Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дефекты структурные

Дан обзор работ по исследованию полей рассеяния от внутренних и поверхностных дефектов, структурных неоднородностей с учетом их геометрических размеров, магнитных свойств материала и конфигурации изделия, в котором находится дефект.  [c.258]

К подшипниковым материалам для колец и тел качения предъявляют жесткие требования по металлургической загрязненности, наличию дефектов, структурной неоднородности и др. Детали машин, несущие одновременно функции наружного или внутреннего колец подшипников, рекомендуется изготовлять из подшипниковых сталей.  [c.324]


Предел текучести при несимметричном двухосном растяжении выше, чем при одноосном, а при симметричном — практически совпадает [22]. При хрупких разрушениях прочность при двухосном растяжении, как правило, ниже временного сопротивления на разрыв материала. Известны многочисленные случаи разрушения емкостей (сосудов) под действием внутреннего давления при нагрузках, значительно меньше расчетных. Последние обычно определяют на основе характеристик прочности, полученных при испытании на осевое растяжение. Для малопластичных состояний материала и при больших запасах упругой энергии можно ожидать снижения прочности при переходе от одноосного к двухосному растяжению. Особенно резкое понижение прочности в этих случаях вызывает наличие дефектов структурной неоднородности, конструктивных надрезов, трещин.  [c.38]

В зависимости от задач и типа конструкций используют разные способы прозвучивания. Сквозное прозвучивание (амплитудный и временной теневой методы) эффективно при толщинах бетона до 500 мм. При поверхностном прозвучивании выявляют в основном поверхностные дефекты (структурные разрушения коррозионного характера, поверхностные трещины и т.п.).  [c.280]

Кристаллическая структура металлов и наличие различных структурных дефектов сказываются на процессах растворения (коррозии) металлов.  [c.326]

Имеются доказательства, что при пластической деформации атомы цинка концентрируются преимущественно у границ зерен Различия в составе приводят к электрохимическому взаимодей ствию таких участков с зернами. По этой причине в ряде агрес сивных сред небольшая межкристаллитная коррозия может про исходить и без приложенного напряжения. Однако участки пла стической деформации при определенных значениях потенциала могут способствовать адсорбции комплексных ионов аммония, что в свою очередь приводит к быстрому образованию трещин. Аналогичный эффект может наблюдаться и вдоль линий скольжения (транскристаллитное растрескивание). По-видимому, выделение цинка на границах зерен является существенной причиной наблюдаемой межкристаллитной коррозии латуней в то же время наличие структурных дефектов в области границ зерен или линий скольжения играет большую роль в протекании КРН. Следовательно, разрушение медных сплавов в результате растрескивания наблюдается не только в сплавах меди с цинком, но также и со множеством других элементов, например кремнием, никелем, сурьмой, мышьяком, алюминием, фосфором [21 и бериллием [31].  [c.338]


В ЗТВ в процессе нагрева и охлаждения при сварке, а также в шве при охлаждении получают развитие целый ряд фазовых структурных превращений. Под фазовыми превращениями (переходами I рода) понимают превращения с образованием новых фаз, отличающихся от исходных атомно-кристаллическим строением, часто составом, свойствами, и разграниченных с ними поверхностями раздела (межфазными границами). При образовании новой фазы в ее объеме меняется свободная энергия, скачкообразно изменяются энтропия, теплосодержание и в момент превращения теплоемкость стремится к бесконечности. В связи с этим фазовое превращение сопровождается выделением или. поглощением теплоты. При структурных превращениях (переходах FI рода) происходит перераспределение дефектов кристаллической решетки, легирующих элементов и примесей и изменение субструктуры существующих фаз. Структурные превращения сопровождаются плавным изменением свободной энергии, энтропии и теплосодержания, скачкообразным — теплоемкости, и не сопровождаются выделением теплоты.  [c.491]

При нагреве и охлаждении в металлах происходят следующие основные структурные превращения 1) образование границ зерен 2) выравнивание границ зерен и их рост 3) перераспределение химических элементов 4) коагуляция и сфероидизация фаз 5) изменение плотности и перераспределение дефектов кристаллической решетки.  [c.501]

Перераспределение примесей и легирующих элементов в сплавах происходит в период их пребывания в температурных областях, когда существует заметная диффузионная подвижность этих элементов. При этом возможны два противоположных процесса выравнивание концентрации элементов по объему — гомогенизация, или их накопление на отдельных структурных составляющих, границах зерен и скоплениях дефектов кристаллической решетки — сегрегация.  [c.507]

Макроанализ находит широкое применение в промышленности, так как дает возможность вскрывать дефекты строения металла (трещины, раковины, шлаковые включения), химическую и структурную неоднородность.  [c.302]

Более часто макроанализ проводится не на изломах, а на макрошлифах. При этом исследуются химическая и структурная неоднородность металла, волокнистое строение деформированного металла, дендритное строение литого металла, качество сварного соединения, а также выявляются дефекты, нарушающие сплошность строения металла.  [c.302]

График надежности (рис. 3.1) имеет три характерных периода период приработки, в начале которого интенсивность отказов имеет сравнительно высокие значения, затем снижается. Для этого периода характерно проявление различного рода дефектов производства, автоматическое доведение трущихся деталей до наиболее рациональных форм, установление нормальных зазоров н т. п. период нормальной эксплуатации характеризуется примерно постоянным значением интенсивности отказов. Причиной отказов здесь являются случайные перегрузки, а также скрытые дефекты производства (структурные дефекты материала, микротрещины и т. п.) период проявления износа характеризуется резким повышением интенсивности отказов. Наступает предельное состояние, дальнейшая эксплуатация должна быть прекращена.  [c.260]

Прежде чем воспользоваться количественными мерами химического состава, необходимо указать вещества, которые содержит интересующая система и характеризовать единицу измерения их количеств (моль). На основании химико-аналитических данных вполне определенно можно судить о качественном и количественном элементном составе, поскольку атомы химических элементов выступают как неделимые структурные составляющие вещества при любых его химических превращениях. Однако именно из-за инвариантности элементного состава к таким превращениям количества химических элементов не всегда пригодны для выражения химического состава системы в основу модели ее внутреннего строения могут быть положены не только атомы химических элементов, но и другие структурные составляющие, такие как молекулы, ионы, электроны, комплексы, дефекты кристаллической решетки и т. п. Все эти единицы структуры будем называть составляющими веществами (кратко — составляющими).  [c.16]


Таким образом, отказы трубопроводов и оборудования ОНГКМ в большинстве случаев обусловлены отсутствием эффективного ингибирования в условиях воздействия сероводородсодержащих сред на металлоконструкции из коррозионно нестойких сплавов, содержащих дефекты. Твердые структурные составляющие, неметаллические включения (сульфиды, оксисульфиды и т. п.) и расслоения являются очагами возникновения водородного растрескивания металла. Поверхностные дефекты (риски, волосовины, раскатанные загрязнения) способствуют появлению и развитию сероводородного растрескивания. Очагами сероводородного растрескивания сварных соединений трубопроводов и деталей оборудования являются так-  [c.66]

С другого стороны, и пластическая деформация, и собственно разрушение являются по своей физической природе локальными процессами, и эта локализация пластической деформации и разрушение имеет свои специфические особенности на каждом структурном уровне. На микроуровне - уровне дефектов структуры (вакансий, дислокаций и т.д.) - развиваются свои процессы накопления микроповреждений, обусловленные перераспределением дефектов и увеличением плотности. Причем, поля внутренних напряжений на разных структурных уровнях также существенно различны и имеют разную физическую природу. Неодинаковы и концентраторы напряжений. На микроуровне это могут быть внедренные атомы, атомы замещения, дислокационные петли и  [c.242]

Пластическое течение зарождается всегда на микроуровне, т.е. на уровне элементарных носителей пластических сдвигов - дефектов структуры различной физической природы и различных масштабов. Последующая эволюция всей иерархической системы структурных уровней деформации как раз и формирует последовательное развитие повреждений на разных масштабных уровнях, вплоть до макротрещины.  [c.243]

РУ границы зерна, посредством которой можно будет вычислить свойства материалов. Однако ни одна из многочисленных моделей строения границы зерна (совпадающих узлов, структурных единиц и др.) оказалась не в состоянии решить эту задачу. Изложенный выше материал показал нам, что в зависимости от наличия свободного или избыточного объема (пористости) и зернограничных дефектов одна и та же граница зерен имеет совершенно различные свойства  [c.126]

Так как в процессе создания и эксплуатации конструкционных материалов дефекты кристаллической структуры возникают неизбежно как результат диссипации вносимой в материал энергии (см. п. 4.2), то границы представляют собой не фиксированную, а постоянно изменяющуюся фазу, в которой происходят процессы постоянного накопления дефектов и перестройки дефектной структуры материала. Это осуществляется посредством структурных фазовых переходов второго рода. Барьер энергии активации фазовых переходов преодолевается при нагружении материала в процессе эксплуатации. Кинетика фазовых переходов из одного состояния в другое и определяет свойства границ и всего материала в целом.  [c.126]

На основании материала, изложенного в предыдущем разделе, можно утверждать, что конечным этапом в процессах накопления дефектов на границах является формирование структуры переходного 3—>2 поверхностного слоя. Энергия переходного слоя, называемая поверхностной энергией, имеет максимальное значение из всех значений энергии граничных зон структурных элементов поликристалла.  [c.126]

При использовании рассчитанных на равновесие промышленных и других конструкций, которые выполнены из материалов, полученных в близких к термодинамическому равновесию условиях, не учитывается, что с первых моментов "жизни" такие объекты обречены на конфликт с принципиально неравновесными условиями окружающего пространства. Так почему бы не оставить эти устаревшие методы "борьбы" человека за прочность материалов и не перейти к новому этапу получения и управления свойствами материалов, используя истинные, реально достижимые и данные нам априори окружающим пространством законы, далекие от равновесия, основанные на иерархичности и структурной упорядоченности материи и ее структурных элементов (в частности, дефектов упаковки) в широком диапазоне масштабов.  [c.135]

В дальнейшем мы выясним, к чему приводит коллективное взаимодействие этих дефектов с пористой разреженной фрактальной структурой граничных слоев структурных элементов поликристалла. Ь4ы также выясним, каким же образом структура материала под воздействием нагрузок на начальном этапе сопротивляется разрушению, а затем "готовится" к нему, и как в конечном итоге это разрушение происходит.  [c.145]

Линейные дефекты малы в двух измерениях, в третьем они могут достигать длины кристалла (зерна). К линейным дефектам относятся цепочки вакансий, межузельных атомов и дислокации. Дислокации являются особым видом несовершенств в кристаллической решетке. С позиции теории дислокаций рассматриваются прочность, фазовые и структурное превращения.  [c.265]

Переход части потенциальной энергии поля напряжений в структурную составляющую энергии за счет возникновения точечных дефектов и новых дислокаций.  [c.280]

Понятие структурио-неоднородной среды предполагает наличие структурных элементов различного линейного размера I, движением которых осуществляется деформация. Движение дислокаций связано с согласованным перемещением групп атомов. Хорошо известно, что при больших степенях деформации происходят повороты и перемещения фрагментов и зерен друг относительно друга. Движение структурных элементов (одного линейного размера I) можно описать движением дефектов, явно присутствующих в материале. Движение фрагментов описывают с помощью частичных деклинаций, а зерен — с помощью планарных дефектов. Структурные элементы определенного линейного размера I (структурные уровни масштаба  [c.212]


Т ) нач1П1ается процесс озв/)ата, под которым понимают повышение структурного соверитнства наклепанного металла в результате уменьшения плотности дефектов строения, однако при этом еще не наблюдается заметных изменений структуры, видимой в световом микроскопе, по сравнению с деформированным состоянием.  [c.53]

Механизм КРН латуней был предметом многих исследований. Сплавы высокой чистоты и монокристаллы а-латуни также растрескиваются под напряжением в атмосфере NH3 [27]. В под-тверждение электрохимического механизма показано, что в растворах NH4OH потенциалы границ зерен поликристаллической латуни имеют более отрицательные значения, чем сами зерна. В растворах Fe lg, где коррозионное растрескивание не происходит, не наблюдается и подобного распределения потенциала [28]. Согласно другой точке зрения, на латуни образуется хрупкая оксидная пленка, которая под напряжением постоянно растрескивается, а обнажившийся подлежащий металл подвергается дальнейшему окислению [29, 30]. Возможно также, что структурные дефекты в области границ зерен напряженных медных сплавов способствуют адсорбции комплексов ионов меди с последующим ослаблением металлических связей (растрескивание под действием адсорбции). В соответствии с этим предположением, ионы Вг и С1 действуют как ингибиторы, вытесняя с поверхности комплекс металла (конкурирующая адсорбция).  [c.338]

Мартенсит — метастабильная фаза, для которой характерна высокая плотность дефектов кристаллической решетки, особенно дислокаций. Практически сразу после образования мартенсит начинает претерпевать превращения в направлении достижения более равновесного состояния. Этот процесс называется отпуском. Отпуск представляет собой совокупность фазовых и структурных превращений, которая включает перераспределение растворенных компонентов, распад с выделением метастабильных и стабильных фаз и перегруппировку дефектов кристаллической решетки. В зависимости от диффузионной подвижности атомов растворенного компонента отпуск может протекать при комнатной температуре и особенно ускоряется при нагреве. Отпуск возможен также в период завершения охлаждения в случае, когда скорость охлаждения замедляется. Этот процесс называется самоот-пуском.  [c.496]

Недостаток метода - малопригоден для фиксации дефектов типа несплошностей сварных соединений. Объясняется это высокой чувствительностью к структурной неоднородао-сти металла, что создает помехи при измерении исследуемого параметра. В результате сигнал от дефекта может быть перекрыт сигналом от случайной помехи.  [c.217]

Исследование микроструктуры. Исследование микроструктуры дает возможность более глубоко изучить структуру основного металла и характерных зон сварного соединения, чем исследование макроструктуры. По микроструктуре обследуемого объекта можно установить 1) характер изменения структуры металлов и сплавов после деформации, различных видов термической обработки и других технологических операций, а также коррозионных или эрозионных воздействий на материал рабочей среды в аппарате 2) установить форму и размер структурных составляющих, микроскопических трещин и т.п. повреждений металла 3) структуру наплавленного металла, структуру, образовавшуюся в зоне термического влияния 4) примерное содержание углерода в основном и наплавленном металле и в различных участках шва 5) приблизительный режим сварки и скорость ох.1тажде-ния металла шва и зоны термического влияния 6) количество слоев сварного шва и дефекты шва и структуры.  [c.308]

В теории надежности отмечается два основных подхода формирования моделей - полуэмпирический (феноменологический) и структурный. Феноменологический подход основан на обобщении результатов наблюдений и экспериментов, выявлении основных статистических закономерностей и прогнозировании функционирования технических систем. Среди этого класса моделей приведены многостадийная модель накопления повреждений, теория замедленного разрушения, статистическая модель разрушения и др. Структурный подход предусматривает прежде всего исследование структурных особенностей рассматриваемого объекта (например, при анализе прочностных свойств металлических деталей необходимо учитывачь структуру металла и связанных с ней дефектов - микро фещин, дислокаций, конфигурации и положения границ зерен и г.д.). Ко второму классу можно отнести моде ш хрупкого разрушения, пластического разрушения, так называемую объединенную структурную модель, причем автором особо подчеркивается перспективность дальнейшего развития структурного моделирования.  [c.128]

В.Н. Бовенко [15] принял, что при механическом воздействии на твердое тело упругая энергия переходит не только в потенциальную энергию атомов (образующихся свободных поверхностей), как это было принято Гриффитсом, но и в энергию автоколебательного движения. Это привело к установлению дискретно - волнового критерия устойчивости структуры - число Бовеи-ко) [15]. Предложенная им автоколебательная модель предразрушения твердого тела базируется па постулате о возникновении областей автовозбуждения активности вещества вблизи дефектов структуры вследствие нарушения однородного состояния исходной активной неустойчивой конденсированной среды. Эти автовозбуждения являются основными носителями когерентных (или макроскопических квантовых) эффектов. Они являются очагами пластической деформации, микро- и макротрещин, зародышами образования новой фазы на различных структурных иерархических уровнях самоорганизации, источниками акустической эмиссии (АЭ), микросейсмов и землетрясений.  [c.201]

Необходимо отметить, что при переходе в более высоколежащую зону переходного слоя - в область нестехиометрии - взаимодействие дефектов кристаллической решетки со структурой составляющего данную решетку набора частиц играет роль предвестника новой фазы. Например, в решетке РеО избыточные вакансии в катионной подрешетке образуют ассоциаты дефектов - кластеры из двух вакансий в подрешетке Ре и межузельного атома Ре Когда таких кластеров становится много, то они распределяются упорядоченно [75] - в этом пределе кластеры становятся структурными элементами решетки другого соединения - Рез04, Именно в этой части дефекты решетки следует называть не вакансиями, а дефектами решетки вычитания на базе кристаллической решетки объемной фазы, либо на базе кристаллической решетки стехиометрического соединения частиц обеих граничащих фаз - в зависимости от химических свойств объемных фаз и внешних условий (температуры., давления и др.).  [c.122]

Дрейф точечных дефектов (вакансий) в образующихся локальных полях неоднородных напряжений способствует локализации деформации в переходных зонах между недеформируемыми структурными элементами и активизирует квазивязкие диффузионные механизмы переориентации кристаллической решетки в процессе диссипации энергии. Так, в экспериментах при растяжении тонкой бериллиевой фольги [80] наблюдали, что продвижение трещины происходит за счет образования микропор по границам ячеек. При этом активизируется процесс притяжения дислокаций к поверхности трещины, что также является самовоспроизводящимся процессом формирования будущей поверхности у вершины трещины.  [c.130]

Таким образом, процессы формирования зон переходного поверхностного слоя в процессе диссипации энергии нагружения в области вершины трещины протекают посредством структурных фазовых переходов второго рода (например, аморфизация материала у вершины трещины и образование структур предплавления). Фрактальная структура различных зон поверхностных переходных слоев подразумевает значительный разброс (флуктуации) по размерам дефектов в переходном слое. Поэтому вблизи вершины кончика трещины присутствуют микронесплошности и поры, способные в локальной области самостоятельно генерировать процесс достройки структуры поверхностного переходного слоя. В данном случае наблюдается опережающее образование микротрещин вблизи кончика генеральной трещины.  [c.131]


Избирательный перенос - вид контактного взаимодействия при трении, который возникает в результате протекания на поверхности комплекса механо-физико-химических процессов, приводящих к образованию систем автокомпенсации износа и снижения трения. Наиболее характерной является система образования защитной поверхностной пленки, в которой благодаря определенному структурному состоянию реализуется механизм деформации при трении, протекающий без накопления обусловливающих разрушение материала дефектов структуры  [c.149]

Глава 6 посвящена проблеме разрушения конструкционных материалов. В ptadene 6.1. приводятся классические сведения о дефектах кристаллической струетуры металлических материалов. Напомним читателям, что дефекты необходимо рассмафивать в качестве неотъемлемых структурных образований (см. разделы 4.1-4.2).  [c.10]

Все это не позволяет рассматривать разнообразные отклонения кристаллической решетки от "идеальной" как дефекта. По всей видимости, необходимо признать эти отклонения полноправными структурными единицами и отказаться от деления реальных материалов на аморфные и кристаллические, потому <гго, как было показано выше, в каясдом 1фисталле существуют многочисленные области нарушения периодичности трансляции кристаллической решетки, и, следовательно, каждый (фисталл в той или иной степени является аморфным.  [c.195]


Смотреть страницы где упоминается термин Дефекты структурные : [c.314]    [c.533]    [c.275]    [c.383]    [c.404]    [c.157]    [c.244]    [c.105]    [c.44]    [c.305]   
История науки о сопротивлении материалов (1957) -- [ c.430 ]



ПОИСК



Взаимосвязанные дефекты в средах со структурной иерархией

Присадочный материал и флюсы. Структурные превращения и дефекты газовой сварки

Причины образования структурных дефектов

Структурно-фазовое состояние и дефекты поверхностного слоя

Структурные зоны и дефекты слитка

Структурные и технологические дефекты сварных соединений

Схема механизма структурная — Ошибки при проектировании 35 —38 —Приемы выявления дефектов структуры

Технология генерирования структурных дефектов и фоновых примесей цри эпитаксиальном выращивании пленок кремния



© 2025 Mash-xxl.info Реклама на сайте