Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Анодное растворение металлов

Эффект практического значения не имеет, так как подавление работы микропар связано с увеличением анодного растворения металла внешним током  [c.296]

По мнению ряда исследователей, пассивные пленки — тонкие защитные беспористые пленки типа поверхностных соединений с хорошей электронной, но очень плохой ионной проводимостью, которые избирательно тормозят процесс анодного растворения металла, не очень препятствуя протеканию анодного процесса выделения кислорода.  [c.308]


При очень положительных потенциалах часто еще до начала выделения кислорода возможно активное анодное растворение металла (Сг, Fe) вследствие перепассивации (отрезок PQ на рис. 216), а также явление вторичной пассивности (отрезок Q R на рис. 216) в связи с образованием новых труднорастворимых соединений, сопровождающимся падением анодного тока.  [c.317]

Схема возникновения и механизма действия блуждающих токов была приведена на рис. 260. Блуждающие токи обусловлены утечками тягового тока с рельсов электротранспорта, работающего на постоянном токе. Почва является при этом шунтирующим проводником и в зависимости от величины электросопротивления рельсов и грунта ток, иногда весьма значительной силы (до десятков и сотен ампер) проходит по земле. Встречая на своем пути подземное металлическое сооружение (например, трубопровод или кабель) ток входит в него (в этой зоне имеет место катодный процесс, который приводит к подщелачиванию грунта, а иногда и выделению водорода) и течет по нему, пока не встретятся благоприятные условия его возвращения на рельсы. В месте стенания тока с сооружения происходит усиленное анодное растворение металла, прямо пропорциональное величине тока. Блуждающие токи имеют радиус действия до десятков километров в сторону от токонесущих конструкций, например, рельсовых путей.  [c.390]

Возникновение локальных пар окалина—металл имеет большое практическое значение для коррозионной стойкости стальных конструкций не только в морской воде. Так, понтоны сплоточных машин, изготовленные из листов низкоуглеродистой стали без предварительного снятия окалины, за работу в течение двух навигаций на Северной Двине подверглись значительной местной коррозии с глубиной отдельных язв до 1,5—2 мм. Причиной этого быстрого коррозионного разрушения металла понтонов, как установил М. Д. Мещеряков, явилось наличие на стали окалины. В результате повреждения окалины в отдельных местах возникли гальванические пары, в которых роль катода играла окалина, а роль анодов — отдельные свободные от окалины участки металла. Большая катодная поверхность (покрытая окалиной) и сравнительно малая поверхность анодов (участков, свободных от окалины) и приводит к усиленному анодному растворению металла в местах с удаленной или поврежденной окалиной.  [c.400]

Отделение тонких и средних пленок от металла для дальнейшего их изучения обычно достигается обработкой реагентами, растворяющими металл через царапины в пленке, но не действующими на пленку, или анодным растворением металла в подходящем для этих целей электролите. Так, насыщенный раствор йода в 10%-ном растворе KI быстро растворяет железо, но со-  [c.435]

Все соединения имеют минимальные значения Сдс и пологие участки кривых в катодной области потенциалов, то есть являются ингибиторами катодного действия. В анодной области значения Сдс резко возрастают в связи с активизацией анодного растворения металла и адсорбцией анионов коррозионной среды.  [c.272]


Для некоторых систем металл — среда в результате высокой коррозионной активности у вершины трещины происходит избирательное анодное растворение металла и, таким образом, увеличение длины трещины. Роль напряжений в этом случае состоит в активизации металла у вершины трещины. Поскольку границы зерен могут являться местом наибольшей коррозионной активности, то, строго говоря, зернограничное распространение трещины не может служить доказательством проявления только механизма водородного охрупчивания.  [c.345]

Анодная защита основана на смещении потенциала стальной конструкции в положительном направлении, при котором наступает пассивное состояние металла, т. е. скорость анодного растворения металла сильно замедляется  [c.67]

Конкуренция процессов репассивации и анодного растворения. Анодное растворение металла в вершине дефекта, накопление продуктов  [c.69]

Коррозия теплопроводов со стороны грунта может быть вызвана электрохимическим взаимодействием металла с увлажненной теплоизоляцией или грунтом и блуждающими токами, стекающими с поверхности трубопроводов в грунте через увлажненную теплоизоляцию. Б первом случае коррозия обусловлена воздействием на металл кислорода воздуха, содержащегося во влаге, во втором — анодным растворением металла в местах перетока электронов с металла в грунт и носит локаль ный характер.  [c.14]

При коррозии и анодном растворении металлов появляются некоторые особенности, отличающие их от катодного выделения. Переход  [c.40]

Значительное снижение поверхностного натяжения, однако, должно, стимулировать коррозию, о чем свидетельствует ускорение анодного растворения металла при воздействии ряда поверхностно активных веществ [92]. По-видимому, имеет значение конкретный механизм адсорбции тех или иных компонентов среды.  [c.137]

Следовательно, необходимо сделать вывод механохимический эффект при анодном растворении металла сохраняется и в условиях диффузионного контроля скорости реакции. Выражая q в формуле (281) через соответствующий равновесный потенциал фо, получаем  [c.207]

Таким образом, механохимический эффект должен интенсивно нарастать при пластической деформации на стадиях деформационного упрочнения этот эффект будет значительно меньше на стадии легкого скольжения и на заключительной III стадии, когда наблюдается затухание деформационного упрочнения в связи с развитием процессов поперечного скольжения дислокаций. Эти процессы приводят к исчезновению дислокационных скоплений, несмотря на рост общего числа дислокаций, выходящих на поверхность и дающих основной вклад в деформацию в ходе легкого скольжения. Ускорение анодного растворения металла обусловлено локальным понижением равновесного (стандартного) потенциала в окрестности дислокаций по мере увеличения их числа в группах, образующих плоские скопления перед барьерами в процессе деформационного упрочнения.  [c.57]

Выше уже отмечалось, что в отличие от дислокаций точечные дефекты (например, вакансии), имеющие сравнительно большую энтропию образования, не приводят к суш,ественному росту энергии кристалла (поэтому их равновесная концентрация довольно велика) и практически (по сравнению с дислокациями) не участвуют в ускорении анодного растворения металла.  [c.118]

Электрополирование. Характерной особенностью растворов, применяемых для химического полирования, является их высокий окислительно-восстановительный потенциал, который достигается благодаря введению сильных окисляющих добавок (например, азотной кислоты). Во время полирования они восстанавливаются на катоде с сопутствующим быстрым анодным растворением металла.  [c.64]

Кулонометрический метод. Принцип этого электрохимического метода определения толщины, заключающийся в анодном растворении металла на известной площади с измерением электрического заряда, потребляемого в данном процессе, противоположен принципу электроосаждения. С учетом площади, на которой происходит электролиз, и электрохимического эквивалента металла по закону Фарадея делается простой расчет количество электричества в кулонах, расходуемое в процессе, переводится в толщину растворенного покрытия. Для получения точных результатов расчета необходимо, чтобы растворение происходило с известным постоянным выходом по току на аноде (желательно 100%-ным). Выбранный электролит должен устранить возможность возникновения эффектов пассивации или избыточной поляризации и, кроме того, не оказывать химического воздействия на покрытие при отсутствии электрического тока. Разумеется, важно точно определить площадь анода.  [c.144]


Следует, однако, отметить, что до настоящего времени не существует общей теории электролитического полирования. Определение оптимальных условий электролитического полирования производится, как правило, на основе опытных данных по анодному растворению металлов.  [c.16]

Для каждого сочетания металл—электролит существует оптимальная плотность тока, обеспечивающая получение поверхности требуемого качества. При плотности тока много ниже оптимальной происходит анодное растворение металла без сглаживания поверхности и полирование с малым газообразованием, а также травление анодной поверхности. При этом выявляется структура обрабатываемой поверхности. При плотностях тока, значительно превышающих оптимальные, увеличивается газообразование, происходит травление поверхности без выявления структуры, перегревается электролит Б приэлектродных зонах, возрастает удельный расход энергии и снижается выход по току.  [c.19]

Анализатор изображения автоматический 283 Анодное растворение металлов 16 Аустенит, изучение структуры 103  [c.302]

Корродирующая поверхность металла является короткозамкнутым многоэлектродным гальваническим элементом. Материальный эффект электрохимического разрушения (растворения) сосредоточен на анодных участках корродирующего металла. Анодное растворение металла возможно при одновременном протекании катодного процесса - ассимиляции освободившихся электронов на катодных участках металла. Согласно классической теории электрохимической коррозии, участки анодной и катодной реакции пространственно разделены, и для протекания процесса коррозии необходим переток электронов в металле и ионов в электролите. Однако пространственное разделение анодной и катодной реакции оказывается энергетически более выгодным, так как анодные и катодные реакции могут локализоваться на тех участках, где их протекание более облегчено. Поэтому в большинстве практических случаев протекание электрохимической коррозии обычно характеризуется локализацией анодного и катодного процессов на различных участках корродирующей поверхности металла.  [c.7]

Идея о возможности образования ионов пониженной валентности при анодном растворении металлов высказывалась очень давно (1866 г.) и использовалась многими исследователями (см. п. 4). Так, опытное значение коэффициента = 2,303 RT/anF — 0,03 уравнения (365) для железа в растворах H2SO4 при валентности п = 2 дает значение коэффициента переноса а = 1 ( ), что устраняется, если принять в качестве определяющей одноэлектронную стадию процесса (472) или (475). Наиболее полное экспериментальное обоснование стадийности реакций растворения металлов было сделано В. В. Лосевым с сотрудниками (1955—1965 гг.).  [c.229]

Г1( ходу поляризационной кривой легко определить, насколько сильно тормозится анодный процесс. На рис. 15 представлены две анодные поляризационные кривые, характеризующие разное протекание анодного процесса. У обеих кривых имеется общий участок, соответствующий активному анодному растворению металла, но дальнейший их ход различен. Кривая I описывает сравиитслык) свободно протекающий процесс активного анодного растворения металла, и ее наклон к оси абсцисс невелик. Кривая // описывает более сложный случай, когда анодный процесс, протекающий с незначительным торможением в некотором интервале потенциалов, при достижении определенного значения 3  [c.35]

Коагулирование примесей воды может быть осуществлено также электролитическим способом. Этот способ заключается в пропуске воды между алюминиевыми или стальными пластинами-анодами, расположенными вертикально в круглом или прямоугольном проточном резервуаре на расстоянии не более 20 мм друг от друга. Пластины поочередно присоединены к положительному и отрицательному полюсам источника постоянного тока, причем в целях равномерного износа пластин каждую из них присоединяют то к одному, то к другому полюсу (т. е. делают перепо-люсовку). Под действием электрического тока происходит анодное растворение металла, в воду переходят ионы алюминия (или железа), в результате чего образуются хорошо оседающие и прочные хлопья гидроксида алюминия или железа.  [c.224]

В активных средах для анодного покрытия скорость коррозии определяется разностью потенциалов контактирующих электродов (покрытие - основа), а длительность защиты - скоростью растворения покрытия и его толщиной. Поэтому повышение коррозионной стойкости самого покрытия способствует увеличению долговечности системы покрытие — основа. В активных средах анодное растворение металлов протекает при поляризации анодного процесса менее значительной, чем для катодного. Контактный ток пары в этом случае определяется в основном перенапряжением катодного процесса и связан со вторичными явлениями, изменяющими поведение контактных пар. Методы, повышающие катодный контроль например, повышение перенапряжения водорода для сред с водородной деполяризацией или уменьшение эффективности работы катодов, в том числе за счет вторичных явлений, будут способствовать снижению скорости саморастворения покрытия и, наоборот, катодные включения с низким перенапряжением восстановления окислителя стимулируют коррозионное разрушеше системы.  [c.71]

На силу тока в активном, пассивном и перепассивном состоянии металла оказывает влияние pH и температура. Если молекулы воды участвуют в процессе растворения, то с ростом pH области основных состояний металла смещаются в сторону более отрицательных значений потенциала. При этом перенапряжение анодного растворения металла в активном состоянии и состоянии перепассивации уменьшается. Скорость коррозии металла в пассивном состоянии в большинстве случаев уменьшается с ростом  [c.29]


Неоднозначность влияния адсорбционных процессов на коррозию связана с многостадийностью анодного растворения металла. Каталитический характер анодной реакции растворения железа обусловлен образованием промежуточного поверхностно активного соединения (FeOH) <,. Введение в раствор поверхностно активных добавок (например, ионов хлора или ингибиторов), способных конкурировать с ионами ОН" и вытеснять их с поверхности металла, приводит к подавлению каталитического механизма и замедлению коррозии.  [c.137]

Конфигурация силового поля вокруг вакансии обеспечивает быстрое затухание искажений решетки с удалением от ее центра, и поэтому ускоренное растворение ближайших атомов в окрестности вакансии приведет к образованию субмикропиттинга , т. е. новой поверхности, без заметного вклада в материальный баланс общего анодного растворения металла  [c.115]

Следовательно, можно сделать вывод о том, что механохимический эффект при анодном растворении металла сохраняется и в условиях диффузионного контроля скорости реакции. Этот вывод экспериментально подтверждается результатами измерения предельной плотности анодного тока диффузии при исследовании влияния степени деформации на растворимость медных анодов в гальванических ваннах [162]. В кислой ванне (раствор серной кислоты, хлоридов, блескообразующих и выравнивающих добавок) потенциостатически снимали кривые потенциал — плотность тока на медных анодах, предварительно отожженных и затем прокатанных для получения различных степеней деформации.  [c.203]

Некоторые исследователи считают, что причиной КР углеродистых и коррозионно-стойких сталей может быть поглощение водорода у вершины развивающейся трещины. Это предположение связано с подкислением раствора в трещине, установленное экспериментально. Однако в этом случае трудно объяснить положительное влияние катодной поляризациии на КР как при потенциалах отрицательнее, так и положительнее потенциала водородного электрода. Существует и гипотеза микроструктур-ных превращений, происходящих под действием напряжений и интенсивно растворяющихся в коррозионной среде, образуя зародышевые трещины КР. Однако эта гипотеза может быть пригодна для ограниченного числа сплавов, в которых возможны подобные структурные превращения. Наиболее экспериментально обоснованной представляется электрохимическая теория КР, согласно которой основным фактором развития трещины является ускоренное анодное растворение металла в вершине трещины.  [c.67]

Все эти результаты, хорошо согласующиеся с данными последних исследований, позволяют связать пассивное состояние металлов с наличием на их поверхности хемосорбированных слоев кислородсодержащих частиц I 8,80 > 108]. Для хрома [ 109, 110] и никеля [lili установлено, что пассивация обеспечивается наличием на поверхности металла примерно монослойных покрытий. Для железа, по-видимому, характерно образование более толстых слоев [112]. Уже сравнительно давно было отмечено [ 1,3,8] J что отсутствие зависимости (или слабая зависимость) стационарной скорости растворения пассивного металла от потенциала ни в коей мере не характеризует истинную кинетику самого процесса растворения. В этом случае влияние потенциала является более сложным, поскольку его рост приводит не только к обычному ускорению анодного растворения металла, но и к изменению состояния металлической поверхности, которое равноценно повышению перенапряжения того же процесса. По-видимому, в случае железа и хрома эти эффекты полностью компенсируют друг друга, что и приводит к независимости стационарной скорости растворения этих металлов в пассивном состоянии от потенциала. Поскольку, однако, характерное для каждой величины потенциала стационарное состояние поверхности устанавливается относительно медленно, эти два эффекта удается разделить, если применить метод быстрого наложения поляризации. Так, например, для хрома ШО показано [ 8], что при быстрых измерениях (постоянное состояние поверхности) сохраняется  [c.25]

Имеющиеся экспериментальные данные позволяют сделать вывод, что механизм инициирования питтингов сводится к адсорбционному вытеснению активирующими анионами пассивирующих частиц на отдельных наиболее активных участках поверхности пассивного металла, в то время как развитие питтингов яюляется типичным электрохимическим процессом, заметно осложненным процессами миграции и диффузии активирующих анионов и гидролизом первичных продуктов анодного растворения металла 1131).  [c.31]


Смотреть страницы где упоминается термин Анодное растворение металлов : [c.316]    [c.327]    [c.364]    [c.367]    [c.369]    [c.340]    [c.343]    [c.188]    [c.15]    [c.32]    [c.115]    [c.117]    [c.30]    [c.126]   
Смотреть главы в:

Защита металлов от коррозии лакокрасочными покрытиями  -> Анодное растворение металлов

Атмосферная коррозия металлов (не хватает много страниц)  -> Анодное растворение металлов


Тепловая микроскопия материалов (1976) -- [ c.16 ]

Ингибиторы коррозии металлов в кислых средах (1986) -- [ c.11 , c.15 ]



ПОИСК



Анодное окисление (растворение) металлов

Анодное окисление (растворение) металлов адсорбции влияние

Анодное окисление (растворение) металлов анодный предельный ток

Анодное окисление (растворение) металлов выход по току

Анодное окисление (растворение) металлов кинетика процесса для железа

Анодное окисление (растворение) металлов схема

Анодное растворение

Анодное растворение и пассивное состояние металОбрабатываемость металлов и с плавов методом электрохимической размерной обработки

Анодное растворение металла влияние природы аниона

Анодное растворение металла определение истинной скорост

Анодное растворение металла стадийный механизм

Анодное растворение металлов при больших анодных поляризациях

Анодное растворение металлов с участием компонентов раствора

Анодные процессы растворения металла

Анодный

Влияние ингибиторов на анодное растворение металлов в кислых средах

К изучению кинетики анодного растворения металла и окисления среды в системе железо—растворы азотной кислоты

Кинетика парциальных процессов электрохимической коррозии. Закономерности анодного растворения металлов

Концентрационная поляризация при анодном окислении (растворении) металлов

Механизм анодного растворения металлов в активном состоянии

Растворение

Растворение металла

Реакция анодная растворения металлов

Стадии анодного растворения металл

Стадийное протекание анодного окисления (растворения) металлов



© 2025 Mash-xxl.info Реклама на сайте