Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Нагрузки динамические поверхностные

Динамическая нагрузка на участке [а, 6]. Динамическая поверхностная нагрузка равномерно распределена по участку а ж 6 трехслойного стержня. Ее можно записать как разность двух нагрузок (5.21)  [c.246]

Нагрузка, равномерно распределенная но кругу [0,6]. На рассматриваемую пластину действует локальная динамическая поверхностная нагрузка, равномерно распределенная внутри круга относительного радиуса 6 1. В этом случае ее можно представить с помощью функции Хевисайда нулевого порядка  [c.369]


Нагрузка, равномерно распределенная но кольцу а, Ь]. На исследуемую круговую трехслойную пластину действует локальная динамическая поверхностная нагрузка, равномерно распределенная по кольцу, относительный радиус которого а г 6. Тогда внешнюю нагрузку можно записать как разность двух нагрузок (7.24)  [c.373]

Динамическая нагрузка, распределенная но всей поверхности. Предположим, что на всю поверхность рассматриваемой пластины действует динамическая поверхностная нагрузка, распределенная по полуволне синусоиды (рис. 7.33). Тогда ее можно записать в виде  [c.393]

На стержень действует локальная динамическая поверхностная нагрузка, равномерно распределенная до сечения ж = 6 1. Ее можно представить в аналитическом виде с помощью функции Хевисайда 7/о(ж), которая равна единице при положительном аргументе и обращается в нуль на остальной числовой оси  [c.269]

На исследуемый трехслойный стержень действует динамическая поверхностная нагрузка, равномерно распределенная в интервале а ж 6. Ее можно записать как разность двух нагрузок (20)  [c.272]

Поверхностные слои металла деталей машин, работающих в условиях динамических нагрузок, обладают пониженной усталостной прочностью. Понижение усталостной прочности поверхностных слоев вызвано наличием в металле большого числа концентраторов напряжений как конструктивного, так и технологического характера. Кроме этого, в реальных условиях эксплуатации деталей, работа которых связана с крутящими и изгибающими циклическими нагрузками, их поверхностные слои испытывают максимальные напряжения от внешних нагрузок.  [c.13]

Таким образом, из необходимого и достаточного условия равенства нулю главного вектора и главного момента сил, приложенных к каждой части тела, включая части тела, имеющие общую поверхность с поверхностью тела, вытекает, что шесть компонентов тензора напряжений должны удовлетворять внутри тела трем дифференциальным уравнениям (2.19) в случае динамической нагрузки или (2.20) — в случае статической нагрузки и трем поверхностным условиям (2.14).  [c.39]

Внешние силы делятся на активные н реактивные (реакции связей). Активные силы принято называть нагрузками. По способу приложения нагрузки бывают объемные и поверхностные (распределенные и сосредоточенные), по характеру изменения в процессе приложения -статические, динамические и повторно-переменные, по продолжительности действия - постоянные и временные.  [c.6]


Износостойкость—сопротивление трущихся деталей изнашиванию. Износ приводит к постепенному изменению размеров, формы и состояния поверхности детали вследствие изнашивания, т. е. разрушения ее поверхностного слоя при трении. При этом уменьшается прочность деталей, увеличиваются зазоры в подшипниках, в направляющих, в зубчатых зацеплениях и т. п. Увеличение зазоров вызывает дополнительные динамические нагрузки в соединениях, снижает мощность, КПД, надежность, точность и т. п. Характерным признаком повышенного износа является возрастание шума при работе машины.  [c.31]

И интенсивность динамического нагружения поверхностного слоя при воздействии на него абразивных зерен. При этом ускоренное движение детали относительно притира (т. е. при наличии тангенциального ускорения Of) вызывает неравномерную нагрузку отдельных микрообъемов, а изменение создает переменные напряжения в поверхностных слоях. Скорость распространения микротрещин и характер микрорельефа зависят от интенсивности описанных динамических воздействий.  [c.78]

Нагрузки, воздействующие на конструкции, подразделяются на силовые и тепловые. Силовые нагрузки могут приводить к изменению физико-химических свойств материалов, к ползучести и дополнительным температурным деформациям. В ряде случаев этот вид нагрузки может вызвать изменение жесткости отдельных частей, изменение характера распределения внешних поверхностных нагрузок и динамических характеристик самой конструкции. Сравнительно большая тепловая инерция материалов приводит к неравномерному распределению температуры по элементам конструкции. В результате этого возникает неравномерная деформация конструкции, подобная деформация под действием силовых нагрузок. Поэтому обычно и выделяют дополнительные температурные напряжения.  [c.23]

Характер и интенсивность изнашивания поверхностей трения деталей машин, работающих в условиях схватывания первого рода, при различных условиях трения различные и зависят в основном от физических, химических и механических свойств поверхностных слоев металла (вязкости, пластичности, прочности, хрупкости, окисления), скорости и характера относительного перемещения трущихся поверхностей (равномерно-вращательного, возвратно-посту-пательного, микроперемещения), величины нагрузки, характера приложения нагрузки (статической, динамической, вибрационной) и т. п.  [c.10]

При равномерном вращении валика в корпусе регулятора и отсутствии динамической нагрузки происходит разрушение поверхностного слоя менее прочного металла корпуса регулятора и налипание его частиц на более прочный металл валика (фиг. 4).  [c.14]

Обыкновенно обкатка галтелей дает значительное повышение усталостной прочности деталей, работающих под циклической нагрузкой. Способы упрочнения галтелей на Уралмашзаводе показаны в табл. 29. Обкаткой роликом упрочняются галтели с радиусом до 5—8 мм и свыше 100 мм. Обкатка галтелей радиусом 12—15 мм производится шариком, который разрешает повысить контактное давление в зоне пластической деформации поверхностного слоя. Галтели радиусом от 15 до 80 мм создают еще более значительную концентрацию напряжений, и их упрочнение производится способом динамического наклепа — ударниками.  [c.218]

Рассмотрим вопрос об опалубке узлов. Ее можно выполнять деревянной и сетчатой. По нашему мнению, сетчатая металлическая опалубка обладает в данном случае рядом преимуществ. Во-первых, трудоемкость ее установки значительно меньше, чем деревянной, во-вторых, появляется возможность наблюдения за процессом бетонирования узлов, исключающая появление раковин в-третьих, сетка, натягиваемая по рабочей арматуре, лучше противостоит усадочным поверхностным трещинам, возникновение которых недопустимо в конструкциях, работающих при динамической нагрузке. Размер ячейки сетки не должен превышать 10 мм. При больших ячейках сетки следует ставить в два ряда. После бетонировки через 12—15 ч наружная поверхность узлов должна штукатуриться цементным раствором. Уход за бетоном узлов должен вестись в течение 10—12 дней. При бетонировании в холодное время года бетон следует утеплять. На рис. 7-9 показан один из узлов фундамента, подготовленный к бетонированию (без опалубки).  [c.326]


Стали небольшой прокаливаемости. Используются главным образом для высадочных штампов, работающих с динамическими нагрузками, вследствие способности этих сталей получать при закалке высокую твердость в поверхностном слое и сохранять вязкую сердцевину. Кроме того, эти дешевые стали используют для вытяжных пуансонов и матриц диаметром или толщиной до 20—25 мм, деформирующих металл с небольшой скоростью.  [c.86]

Кавитационные раковины на лопастях рабочего колеса, часть которых были сквозными, заделывались мастикой, а поверх мастики накладывался дополнительно тонкий слой мягкой защитной клеевой массы. Тонкая поверхностная пленка должна служить амортизирующим слоем, смягчающим динамические пульсационные нагрузки, возникающие на поверхности лопастей при развившейся кавитации.. Отвердение мастик происходило при комнатной температуре.  [c.174]

X — теплопроводность раствора (жидкости), Вт/(м-°С) рж, рп — плотность жидкости и пара, кг/м ро — плотность пара при р = = 1 кг/м а — поверхностное натяжение, Н/м /- — теплота парообразования, Дж/кг с — удельная теплоемкость раствора, Дж/(кг-°С) х — динамическая вязкость раствора, Па-с —плотность теплового потока (тепловое напряжение, тепловая нагрузка), Вт/м .  [c.583]

Совместное применение обработки с током и без тока способствует образованию в поверхностном слое благоприятных остаточных напряжений сжатия, поэтому такой вид обработки следует считать целесообразным для деталей, работающих при высоких динамических нагрузках и в особенности в местах концентрации напряжений (переходные сечения, галтели, канавки и др.).  [c.66]

Выбор подшипников качения в кулачковых механизмах. В автоматических контрольных системах распространенной задачей является выбор подшипников качения для роликовых толкателей скоростных кулачковых механизмов. Выбор производится из числа стандартных шариковых или роликовых подшипников качения по величине динамической нагрузки. Однако в большинстве случаев выбор подшипников качения минимизируется предельными значениями контактных напряжений в зоне поверхностного контакта подшипника качения роликового толкателя с кулачком. Превышение предельных значений контактных напряжений приводит к усталостному разрушению поверхностных зон кулачка в местах контакта, вызывает интенсивный износ, что в конечном счете сказывается на нормальном функционировании и снижении надежности всего кулачкового механизма. Поэтому в выборе подшипников качения скоростных кулачковых механизмов стремятся к минимизации наибольших касательных напряжений Тт в критической зоне контакта [11].  [c.337]

Модели нагружения. Эти модели содержат схематизацию внешних нагрузок по координатам, времени, а также по воздействию внешних полей и сред. Силовые нагрузки, действующие на конструкции, можно разделить на три группы 1) объемные или массовые силы 2) поверхностные силы 3) сосредоточенные силы. Объемные нагрузки действуют на каждую частицу внутри тела. К таким нагрузкам относятся собственный вес конструкции, силы инерции, силы магнитного притяжения и т.п. Поверхностные нагрузки распределены по значительным участкам и являются результатом взаимодействия различных конструктивных элементов одного с другим или с другими физическими объектами (например, давление жидкости или газа на стенки сосуда, давление ветра на оболочку градирни и т.п.). Если силы действуют на небольшую поверхность конструкции, то их можно рассматривать как сосредоточенные нагрузки, условно приложенные в одной точке. По характеру действия нагрузки можно разделить на статические и динамические. Статическая нагрузка возрастает от нуля до своего номинального значения и остается постоянной во время эксплуатации конструкции. Переменное, или динамическое, нагружение — нагружение, изменяющееся во времени. Часто встречающимся видом переменного нагружения являются циклические нагрузки, характеризующиеся периодическим изменением значения и/или знака. Модели нагружения должны учитывать воздействие полей и сред. Наиболее существенным является воздействие температурного поля. Изменение температуры элементов конструкций вызывает температурные деформации. Если они не удовлетворяют уравнениям совместности деформаций, то в элементах конструкций возникают температурные напряжения, значения которых часто оказываются соизмеримы со значениями напряжений, возникающих от воздействия внешних сил. Кроме того, изменение температуры влияет на механические характеристики конструкционных материалов. В некоторых случаях приходится учитывать влияние нейтронного облучения, электромагнитного поля, воздействие коррозионных сред.  [c.401]

К основным механическим свойствам металлов относят прочность, твердость, упругость, пластичность, ударную вязкость. Прочность — способность металла сопротивляться разрушению или появлению остаточных деформаций под действием внешних сил. Большое значение име т удельная прочность, ее находят отношением предела прочности к плотности металла. Для стали прочность выше, чем для алюминия, а удельная прочность ниже. Твердость — это способность металла сопротивляться поверхностной деформации под действием более твердого тела. Упругость — способность металла возвращаться к первоначальной форме после прекращения действия сил. Пластичность — свойство металла изменять свои размеры и форму под действием внешних сил, не разрушаясь при этом. Ударная вязкость — способность металла сопротивляться разрушению под действием динамической нагрузки. Кроме указанных механических свойств можно назвать усталость (выносливость), ползучесть и др. Для установления характеристик механических свойств производят их испытания.  [c.30]


При оптимальных значениях показателей качества поверхностного слоя материала (твердости, шероховатости и др.) скорость изнашивания деталей наименьшая, детали прирабатываются быстрее, возрастают долговечность машин и их точность. При сглаживании неровностей уменьшается (до некоторого предела) коэффициент трения. Очень важно установить минимально допускаемый износ деталей, при достижении которого должна быть прекращена эксплуатация механизма и проведен его ремонт, так как увеличенные зазоры могут вызвать дополнительные динамические нагрузки и интенсивное увеличение скорости изнашивания.  [c.380]

В механизмах передачи и распределения энергии зубчатые колеса, кулачки и другие детали подвергаются многократному циклическому воздействию переменных нагрузок. Рабочие участки деталей, находящиеся в контакте с другими деталями, воспринимают и передают значительные силы и поэтому должны иметь высокую прочность при контактном нагружении и стойкость по отношению к контактной усталости. Кроме того, эти участки должны быть износостойкими. Сердцевина деталей, кроме высоких прочности и вязкости, для того чтобы противостоять динамическим нагрузкам, должна иметь высокое сопротивление усталости. Надежная работа таких деталей обеспечивается рациональным выбором сталей и режимов обработки деталей. Для упрочнения поверхности стальных деталей используют химикотермическую обработку (цементацию, нитроцементацию, азотирование), а также поверхностную закалку. Цементация и нитроцементация обеспечивают максимальную несущую способность деталей.  [c.99]

Цементация — диффузионное насыщение поверхностного слоя детали углеродом. После цементации выполняют термическую обработку — закалку и низкий отпуск. Цементации подвергают детали, работающие на истирание, испытывающие при работе вибрацию и удары. Такие детали должны иметь твердую закаленную поверхность, хорошо сопротивляющуюся истиранию, и вязкую сердцевину, способную выдерживать динамические нагрузки. Если подобные детали изготовить из стали с высоким содержанием углерода, то после термической обработки поверхность их будет твер-  [c.219]

При воздействии ультразвука, как уже указывалось, возникает динамическая сила, которая в несколько раз выше статической силы. Поэтому сила и возникновение трещины достигаются на более ранней стадии нагружения. Этим и обьясняется ультразв> ко-вая интенсификация процессов механической обработки хрупких материалов. Глубина распространения трещины определяется величиной приложенной нагрузки, состоянием поверхностного слоя и свойствами обрабатываемого материала.  [c.336]

Современные науки - физика твердого тела и материаловедение обосновали и убедительно показали взаимосвязь химического состава, струк1уры и свойств твердых тел, и в частности конструкционных н инструментальных материалов. Особенность условий эксплуатации материалов в трибосистеме, т.е. в условиях трения и изнашивания, состоит в том, что поверхностные слои контактирующих деталей испытывают разнообразное энергетическое воздействие, находясь в сложном напряженно-деформированном состоянии. Статические и динамические нагрузки инициируют высокие внутренние напряжения и выз(.1вают упругие и пластические деформации, которые в условиях эксплуатации приводят к усталости и разрушению (изнапшванию) поверхностного слоя.  [c.268]

Измерение микротвердости и микроструктуры в де-формированном поверхностном слое образца показало резкую неравномерность ее распределения и различную степень пластической деформации. Формирование структуры рабочего слоя в процессе удара определяется исходной структурой материала, продолжительностью времени контакта, контактной температурой, скоростью приложения нагрузки. При и = 3,2 м/с и W== ,2 Дж максимальная микротвердость на поверхности удара составляет 12 000 МПа, минимальная — 4200 МПа. Измерение микротвердости по поверхности и по глубине образца после удара показало, что распределение микротвердости в зоне удара неравномерное. Неравномерно распределяется и температурное поле. Динамический характер пластического деформирования, во время которого теплообмен в зоне контакта практически отсутствует, вызывает на пятнах фактической площади контакта мгновенные скачки температуры, т. е. температурные вспышки, величина которых при тяжелых режимах намного превышает среднкно температуру. Несмотря на то, что глубина действия температурных вспышек при ударе локализуется в слое толщиной несколько микрометров, они способствуют структурным превращениям и изменению микротвердости. В некоторых случаях удалось наблюдать полоски вторичной закалки. Их микротвердость составила 12 880 МПа. Микротвердость подстилающего слоя на расстоянии 0,01 мм от поверхности меньше мик-ротвердости металлической основы и составляет 3300 МПа, что соответствует приблизительно температуре 400 500° С. Следовательно, при единичном ударе в зоне контакта в отдельных микрообъемах возникают температурные скачки, упрочняющие эти участки. Под ними и вблизи них находятся участки, микротвердость которых ниже исходной, а температура достигает лишь температуры отпуска. Наблюдаемые температурные изменения связаны с изменениями структуры и прочностных свойств соударяющихся материалов.  [c.146]

А. Е. Сучков полагает, что износ вызывают механико-динамические и кинематические нагрузки, а также физико-химические факторы [62]. При механико-динамической нагрузке наблюдаются явления деформации и срезывания в поверхностных слоях металла. При кинематических нагрузках преобладают явления усталости материала при действии на него повторной или знакопеременной нагрузки. Среди различных физико-химических факторов, обусловливающих износ, основное место лринадлежит явлениям коррозии металла.  [c.7]

Mj en. Максимальная удельная нормальная нагрузка 120кг/сл12. При отсутствии динамической нагрузки и равномерном вращении цапфы траверсы как на ее поверхности, так и на поверхности подшипника происходит интенсивное схватывание металла и разрушение узлов схватывания. Одновременно вследствие пластической деформации поверхностные объемы металла упрочняются на значительную глубину (фиг. 1).  [c.10]

Механнзмы подач и их приводы. К основным критериям механизмов подач (обычно шариковых, винтовых и волновых передач в современных станках с ЧПУ и многоцелевых станках, гидро-или пневмоцилиндров в ряде других видов оборудовани ) относятся равномерность подачи выходного звена, сохранение в про цессе работы заданного усилия подачи, жесткости (предварительного натяга), малое время восстановления скорости при реакции на нагрузку, влияющее на точность положения и стойкость инструмента, динамические характеристики. С учетом температурных деформаций эти свойства определяют также и технологическую надежность. Дополнительно к механизмам подач предъявляется требование защиты от перегрузок, что особенно актуально в условиях полной автоматизации работы технологических модулей ж мелкосерийного производства, когда технология не всегда достаточно отработана. Для ряда видов обработки важное значение имеет также такой критерий, как точность и время позиционирова-лия выходного звена — каретки или стола (более подробно эти вопросы рассмотрены в следующем разделе). Требования к приводу те же, что и у привода главного движения,— высокий КПД, уменьшение затрат времени на переключение подач, снижение динамических нагрузок на детали привода, шума и вибраций, обес печение высокой равномерности движения и надежности привода. Длительность сохранения технологической надежности станков существенно зависит от долговечности и свойств поверхностного слоя направляющих, винтовых пар и редукторов механизмов но-дач.  [c.27]


Удобным для практических расчетов является прием, предложенный Рэлеем и использованный затем Лэмбом. По гипотезе Рэлея, движение частицы жидкости тормозится силой, пропорциональной ее относительной скорости, т. е. скорости частицы Б системе координат, связанной с резервуаром. Феноменологическая теория вязкой жидкости Рэлея в сочетании с экспериментальными данными для логарифмических декрементов колебания поверхностных волн позволяет получить необходимые практические результаты по гидродинамическому расчету различных резервуаров на динамические нагрузки и расчету различных упругих систем, несущих резервуары, на детерминированные и случайные силы [21, 53, 54].  [c.23]

Информация о действительной нагруженности и несущей способности — важный элемент при решении вопросов расчета конструкций, совершенствования их схем и форм, применения поверхностного упрочнения и других способов повышения эксплуатационной надежности и ресурса. Далее рассматриваются некоторые вопросы оценки вероятности неразруше-ния (надежности) в связи с условиями нагружения и несущей способностью элементов конструкций. Отказы по прочности, оцениваемые как возникновение разрушения, повреждение опасными трещинами или недопускаемые деформации, могут возникать в результате однократных или кратных перегрузок как статических, так и динамических или же вследствие наличия дефектов, достаточных для разрушения элементов конструкций при свойственном им уровне эксплуатационной нагруженности. Разрушения такого типа рассматриваются как статические, их вероятностная оценка осуществляется с учетом кратности статического нагружения, статистики возможных статических нагрузок и дисперсии статической прочности во внересурсной постановке. Это, например, уже давно делается в области оценки надежности строительных конструкций, гидротехнических сооружений и ряда других, нагруженных в основном статической нагрузкой.  [c.137]

Определение способности покрытия поверхностного слоя сопротивляться динамическим нагрузкам. Иногда требуется установить, как ведет себя то или другое покрытие при динамическом конта1Ктно м [приложении нагрузки. iB частности, при жромовом покрытии в узлах трения, испытывающих ударные нагрузки, в наиболее нагруженных местах наблюдалось выкрашивание и отслаивание хромового слоя от основного материала. В связи с этим было необходимо провести исследование влияния на динамическую контактную прочность хромового покрытия, прочности материала основания, толщины покрытия, характера пористости и других факторов. Нами было изготовлено специальное приспособление, которое позволяет нагружать испытуемую поверхность ударом как на сжатие, так и на сжатие со сдвигом.  [c.62]

К числу наиболее важных конструктивно-технологических мероприятий, повышающих эксплуатационные свойства мащин, можно отнести улучшение формы деталей с целью снижения напряжений в опасном сечении применение технологических способов, обеспечивающих наи-лучщую текстуру материала детали (штампованные заготовки, формообразование, например зубьев, зубчатых колес накатыванием) уменьшение количества операций и правильное их чередование снижение уровня динамических нагрузок повышением точности изготовления и сборки, а также применением оптимальных зазоров и др. снижение концентрации нагрузки вследствие повышения точности изготовления и сборки, увеличения жесткости узла, оптимального взаимного расположения деталей, узлов и др. повышение чистоты впадин у зубчатых колес обеспечение рациональной ориентации обработанных рисок и оптимальной шероховатости рабочих поверхностей деталей обеспечение стабильности физико-механических свойств поверхностного слоя, особенно вблизи опасного сечения, для чего основание впадин торцов зубчатых колес следует шлифовать до химико-термической обработки обеспечение стабильности физико-механических, химических и геометрических свойств материала деталей обеспечение наиболее благоприятной эпюры остаточных напряжений при отсутствии локальных растягивающих напряжений в упрочненном слое применением упрочняющей обработки обеспечение контроля изделий в процессе проектирования и производстве на соответствие их основных эксплуатационных свойств техническим условиям на изготовление и приемку.  [c.413]

Псверхностной закалке подвергают такие детали, как шестерни, валы, оси, кулачки, пальцы для муфт, работающие на истирание и подвергаемые динамическим (ударным) нагрузкам. Для таких деталей необходихмы Еысокая твердость и износостойкость поверхностного слоя, а их сердце-вина должна быть вязкой и иметь повышенную усталостную прочность. Перечисленное сочетание свойств можно придать изделиям, применив индукционную закалку токами высокой частоты (ТВЧ).  [c.256]

Создание высокопроизводительных машин и скоростных транспортных средств, форсированных по мощностям, нагрузкам н другим рабочим характеристикам, неизбежно приводит к увеличению ннтенсивиостн и расширению спектра вибрационных и виброакустических полей. Этому способствует также широкое использование в промышленности и строительстве высокоэффективных вибрационных и виброударных процессов. Вредная вибрация нарушает планируемые конструктором законы движения машин, механизмов и систем управления, порождает неустойчивость процессов и может вызвать отказы и полную расстройку всей системы. Из-за вибрации увеличиваются динамические нагрузки в элементах конструкций, стыках и сопряжениях, снижается несущая способность деталей, инициируются трещины, возникают усталостные разрушения. Действие вибрации может приводить к трансформированию внутренней структуры материалов и поверхностных слоев, изме-йению условий трения и износа на контактных поверхностях деталей машин, нагреву конструкций.  [c.9]

Состав газовой среды также может существенно влиять на жаростойкость и жаропрочность сплавов Наличие в сре де агрессивных компонентов (например, соединений, содержащих серу ванадий галогены щелочные металлы) вызывает образование легкоплавких или летучих соединений, разрушает защитные окис ные пленки, способствует развитию ло кальных видов газовой коррозии Кроме того, во многих случаях газовая сре да воздействует на сплав не в ста ционарных условиях а динамически т е на поверхность стали действуют скоро стные газовые потоки скорость которых может составлять сотни и тысячи метров в секунду Такие условия работы характерны, например для лопаток газовых турбии деталей обшивки скоростных самолетов и ракет Под влиянием скоростных газовых потоков усиливаются как процессы ползучести (рис 175), так и процесс коррозионно эрозионного разрушения поверхности что связа но с усилением избирательности газовой коррозии эрозионным разру шеинем окисных пленок деформацией и дополнительным разогревом тонких поверхностных слоев при трении среды о поверхность вибра ционными нагрузками переменной частоты и другими эффектами Вследствие этого снижается эксплуатационная стойкость де талей  [c.294]

Установлено, что большинство полимеров обладают хорошей совместимостью с металлами, используемыми обычно в качестве сопряженных поверхностей в подшипниках. Под хорошей совместимостью понимается способность полимеров к трению по металлу под нагрузкой с небольшим износом, умеренным трением, без значительных поверхностных разрушений, вызванных локальной адгезией или сваркой двух поверхностей. Другими важными характеристиками полимерных материалов, используемых в подшипниках, является их низкая стоимость, мягкость по отношению к внедрению посторонних материалов, малый износ подложки, коррозионная стойкость, одинаковые статические и динамические коэффициенты трения, обуславливающие малые эффекты залипа-ния, биения подшипников при работе, а такнсе малое трение при высоких нагрузках и небольших скоростях скольжения.  [c.386]


Смотреть страницы где упоминается термин Нагрузки динамические поверхностные : [c.37]    [c.153]    [c.92]    [c.164]    [c.73]    [c.238]    [c.78]    [c.144]    [c.86]    [c.216]   
Справочник металлиста. Т.1 (1976) -- [ c.173 ]

Справочник металлиста Том5 Изд3 (1978) -- [ c.173 ]

Справочник металлиста Том 1 Изд.3 (1976) -- [ c.173 ]



ПОИСК



Нагрузка динамическая

Нагрузка поверхностная



© 2025 Mash-xxl.info Реклама на сайте