода, и поэтому, несмотря на увеличение сечения алюминия в сварном соединении по сравнению с сечением целого провода, электрическое сопротивление сварного соединения соизмеримо с сопротивлением целого провода на равной длине, благодаря чему я коэффициент дефектности близок к единице (/Сдеф=1).  [c.47]


Более высокие значения ap.mm металла околошовной зоны по сравнению, с ap.mm отожженного металла М. X. Шоршоров [220] объясняет повышенным сопротивлением сдвигу металла с а -структурой, ее большой химической однородностью. Это объяснение подтверждается тем, что в титановых сплавах с пластинчатой а-структурой трещины распространяются не вдоль пластин, а под большим углом к ним. Чем тоньше пластинки а-фазы, тем большее число барьеров должна преодолеть растущая треицща и тем больше должны быть разрушающие напряжения.  [c.187]

Сила тока при сварке подбирается в каждом отдельном случае, экспериментально в зависимости от толщины металла я диаметра электродов так, чтобы разогрев стали был минималь ным, а скорость охлаждения шва и зоны термического воздействия — максимальной. Процесс сварки следует вести возможно быстрее, не задерживая электрода, так как при длительнол нагреве сталь ухудшает свои противокоррозийные свойства-Увеличение скорости сварки сопровождается измельчением первичной структуры швов, благоприятно сказывающейся на их коррозионной стойкости. Скорость охлаждения оказывает влияние Нс1 характер первичной кристаллизации и на полноту выделения избыточной фазы по границам зерен аустенита. Чем медленнее остывает сварной шов, тем большее количество избыточной фазы выпадает по границам зерен. При этом сварку необходимо выполнять короткой дугой, так как при длинной дуге образуются поры в сварных швах и сильно выгорают ле,-гируюшие элементы, что может снизить качество швов и также уменьшить сопротивление коррозии.  [c.101]


Смотреть страницы где упоминается термин Сопротивление металлов зонная структура : [c.121]    [c.48]    [c.226]    [c.80]    [c.7]    [c.132]    [c.308]    [c.147]   
Температура (1985) -- [ c.190 ]



ПОИСК



Д-структура зонная

Сопротивление металлов



© 2025 Mash-xxl.info Реклама на сайте