Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Динамические испытания зависимость свойств

В этой главе в общих чертах рассмотрен переход от разрушения сколом к волокнистому излому. Детально обсуждены условия зарождения вязкого волокнистого разрушения, позволяющие связать переход от одного вида излома к другому при статическом и динамическом испытании с микроструктурой материала и его пластическими свойствами. Затем описаны переходы в виде разрушения при испытаниях на ударную вязкость образцов с надрезом и динамическое раздирание образцов при внецентренном растяжении, показывающее зависимость механических характеристик от металлургических факторов.  [c.191]


В течение определенного периода методом каустик исследовалось распространение трещин в статическом приближении, т. е. с интерпретацией динамических испытаний при помощи статических уравнений, а возникающее при этом рассогласование относили к погрешности измерений. Кроме того, предполагалось, что оптические свойства материала остаются неизменными при нагружении волнами напряжений и при распространении трещин. Затем, однако, была установлена сильная зависимость оптических свойств от скорости нагружения и скорости распространения трещины, что потребовало соответствующей тарировки и введения поправочных множителей для некоторых констант при определенных видах нагружения.  [c.97]

Лабораторные испытания паяных соединений проводят при отработке технологии пайки, контроле механических свойств паяных изделий, при разработке новых припоев. В зависимости от степени ответственности паяемых изделий проводят лабораторные испытания отдельных узлов или полностью изделий в условиях, имитирующих эксплуатационные нагрузки. Особо ответственные паяные конструкции подвергают натурным испытаниям в условиях эксплуатации. При работе паяного соединения в конструкции в нем могут возникнуть напряжения растяжения, сжатия, сдвига и сложные напряженные состояния, когда одновременно возникают напряжения различного вида. Для паяных соединений наибольшее распространение получили испытания на срез и на отрыв. При проведении механических испытаний различают кратковременные статические испытания, длительные статические испытания, динамические испытания при ударных нагрузках, испытания на усталость.  [c.218]

Экспериментальные данные по исследованию механических свойств материалов свидетельствуют о том, что имеются общие закономерности изменения свойств в широком диапазоне продолжительности испытания. Большое число исследований посвящено изучению стеклопластиков при длительно действующих нагрузках. Однако динамические исследования стеклопластиков проведены недостаточно и обычно лишь при специфических воздействиях, причем не всегда четко выделяется кинетика испытания. При этом, как правило, не устанавливается связь данных динамических испытаний с результатами длительных испытаний и общим ходом временной зависимости прочности и деформации.  [c.10]


Опыт показывает, что очень редко удается найти тесную связь между характеристиками механических свойств, определяемых на образцах, и службой деталей, в широких диапазонах охватывающих сразу значительное количество производства и методов нагружения. Разнообразие условий работы деталей требуют для оценки конструктивной прочности и различных характеристик механических свойств. В зависимости от характера действующих нагрузок механические испытания прежде всего следует разделить на 1) статические испытания при нормальных температурах или длительные статические испытания при повышенных температурах 2) ударные динамические испытания при различных температурах 3) испытания при повторных знакопостоянных или знакопеременных нагрузках при нормальных температурах.  [c.8]

При изучении теплофизических свойств пластмасс хорошо зарекомендовали себя нестационарные методы, к которым относятся методы монотонного нагрева образцов, импульсные методы и др. Принципиально динамические методы позволяют определять теплофизические свойства материалов и при высоких температурах. Однако получаемые характеристики оказываются неоднозначными в силу температурно-временной зависимости теплофизических свойств реагирующих сред при протекании процессов термодеструкции и других физико-химических превращений в связующем стеклопластиков во время нагрева. Это означает, что с изменением режима нагрева образцов происходит изменение исследуемых свойств. Такие характеристики являются эффективными, относящимися к выбранному режиму испытаний. Теплофизические свойства полимеров и композиционных материалов на их основе, определенные при разных скоростях нагрева образцов, могут значительно отличаться друг от друга, так как в зависимости от скорости нагрева меняются химический состав, степень пористости и дефекты структуры материала.  [c.109]

Чувствительность металла к тепловому воздействию сварки оценивают по свойствам различных зон соединений и сварных соединений в целом при статических, динамических и вибрационных испытаниях (растяжение, изгиб, определение твердости, определение перехода металла в хрупкое состояние и др.), а также по результатам металлографических исследований в зависимости от применяемых видов и режимов сварки.  [c.41]

Механизм ударно-абразивного изнашивания существенно различен в вязкой и хрупкой областях разрушения. Поэтому представляет интерес исследование зависимостей износостойкости наплавочных сплавов от их механических свойств раздельно для каждой из этих областей разрушения. Испытание всех наплавок, за исключением двух, независимо от уровня их легирования, показало более низкую износостойкость по сравнению с износостойкостью стали 45 в состоянии после закалки и низкого отпуска. Установлено, что твердость сплавов неоднозначно влияет на их износ при динамическом воздействии абразива. С увеличением твердости до Я1/ю=4500 МПа износ сплавов уменьшается, отрыв частиц при этом происходит в результате многократной пластической деформации (вязкая область разрушения). С увеличением твердости наряду с отрывом частиц происходит хрупкое выкрашивание, износ при этом увеличивается (хрупкая область разрушения).  [c.171]

Зависимость динамических характеристик от частоты. Свойства материалов можно охарактеризовать и посредством динамических модулей, зависяш,их от частоты. Эти модули определяют путем испытаний материала при напряжениях и деформациях, изменяюш,ихся во времени по синусоидальному закону. При синусоидальном изменении напряжения в линейно-вязкоупругом материале деформация изменяется тоже синусоидально, но со сме-ш,ением по фазе. Таким образом, если  [c.163]

Автоматический регулятор температуры (Р) определяет выполнение заданного температурного режима в процессе испытания и придает системе необходимые статические и динамические свойства, так как именно в нем формируется закон регулирования, т. е. зависимость между отклонением между фактическим значением температуры и ее заданным значением и регулирующим воздействием.  [c.470]


Механические свойства конструкционных материалов определяют экспериментально специальными механическими испытаниями образцов, причем вид механического испытания назначают в зависимости от условий нагружения детали, подлежащей изготовлению из данного конструкционного материала. Механические свойства стали определяют при статических, динамических и циклических режимах приложения нагрузок, а также при пониженных, нормальных или повышенных температурах. Испытуемые образцы можно нагружать по различным схемам (одноосное растяжение — сжатие, чистый или поперечный изгиб, кручение). В за-виси.мости от времени воздействия нагрузки на испытуемый образец испытания могут быть кратковременными или длительными. Почти все методы механических испытаний стали (за исключением метода испытания твердости) являются разрушающими, что исключает возможность стопроцентного контроля механических свойств деталей машин или элементов конструкций и обусловливает весьма высокие требования к точности механических испытаний образцов (или контрольных деталей).  [c.454]

В связи с этим в настоящей статье теоретически и экспериментально исследуется зависимость длительности переходного процесса, динамической погрешности и времени запаздывания пневматических приборов от параметров процесса наполнения измерительной камеры при использовании нелинейных отрезков характеристики h (s), а также от величины скорости изменения зазора S. Полученные данные позволяют уточнить существующие методы оценки динамических свойств пневматических приборов с датчиками давления при их проектировании, испытании и эксплуатации для случая равномерного изменения измерительного зазора во времени.  [c.120]

Для установления соответствия состояния материала при произвольном температурно-временном Т (г) и эквивалентном режимах вулканизации производят обработку результатов испытания образцов резиновой смеси при нескольких постоянных температурах вулканизации, включая эквивалентную, и находят параметры температурно-временной суперпозиции. Совокупность этих параметров совместно с зависимостью относительного показателя механических свойств, например относительного динамического модуля сдвига М от времени для эквивалентного режима вулканизации Тэ, составляют обобщенную информацию о вулканизационных  [c.107]

Спектр собственных частот и форм колебаний конструкции ЛА определяются расчетом и экспериментом. Результаты определения собственных частот и форм колебаний служат основой для анализа динамических свойств ЛА. Как правило, исходят из предположения о наличии продольной плоскости симметрии ЛА, и поэтому колебания разделяют на два независимых спектра симметричные и антисимметричные. Различным тонам свободных колебаний всего ЛА в зависимости от вида их форм присваиваются названия, которые связаны со свободными колебаниями отдельных частей. Общее число обследуемых тонов свободных колебаний современного тяжелого самолета достигает нескольких десятков в диапазоне частот от долей до нескольких десятков Гц. Собственные частоты и формы колебаний определяются экспериментально путем проведения специальных частотных (вибрационных) испытаний.  [c.481]

В развиваемом подходе внешние факторы учитываются с помощью соотношений, связывающих критические параметры подобных точек бифуркаций. Показана возможность резко повысить информативность результатов испытаний на кратковременное растяжение, усталость и ползучесть с определением степени деградации материала при заданных условиях службы на основе параметрических карт механического состояния сплава. Установленная возможность определения свойств материала в автомодельных условиях в зависимости только от одного параметра — структуры (в данном случае динамической) — явилась основой для разработки принципов управления диссипативными свойствами сплавов.  [c.130]

Особенности исследования демпфирующих свойств материала по методу динамической петли гистерезиса. Определение характеристик демпфирующих свойств материала по методу динамической петли гистерезиса с использованием зависимостей (11.8.29) и (11.8.30) может быть осуществлено на какой-либо установке (машине) для испытаний на усталость при циклическом растяжении-сжатии и при наличии в силовой цепи нагружения образца упругого динамометра.  [c.324]

Одной из важных с теоретической точки зрения проблем является определение кривых температурных зависимостей модуля и tg 6 по данным о свойствах исходных компонентов и фазовой структуре гетерогенных композиций. В то же время практически важное значение при разработке новых полимерных композиций и их использовании приобретает возможность получать максимальную информацию об их структуре по результатам динамических механических испытаний. Решение этих проблем требует развития единого теоретического подхода. Ниже обобщаются и сравниваются развиваемые в настоящее время подходы к теоретическому анализу вязкоупругих свойств гетерогенных полимерных композиций.  [c.151]

В приборах I и II типов метод испытания может быть или статическим , проходящим в условиях равновесия, или динамическим при изменяющейся по заданному закону нагрузке или деформации. Когда измеренные величины строятся в виде графика, который представляет их взаимную зависимость, то такая кривая представляет собой техническую кривую испытания. Она не дает прямых сведений о реологических свойствах материала. Для того, чтобы их получить, необходимо получить реологическую кривую испытания, которая строится в консистентных переменных . Сравнивая общий вид этой кривой с кривыми, полученными на моделях в воображаемых экспериментах,  [c.361]


Так как целью испытаний на остановку трещины является получение адекватной меры трещиностойкости при плоской деформации, то распространение на стадии II должно составлять значительную часть полного скачка трещины В исследуемом материале ). Чтобы при этом были учтены свойства материала в достаточном объеме, стадия II должна быть значительной и по абсолютной величине. Имея в виду протяженность стадии I, требование, чтобы минимальная длина скачка трещины составляла 2В , представляется вполне приемлемым. Для двойного образца ДКБ толщиной 50 мм это означает, что полный скачок трещины должен иметь длину от 70 до 130 мм в зависимости от глубины боковых надрезов. Но как отмечалось ранее и будет проиллюстрировано в следующем разделе, скачки такого размера сами по себе не обеспечат применимости статического подхода, а требуют использования динамического анализа, рассматриваемого далее.  [c.53]

Для более точной и строгой оценки зависимостей, применяемых для описания механических свойств, необходимо расширить диапазон продолжительности испытания. Практически более удобно уменьшать время испытания, переходя в область динамических высокоскоростных нагрузок, поскольку испытания материалов при продолжительности действия нагрузки более 10 ч практически нереальны.  [c.10]

Для оценки механических свойств используют методы неразрушающих испытаний, которые позволяют получать значения динамических характеристик (модуль упругости, коэффициент поглощения и т. д.) в зависимости от проявления вязкоупругих свойств при различной частоте колебаний. Исследование стеклопластиков вибрационным методом показывает, что динамический модуль упругости зависит от частоты колебаний [71, 72]. Иногда приводятся противоположные данные [74], где разница между статическим и динамическим модулем упругости несущественна.  [c.39]

Для контроля подобных дефектов автор рекомендует ультразвуковой метод испытаний. Проведя ультразвуковые и статические испытания с целью определения модуля упругости в зависимости от ориентации волокна и температуры, автор установил, что динамический модуль упругости значительно отличается от статического, причем при повышении температуры это различие заметно увеличивается. Кроме того, при смещении волокон основы между слоями на определенный угол (10°) упругие свойства в этом направлении заметно изменяются. Приведенные полярные диаграммы показывают на зависимость как динамического, так и статического модуля от угла между направлением волокон и направлением испытания.  [c.70]

СКИХ деформаций все эти особенности действия динамической нагрузки могут быть учтены, если сравнить количество энергии, которой обладает нагрузка, и энергии, затрачиваемой на то, чтобы тело получило эти деформации энергия деформации). Энергия деформации может быть измерена работой, которую необходимо произвести при деформировании тела работа деформации), а потому динамическая деформация должна находиться в определенной зависимости от работы деформации. Следовательно, работа деформации должна считаться величиной, характеризующей способность тела сопротивляться динамическим деформациям, в связи с чем возникает необходимость ее определения. При этом следует иметь в виду, что скорость приложения нагрузки оказывает влияние не только на величину динамических усилий, возникающих в теле, но и на упругие и пластические свойства его материала. Таким образом, сопротивление тел динамическим деформациям, по существу, следует определять на основании результатов испытаний динамической нагрузкой. Однако для многих материалов, в частности, таких, которые широко применяются в инженерных конструкциях, влияние скорости деформирования сказывается значительно лишь при больших скоростях приложения нагрузки. При относительно небольших скоростях приложения нагрузки оказывается возможным оценивать сопротивление действию динамических нагруз ок по результатам статических испытаний.  [c.59]

В результате испытаний строятся зависимости коэффициента морозостойкости от температуры. Эти зависимости позволяют, во-первых, определить температуру морозостойкости на образцах любых форм и размеров во-вторых, заранее определить свойства полимерного материала, работающего в условиях эксплуатации при различных режимах деформации (сжатии, растяжении или изгибе) и, в-третьих, заранее определить свойства полимерного материала, работающего не только в статических условиях, но и в условиях динамического нагружения.  [c.193]

Построение динамических характеристик автопогрузчика при использовании в его трансмиссии гидротрансформатора основывается на зависимости крутящего момента ведомого вала передачи от частоты вращения последнего. Требуемая зависимость определяется при испытании гидромеханической коробки передач одновременно с двигателем на тормозном стенде при работе двигателя с полным открытием дросселя. При проектировании новых моделей автопогрузчиков такой зависимостью не располагают. В этом случае удобно использовать свойство подобия гидротрансформаторов, позволяющее получать характеристику проектируемого трансформатора путем пересчета имеющихся характеристик одинакового по конструкции трансформатора, отличающегося только размерами.  [c.129]

Наряду с объективными характеристиками свойств материалов, экспериментальными методами устанавливают и сравнительные характеристики, так называемые технологические пробы. К этим видам испытаний относятся испытания на твердость, ударную вязкость и усталостную прочность. В зависимости от скорости приложения нагрузок механические испытания бывают статические, в которых процесс нагружения осуществляется медленно, и динамические.  [c.124]

Центральным вопросом в поиске оптимальной структуры сплава является связь его механических свойств со структурными параметрами. Исследования корреляций между деталями структуры и отдельными показателями механических свойств различных сплавов претерпели ряд периодов, связанных с появлением новых представлений о макро-, микро- и субмикроструктуре, с одной стороны, и о статической, динамической усталостной и длительной прочности — с другой. Долгое время предметом изучения было установление зависимостей между размером зерна, меншластиночным расстоянием в перлите и главными показателями прочности, определяемыми при статических испытаниях,— пределом текучести и временным сопротивлением (пределом прочности). Как известно, большим достижением на этом этапе исследований явилось соотношение Петча — Холла  [c.6]

Исследование скорости развития трещины в зависимости от уровня нагружения, свойств материала, среды и внешних факторов (поляризации, давления и температуры) [8,50]. При таком подходе данные о закономерностях роста трещин иод воздействием агрессивной среды и механических напряжений представляют в виде зависимостей скорости роста трещин при статическом (ко розионное растрескивание) или- динамическом (коррозионная усталость) нагружении от максимального (амплитудного) коэффициента интенсивности К цикла. При этом данные для построения указанных зависимостей (диаграмм разрушения) получают при испытании стацдаргных образцов с трещинами, образовавшимися на образцах в процессе периодического (усталостного) нагружения их на воздухе. Подрастание трещины во времени измеряют по изменению электросопротивления образца, оптическим методам по податливости материала и т. п. Испытания проводят iipn заданной температуре среды, накладывая, по необходимости, на образец анодную или катодную поляризацию. По полученнь м данным рассчиты-  [c.132]


Твердость (см. п. 8.1.2) не является каким-то особым специфическим свойством металла, а испытания на твердость — одна из разновидностей механических испытаний [42]. В зависимости от характера приложения нагрузки и движения индентора (наконечника твердомера) различают методы измерения твердости путем вдавливания, царапания и отскока закаленного стального бойка от поверхности испытуемого материала. В зависимости от скорости приложения на1рузки на индентор различают статические и динамические методы измерения твердости. Наибольшее распространение в технике получили статические методы измерения твердости при вдавливании шара, конуса или пирамиды. По геометрическим размерам отпечатка, полученного при вдавливании индентора под определенной нагрузкой, подсчитывают значение твердости с помощью соответствующих формул и таблиц. В табл. 8.89 приведена краткая классификация основных методов измерения твердости путем вдавливания индентора различной формы.  [c.346]

При зксплуатации режущих пластин из твердых сплавов на основе карбида титана в производственных условиях появляются дополнительные требования к инструменту следует увеличить жесткость стьпса режущая пластина — державка и обеспечить удовлетворительный отвод стружки. Оборудование, на котором применяются указанные резцы, должно иметь более высокую скорость вращения шпинделя и повьпиен-ную динамическую жесткость [141]. Реальные режущие свойства твердосплавных пластин изменяются в широких пределах. Предложено проводить контроль режущих свойств безвольфрамовых твердых сплавов на основе карбида титана без механических испытаний путем измерения термо-3.Д.С. На рис. 55 представлена зависимость термо-э.д.с. пластин из сплава ТН20 и износа по ее задней поверхности. Для инструментального обеспечения станков с числовым программным управлением рекомендуются две группы пластин со средним значением термо-зд.с. 5 и 5,5 мВ [142].  [c.96]

В зависимости от назначения вибровозбудителя следует каждый раз рассматривать динамические схемы, определяющие движение системы возбудитель— объект. При этом учитываются упругие свойства испытуемого образца, изделия или крепежных устройств между возбудителем и изделием или изделием и неподвижным основанием. При примеиепии электродинамических вибровозбудителей в испытательных стендах, в которых требуется точное воспроизведение заданной вибрации в определенной точке испытуемого изделия, применяются компенсирующие обратные связи (см. гл. XXXV). > Рабочий диапазон частот вибровозбу-днтеля выбирается в зависимости от воспроизводимой вибрации, программы испытания и основных параметров вибрации (перемещения, скорости, ускорения).  [c.274]

Существуют и другие подходы для определения критических параметров (в частности, скорости полета) на границе устойчивости. Для этого в уравнениях свободных колебаний (38) полагают Я, = ш и находят значения скорости, удовлетворяющие этим уравнениям. Критическую скорость флаттера можно также определить экспериментально в аэродинамической трубе на динамически подобной модели и в процессе летных испытаний летательного аппарата. В последнем случае прибегают к экстраполяции, чтобы по тенденции определяющих флаттер параметров с ростом скорости полета найти приближенно величину критической скорости флаттера. Возникновение флаттера связано с определенным тоном свободных упругих колебаний в потоке воздуха. Распределение деформаций по конструкции при потере устойчивости определяет комплексную форму колебаний флаттерного тона. В зависимости от преобладания амплитуд той или иной части ЛА и характера деформированного состояния различают виды флаттера. Например изгибно-крутильный флаттер крыла, изгибно-изгибный флаттер в системе стреловидное крыло — фюзеляж, изгибно-элеронный флаттер, рулевой флаттер и т. д. Для характеристик флаттера несущих поверхностей часто определяющее значение имеют различные грузы, размещенные иа них двигатели, подвесные баки с горючим, шасси. Существенными параметрами являются жесткости крепления этих тел на поверхности крыла. Вообще для флаттера принципиально важны параметры связаииости форм движения. Например, для совместных колебаний изгиба и кручения крыла такими параметрами являются координаты точек (линий) приложения сил аэродинамического давления, инерции и упругости. Смещение центра масс относительно оси жесткости вперед способствует стабилизации системы. Совмещение всех трех точек развязывает виды колебаний, и в этом случае флаттер невозможен. Это свойство обычно имеют в виду при динамической компоновке конструкции. Важными параметрами являются распределенные нли сосредоточенные жесткости. Последние характерны для органов управления  [c.490]

Другой тип амплитудной зависимости динамических свойств полимеров наблюдается, если их испытывают при наложении небольшого циклического напряжения на действующую статическую нагрузку [91, 101—108]. Такой тип испытания может быть проведен при действии циклических нагрузок одновременно с записью диаграммы нагрузка—деформация. Динамический модуль вулканизатов каучуков резко возрастает при растяжении. Аналогичный эффект может наблюдаться и для высокоориентированных волокон, однако у большинства стеклообразных жестких полимеров динамический модуль снижается, если статическая  [c.102]

Прибор для квазистатических испытаний Вертгейма был снабжен приспособлением, позволяющим ему прикладывать нагрузку весьма плавно, без малейшей встряски . Этот прибор был таким, что его можно было поместить внутрь трехслойного кожуха, две внутренние стенки которого были из меди, а внешняя— из белой жести. Между двумя медными цилиндрами был засыпан песок. Печь нагревала внутреннюю секцию до установленного уровня температуры, который контролировался термометрами, расположенными вдоль образца. Модули при удлинении для рассматриваемых металлов определялись при 100 и 200°С. Затем установка была изменена таким образом, что в нее помещалась смесь из толченого льда с серной кислотой это позволяло выполнить аналогичные испытания при температурах от —15 до —20°С. Поскольку Вертгейм не был уверен в том, что в этих условиях удается получить значения динамических модулей упругости, его сравнение модулей упругости и отношений скоростей звука в металле и в воздухе при четырех температурах, показанное в табл. 55, было основано на квазистатически , измерениях удлинений. Это было первое исследование зависимости констант упругости от температуры. В своем анализе этого большого количества результатов, Вертгейм был первым, кто систематически стал изучать малые деформации металлов (Wertheim [1844, 1], [1845, 1J, [1850, 2], а также см. Бодримона (Baudrimont [1850, I])). Никто до него не рассматривал и, конечно, ни один из предшественников не сравнивал свойства металлов в таком установлен-  [c.300]

Ровно столетие прошло между пионерными исследованиями упругих свойств твердых тел, проведенных Вертгеймом в 40-х гг. XIX века, и кульминационными итоговыми работами Вернера Кестера 40-х гг. XX века. Кестер, который полагался главным образом на точные эксперименты по из-гибной вибрации, располагал преимуществом знания уточненной теории при установлении в своих исследованиях основных мод колебаний, для оценки значения почти пренебрежимого вклада инерции поворота сечений. Он определил значения Е для более чем тридцати элементов, сравнив их со значениями модулей одиннадцати соответствующих элементов, найденными Вертгеймом, а также значения модулей 59 двойных сплавов, сравнив их с соответствующими данными Вертгейма для 64 сплавов. Интересное различие по сравнению с результатами Вертгейма, особенно по отношению к сплавам, заключается в существенном увеличении объема побочной информации, относящейся к кристаллическим структурам и фазовым явлениям, которая позволила Кестеру классифицировать и привести в соответствие все его результаты, полученные на основе более точно изготовленных образцов и более точно определенных частот вибрации. В своих первых экспериментальных исследованиях зависимости модулей упругости от температуры Вертгейм ограничился квазистатическими испытаниями в интервале температур между —15 и 100°С, а также всего несколькими элементами динамические исследования Кестера охватывали большее множество твердых тел и диапазон температур от —185 до 1000°С. Оба рассматривали наличие корреляции между континуальными и атомистическими параметрами или отсутствие таковой, оба осредняли значения коэффициента Пуассона твердых тел, и где это было уместно, влияние магнитных эффектов  [c.492]

Для определения механических свойств металлов и спла )в испытывают стандартные образцы. Механические испытания в зависимости от характера действия нагрузки могут быть статические, при которых нагружение производится медленно и нагрузка возрастает плавно или остается постоянной длительное время, динамические, при которых нагрузка на образец возрастает мгновенно, и повторно-переменные, при которых изменяются величина и направление действия нагрузки.  [c.94]


При конструировании детали необходимо знать, какие нагрузки будет воспринимать деталь, в каких условиях она будет работать. Высокая рабочая температура снижает прочностные показатели материала. Некоторые пластмассы в процессе работы способны поглощать определенное количество атмосферной воды, что изменвгет механические свойства и размеры детали. Наряд пластмасс неблагоприятно действуют различные масла, кислоты и другие вещества. Выбор пластмассы определяется в значительной степени характером нагрузки. При динамических нагрузках важное значение имеют зависимость прочности материала от скорости нагружения, чувствительность к надрезу, чувствительность к удару. В некоторых случаях выбор пластмассы и конструкции Детали возможен лишь после необходимых испытаний материала в разнообразных условиях. Выбор материала должен быть очень конкретным, так как даже в преде.аах химически однородной группы диапазон свойств может быть очень широк.  [c.33]

Аналогичная зависимость получена в работах [104, 474]. Она позволяет оценить минимальное значение коэффициента диффузии, при котором примесные атомы в процессе деформации будут взаимодействовать с дислокациями и блокировать их. При температуре максимального развития динамического деформационного старения плотность дислокаций возрастает примерно до 10 —10 2 см- скорость деформации при испытании на статическое растяжение в наших исследованиях равна 5-10 сек . Тогда минимальное значение коэффициента диффузии, при котором будет происходить динамическое взаимодействие примесных атомов с дислокациями, должно составлять 2,5 (10- ч-10- ) см -сек- . Коэффициент диффузии такого порядка, характеризующий диф-дузионную подвижность атомов углерода и азота в а-же-лезе, рассчитанный по общеизвестным формулам [284], соответствует температурному интервалу 90—120° С для атомов азота и 165—205° С для атомов углерода. Полученные расчетом интервалы температур, в которых должно происходить динамическое взаимодействие атомов азота и углерода с дислокациями, удовлетворительно согласуются с данными, приведенными в работах [80, с. 656 425, 475], а общая протяженность интервала температур (90—205° С) удовлетворительно совпадает с интервалом температур динамического деформационного старения на графиках температурной зависимости механических свойств (см. рис. 87) и интервалом температур появления зубчатости на диаграммах растяжения. Аналогичный расчет для динамического разрыва дает коэффициент диффузии порядка 0,5-10- или 0,5-10- см -секг и интервал температур динамического деформационного старения порядка 400—550° С, что также удовлетворительно согласуется с протяженностью интервала температур динамического  [c.245]

Как указывалось, свойства стыка, или его модели , изготовленной на основе эквиобъемной смеси двух резин, которые подлежат дублированию в многослойной системе, не аддитивны ни до, ни после утомления материалов [614]. Вместе с тем для прочности связи, так же как и для прочности резин, характерна общая зависимость прочностных показателей от гистерезиса. На рис. 5.1.3 иллюстрированы зависимости статической и динамической прочности связи от гистерезиса [381, 457]. При испытаниях в центре образцов различных составов создавались одинаковые температурные условия, чтобы исключить влияние различного саморазогрева резин. Аналогично тому что наблюдалось для прочности цельнорезиновых систем, статическая прочность связи увеличивается с повышением гисте-Резиса, а динамическая — падает. Таким образом, стык (гранитаый лой) можно рассматривать как одну из разновидностей резин, общие закономерности свойств которых были описаны в гл. 3 и 4.  [c.259]

Перечисленные виды износа, по-видимому, можно дополнить некоторыми другими, специфическими и мало распространенными (4, 262, 389, 768— 774]. Возможно, они являются комбинацией основных видов износа [770]. Испытания резин в потоке абразивного зерна [768—772] дают иные зависимости износа от динамического модуля, эластичности и прочих механических свойств резин, чем при истирании их на сплопшых абразивных поверхностях.  [c.298]


Смотреть страницы где упоминается термин Динамические испытания зависимость свойств : [c.28]    [c.120]    [c.221]    [c.254]    [c.97]    [c.48]    [c.50]    [c.206]    [c.6]    [c.356]    [c.218]   
Металловедение и термическая обработка (1956) -- [ c.35 , c.36 ]



ПОИСК



Динамические испытания свойства

Испытание динамическое

Свойства динамические



© 2025 Mash-xxl.info Реклама на сайте