Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Твердость металлов

Упрочнение металла обработанной поверхности заготовки проявляется 13 повышении ее поверхностной твердости. Твердость металла обработанной поверхности после обработки резанием может увеличиться в 2 раза. Значение твердости может колебаться, так как значение пластической деформации и глубина ее зависят от физико-механических свойств металла обрабатываемой заготовки, геометрии режущего инструмента и режима резания.  [c.268]


Опыт 1, Изучить влияние марки электродов и подогрева на форму и размеры валика, качество и твердость металла наплавки и околошовной зоны.  [c.97]

На рис. 160, е показано крепление стальной крышки подшипника к корпусу из алюминиевого сплава. Совместное растачивание или развертывание постелей корпуса и крышки затруднительно из-за различной твердости металлов. Отверстие уходит в сторону более мягкого металла. На стыках мягкого и твердого металлов резец работает с ударами и быстро тупится. Получить точную поверхность с малой шероховатостью на участке перехода невозможно. Для правильной обработки необходимо, чтобы крышка была сделана также из алюминиевого сплава (вид ж).  [c.143]

Твердость металла шпа сварных соеди-нений. 4В, не более  [c.39]

Отмечалось различие твердости металла по периметру грубы и в  [c.5]

Известно [27, 30], что ограничение значений твердости металла сварного шва является одним из практических методов снижения склонности сварного соединения к сероводородному растрескиванию. Как следует из [11, 12, 25, 31], на образование трещин в сварном соединении оказывает влияние неоднородность структуры металла, наличие в ней зон, склонных к растрескиванию, уровни действующих и остаточных напряжений. Именно в сварных соединениях локализуется большая часть разрушений металла, связанных с сероводородным растрескиванием. Наиболее негативное влияние оказывает быстрое охлаждение шва с образованием перлитно-бейнитной смеси с мартенситом. Стойкость к сероводородному растрескиванию металла сварного шва меньше, чем основного металла не только из-за наличия остаточных напряжений, но и вследствие присутствия различных дефектов. Для сталей повышенной прочности характерно сероводородное растрескивание по сварному шву и зоне термического влияния. Для сталей обычной прочности избирательное разрушение по шву и зоне термического влияния отмечается лишь при переохлаждении.  [c.63]

Поскольку на трубопроводе Оренбург-Заинск имели место повреждения в основном продольных заводских сварных швов в узких зонах термического влияния монтажной сварки кольцевых стыков, можно заключить, что причиной их разрушения являлись дефекты сварки кольцевых швов. Не исключено, что сваривавшиеся концы некоторых труб имели отклонения от регламентируемых размеров, в связи с чем в процессе сварки в них возникали значительные остаточные напряжения, послужившие причиной растрескивания. Не исключено также, что в процессе сварки концы труб, находившиеся в зоне термического влияния, претерпели частичную закалку, в результате чего прочность и твердость металла значительно возросли. Коррозионные повреждения возникли на тех участках сварных швов, которые в наибольшей степени подверглись термическому воздействию и имели, кроме того, исходные дефекты. Наблюдавшиеся в кольцевых швах разрушения вызывались, как правило, крупными дефектами сварки или трещинами на участках перегрева зоны термического влияния [32].  [c.64]


Определение твердости металла труб, соединительных деталей и арматуры согласно ГОСТ 9012-59 и ГОСТ 9013-59, а также оценка пределов текучести и прочности металла по твердости в соответствии с ГОСТ 22761-77 и ГОСТ 22762-77  [c.169]

Определение твердости металлов и сплавов при высоких температурах  [c.111]

Рис. 57. Лабораторная установка для определения горячей твердости металлов Рис. 57. <a href="/info/535770">Лабораторная установка</a> для <a href="/info/335885">определения горячей твердости</a> металлов
При экономической нецелесообразности применения дорогостоящих высоколегированных сталей используют малоуглеродистые низколегированные стали с припуском на коррозию иногда до 6—10 мм с учетом скорости проникновения коррозии и расчетного срока эксплуатации оборудования. Однако во избежание сероводородного растрескивания эти стали должны применяться при ограниченной твердости металла — не выше HR 22. Это ограничение накладывается и на металл сварного соединения. Кроме того, все сварные соединения должны быть подвергнуты послесварочной обработке. Наиболее распространенный метод снятия остаточных сварочных напряжений — термическая обработка сварного соединения (высокий отпуск). При этом очень существенны скорости нагрева и охлаждения, которые обязательно регламентируются для каждой из марок сталей. Так, для малоуглеродистых сталей типа стали 20 режим термической обработки следующий нагрев до температуры 893—933 К выдержка после прогрева 1 ч скорость нагрева 523—573 К/ч охлаждение до 573 К совместно с печью. И только для стыков диаметром менее 114 мм, имеющих толщину стенки менее 6 мм, режим может быть упрощен увеличением скорости нагрева до 873 К/ч, сокра-щение.м времени выдержки до 0,5 ч и нерегулируемым охлаждением.  [c.177]

Для определения твердости металлов существует несколько способов. Одним из наиболее распространенных является способ, при котором производится вдавливание стального закаленного шарика в испытуемый металл.  [c.46]

Так, проф. М. М. Хрущов и М. А. Бабичев [2171 исследовали различные материалы и сплавы на износ при трении об абразивное полотно и определяли так называемую относительную износостойкость материалов е, т. е. отношение износа эталонного материала к износу испытуемого. Исследования показали,, что основной характеристикой абразивной износостойкости является твердость металлов и сплавов. Для чистых металлов и термиче ски необработанных сталей имеется линейная зависимость между их твердостью и износостойкостью  [c.245]

Пресс ТШ-2 (рис. 18) предназначен для измерения твердости металлов по методу Бринелля, т. е. путем вдавливания стального закаленного шарика в поверхность испытываемого образца с максимальной нагрузкой до 30000 н.  [c.39]

Целью настоящей работы является ознакомление с приборами и методами измерения твердости металлов и сравнение результатов, полученных при определении твердости различными методами.  [c.115]

Влияние частоты связано с временем нахождения образца под максимальной нагрузкой в пределах одного цикла. Пластическая деформация, как известно, запаздывает относительно прилагаемого напряжения. Чем больше продолжительность действия максимальных напряжений, тем интенсивней идут процессы упрочнения. При испытании с частотой 40 цикл/мин максимальную твердость металл приобретает уже к 40 нагружениям, тогда как при 2400 цикл/мин на это требуется нагружений в 100 раз больше, т. е. 4000 циклов. При этом в первом случае степень упрочнения сплава в 1,5 раза больше, чем во втором, при одинаковом уровне максимальных напряжений цикла (рис. 58) [108].  [c.113]

Большинство приведенных в литературе результатов измерения твердости металлов и сплавов при высоких температурах получено методом статического вдавливания наконечника в виде правильной четырехгранной пирамиды с углом 136° между противоположными гранями [80, 95, 116, 152, 202].  [c.23]


Наконечники, изготовленные из синтетического корунда (искусственный сапфир), которые успешно применяются для измерения твердости металлов при нагреве до 2030 К [18, 20], часто нельзя использовать для измерения твердости тугоплавких соединений и материалов на их основе при нагреве свыше 1270 К, так как твердость корунда при высоких температурах практически не отличается от твердости испытываемых материалов [71, 178]. Необходимым условием проведения испытаний на твердость методом вдавливания является существенное отличие в твердости материала индентора и испытываемого материала. Твердость материала индентора должна быть согласно выражению (11.12) в 2,6 раза выше твердости испытываемых материалов. Таким образом,  [c.55]

Сварку выполняют в следующем порядке. Сначала обваривают каждую шпильку и облицовывают поверхности кромок электродами диаметром 3 мм на малых токах. Затем на облицованные кромки и 1ггпильки наплавляют валики и заполняют разделку, как в предыдущем случае. Для снижения содержания углерода в металле шва предложено выполнять сварку по слого флюса, содерн<ащего до 30/6 железной окалины (например, буры 50%, каустической соды 20%, железной окалины 30%). Углерод, попадающий в сварочную ванну, в высокотемпературной ее части активно окисляется и выводится из нее в виде окиси углерода, не растворимой в металле. В результате концентрация углерода к моменту затвердевания сварочной ваига. снижается. Твердость металла шва уменьи1ается, деформационная способность возрастает.  [c.335]

В некоторых случаях при очень быстром движении коррозионной среды или при сильном ударном механическом действии ее на металлическую поверхность наблюдается усиленное разрушение не только защитных пленок, но н самого металла, называемое кавитационной эрозией. Такой вид разрушения металла наблюдается у лопаток гидравлических турбин, лопаете пропеллерных мешалок, труб, втулок дизелей, быстро-ходшчх насосов, морских гребных винтов и т. п. Разрушения, вызываемые кавитационной эрозией, характеризуются появлением в металле трещин, мелких углублений, переходящих в раковины, и даже выкрашиванием частиц металла. С увеличением а1-рессивности среды кавитадиоппая устойчивость конструкционных металлов и сплавов понижается. Кавитационная устойчивость металлов и сплавов в значительной степени зависит не только от природы металла, но н от конфигурации отдельных узлов машин и аппаратов, их конструктивных особенностей, распределения скоростей потока жидкостей и др. Известно также, что повышение твердости металлов повышает их кавитационную стойкость. Этим объясняется, что для борьбы с таким видом разрушения обыч)ю применяют легированные стали специальных марок (аустенитные, аустенито-мартенситные стали и др.), твердость которых повышают путем специальной термической обработки.  [c.81]

Используя зависимости (5.29-5.31), вычислены допустимые значения твердости металла конструктивных элементов аппарата. Значения твердости по Бринеллю НВ (ст ) в столбце 6 табл. 5.1 соответствуют минимальным регламентируемым значениям предела текучести а . Значения твердости по Бринеллю НВ (aj, приведенные в столбце 7 табл. 5.1, получены для регламентируемых минимальных значений временных сопротивлений разрыву ст, металла с учетом использованной стали, из которой изготовлен диапюстируемый аппарат.  [c.320]

Приведенные в табл. 5.1 значения твердости могут быть использованы при диагностике технического состояния основного металла и сварных соединений аппарата (как наиболее экономичный метод обследования). При этом если твердость металла испытанных участков будет ниже допустимого значения, то необходимо провести дополнительное испытание механических свойств с вырезкой металла из аппарата или контроль состояния микроструктуры металла в этих зонах. Так, для металла конструктивных элементов обследуемого аппарата из стали марки 17ГС измеренные значения твердости по Бринеллю должны быть ниже 145 единиц. Методика оценки структурного состояния металла поверхности аппарата с помощью реплик изложена в разделе 5.2.2.  [c.321]

Буферный 4" фланец из стали Uranus 50 фонтанной арматуры разрушился через семь лет эксплуатации (рис. 66). Зарождение и распространение трещин сероводородного растрескивания происходило по границам зерен аустенита в местах скопления карбидов железа. Обеднение границ зерен карбидами хрома было вызвано, вероятно, нарушением режима термической обработки фланца, твердость металла которого достигала 25 HR .  [c.27]

ГОСТ 8732-70 материал по исполнительной документации — сталь 20 по ГОСТ 8732-70. Байпасная линия разрушилась на отдельные фрагменты неправильной формы с линейными размерами от 180 до 1300 мм при пуске компрессора. Ультразвуковая толщинометрия восемнадцати фрагментов байпаса показала, что толщина стенки трубы составляла 8,8-11,1 мм. Твердость металла — 206-215 НВ. Для установления очага разрушения фрагменты были обмерены, промаркированы, и в соответствии с линиями разрыва была разработана схема разрушения. На всех представленных фрагментах изучен характер изломов и определены направления распространения трещин, анализ которых позволил предположить, что очаг разрушения находился в сварном шве приварки байпасной линии к крану. Из этого шва были отобраны темплеты для исследования причин зарождения и развития разрушения. Установлено, что очагом разрушения явился участок сварного шва длиной - 50 мм, от которого началось лавинообразное развитие магистральных трещин с многочисленными разветвлениями и изменениями направлений. При изучении рельефа излома сварного шва были выявлены три зоны 1 — первоначальная трещина длиной до 45 мм и глубиной до 7 мм с очагами разрушения в дефектах сварки (подрез, несплавления) 2 — трещины, развившиеся в процессе эксплуатации байпасной линии 3 — долом с гладким срезом. Микроструктурный анализ показал, что начальная трещина развивалась в корневом шве по линии сплавления. В ходе анализа химического состава металла было установлено, что материал байпасной линии соответствовал стали 75 по ГОСТ 14959-79, на основании чего было сделано предположение, что для монтажа байпаса был использован участок трубы из обсадной или технической колонны марки Л, применяемой при обустройстве скважин. Механические свойства и хими-  [c.53]


Основная трудность, встречающаяся при пересчете данных характеристик, связана с определением величины А , япя чего необходимо знать величины и а д. При этом специфика процесса сварки накладывает свой отпечаток на уровень искомых характеристик (например, ст и СТд N щественно зависят от режимов сварки, перемешивания основного и присадочного лтеталлов и т.п.). Поэтому данные величины o g, а следовательно и А , мог т быть определены либо по данным испытаний микрообразцов, вырезаемых из различных зон соединений, либо п тем пересчета с использованием данных по твердости металлов рассматриваемых зон  [c.155]

Такое исследование имеет и практическое значение в связи с использованием в технологии упрочнения металлов ударпо-вол-НОБОЙ обработкой с применением взрывчатых веществ. Этот процесс называют упрочнением взрывом. Он приводит к существенному увеличению характеристик прочности и твердости металла, причем не только в слоях близ поверхности образца, па которую осуществлялось ударное воздействие, но и внутри него на значительной глубине ( 10 мм). Упрочнепие взрывом либо по схеме удара пластиной, разогнанной с помощью ВВ, либо но схеме накладного заряда ВВ применяется для обработки железподо-рол пых крестовин, ковшей экскаваторов, деталей камнедробилок, мельниц и т. д., т. е. деталей, подвергающихся в процессе эксплуатации сильным ударам и истиранию.  [c.283]

ЭНГ-35 ЦМ-4 ШХ15 32 94 ких поверхностей, работающих при высоких темпе- Наплавка изношенных вспомогательных штампов для горячей штамповки и поверхностей деталей, требующих твердости металла около = 300, без термообработки  [c.568]

При пластической деформации в поверхностном слое металла происходит сдвиг в зернах металла, искажение кристаллической решетки, изменение формы и размеров зерен, образование текстуры. Образование текстуры и сдвиги при пластической деформации повышают прочность и твердость металла. Упрочнение (наклеп) металла под действием пластической деформации согласно теории дислокаций заключается в концентрации дислокаций около линии сдвигов, а так как дислокации окружены полями упругих напря-.жёний, то для последующих пластических деформаций (т. е, для, перемещения дислокаций) необходимо значительно большее напряжение, чем в неупрочненном металле.  [c.76]

Пресс ТК-2 (рис. 19) предназначен для измерений твердости металлов путем вдавливания в поверхность испытываемого образца алмазного конуса или стального закаленного шарика (метод Роквелла).  [c.41]

Пресс ТП-2 (рис. 20) предназначен, для измерения твердости металлов путем вдавливания в поверхность иапытываемого образца или изделия алмазной пирамиды (метод Виккерса) или стального шарика с предельной нагрузкой до 100 н. Образец или изделие может иметь плоскую или цилиндрическую поверхность, чистота которой должна быть не ниже V 8 по ГОСТу 2789—59.  [c.43]

Борисенко В. А. Установка для исследования твердости металлов при высоких температурах.— В кн. Вопросы высокотемпературной прочности в машиностроении. Киев ИТИ УССР, 1961, с. 230— 241.  [c.193]


Смотреть страницы где упоминается термин Твердость металлов : [c.218]    [c.102]    [c.90]    [c.66]    [c.49]    [c.152]    [c.22]    [c.31]    [c.170]    [c.119]    [c.70]    [c.195]    [c.193]    [c.193]    [c.193]    [c.193]    [c.195]   
Смотреть главы в:

Материаловедение Учебник для высших технических учебных заведений  -> Твердость металлов


Испытательная техника Справочник Книга 1 (1982) -- [ c.9 ]

Справочник рабочего-сварщика (1960) -- [ c.43 ]

Справочник рабочего литейщика Издание 3 (1961) -- [ c.95 ]

Справочник слесаря-монтажника Издание 3 (1975) -- [ c.6 , c.8 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте