Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Металлическая основа

В микроструктуре чугуна следует различать металлическую основу и графитные включения.  [c.209]

По строению металлической основы чугун разделяют на  [c.209]

Поскольку структура чугуна состоит из металлической основы И графита, то и свойства чугуна будут зависеть как от свойств металлической основы, так и количества и характера графитных включений.  [c.212]

Естественно, что чем больший объем занимают пустоты, тем ниже свойства чугуна. При одинаковом объеме пустот (т. е. количестве графита) свойства чугуна будут зависеть от их формы и расположения. Следовательно, чем больше в чугуне графита, тем ниже его механические свойства, чем грубее включения графита, тем больше они разобщают металлическую основу, тем хуже свойства чугуна. Самые низкие механические свойства получаются тогда, когда графитные включения образуют замкнутый скелет,  [c.212]


Если растягивающие напряжения имеют минимальные значения, как например при сжатии, свойства чугуна оказываются достаточно высокими и практически очень близкими к свойствам стали того же состава и структуры, что и металлическая основа чугуна.  [c.213]

Поэтому предел прочности при сжатии и твердость чугуна зависят главным образом от строения металлической основы и мало отличаются от этих свойств стали.  [c.213]

Таким образом, прочность чугуна (в отношении нормальных напряжений) определяется строением металлической основы и формой графитных включений.  [c.213]

В чугуне с шаровидным графитом нет острых надрезов, так как нет пластинчатых графитных включений, и изменение структуры металлической основы в результате термической обработки заметно отражается на его свойствах. Для чугуна с шаровидным графитом принципиально возможны все виды термической обработки, применяемые для стали, и их начинают использовать для улучшения свойств этого чугуна.  [c.214]

По краям излома ферритного ковкогО чугуна получается светлая каемка, так как в поверхностном слое происходит частичное обезуглероживание, и металлическая основа в этом тонком слое перлитная без графита.  [c.220]

Жаропрочность ряда металлов можно повысить, упрочнив металлическую основу введением в нее мелкодисперсных частиц тугоплавких соединений, главным образом различных окислов (материалы типа САП, т. е. спеченного алюминиевого порошка). Жаростойкость этих материалов, являющихся перспективными для применения в различных областях техники, и механизм их окисления исследованы автором, Б. К. Опарой, Т. Г. Кравченко и О. А. Пашковой на кафедре коррозии металлов МИСиС.  [c.109]

Свойства этого чугуна зависят от структуры металлической основы и от формы, размера и количества графитных включений. Чем меньше в металлической основе феррита, тем выше прочность чугуна. Хрупкие включения графита нарушают сплошность металлической основы. Мелкие равномерно рассеянные графитовые включения несколько ослабляют чугун, который по прочности приближается к металлической основе. Лучшими механическими свойствами обладает чугун со структурой перлита, содержащий графит в виде мелких равномерно распределенных чешуек.  [c.75]

Высокопрочный чугун. Серый чугун с округлой (глобулярной) формой графита, получаемый при модификации Mg или Сг, называют высокопрочным чугуном. Такая форма графита определяет наибольшую сплошность металлической основы, а следовательно, высокую прочность, повышенную пластичность и ударную вязкость.  [c.76]

У отожженных металлов и сплавов износоустойчивость при истирании по абразивной поверхности пропорциональна твердости (рис. 15.10). Износоустойчивость закаленных и отпущенных сталей при разных температурах повышается также пропорционально увеличению твердости. Увеличение износоустойчивости при термической обработке происходит благодаря упрочнению металлической основы в результате образования мартенсита и выделения высокодисперсных карбидов. Однако это увеличение менее значительно, чем при повышении твердости отожженных сталей.  [c.273]


Структура покрытия состоит из дендритов тугоплавких окислов хрома и алюминия на металлической основе никеля.  [c.443]

I - металлическая основа 2 - полимерное покрытие 3 - стеклянная ячейка 4 - электролит 5 - платиновый электрод 6 - замазка герметизирующая  [c.65]

Ковкий чугун получают из белого путем отжига, который продолжается иногда до 5 суток. По структуре металлической основы (рис. 39), которая определяется режимом отжига, ковкие чугуны бывают ферритными и перлитными,  [c.59]

Чугун после модифицирования имеет следующий химический состав 3,0...3,6% С, 1,1..1,9% 51,, 0,3., 0,7% Мл до 0,02% 5 и до 0,1% Р. По структуре металлической основы чугун может быть ферритным или перлитным (рис. 41),  [c.60]

Главный процесс, формирующий структуру чугуна, — процесс графитизации (выделение углерода в структурно-свободном виде), так как от него зависит не только количество, форма и рас-нредолоппе графита в структуре, но и вид металлической основы (матрицы) чугуна. В зависимости от степени графитизации матрица может быть перлитно-цементитной (П + Ц), перлитной (II), перлитно-ферритной (П Ф) и ферритной (Ф). Цементит перлита называют эвтектоидным, остальной цементит — структурно-сво-бодным. Некоторые элементы, вводимые в чугун, способствуют графитизации, другие — препятствуют. На рис. 148 знаком — обозначена графитизирующая способность рассматриваемых элементов, знаком 1- задерживающее процесс графитизации действие (отбеливание). Как следует из приведенной схемы, нанболь-шее графитнзирующее действие оказывают углерод и кремний, наименьшее — кобальт и медь.  [c.322]

КЧ 35-10 КЧ 37-12 КЧ 30-6 с ферритной металлической основой и КЧ 45-6 КЧ 50-4 и КЧ 60-3, имеющие феррит-но-иерлитную основу.  [c.323]

Участок 2 ограничен эвтектической и эвтектоидпой температурами. Структура его в значительной мере зависит от исходной структуры чугуна и может состоять из аустенита и цементита или аустенита и графита (в зависимости от скорости охлаждения и состава чугуна). При быстром охлаждении металлическая основа приобретает структуру закалки.  [c.325]

Участок Я (неполной перекристаллизации) вследствие быстрого нагрева и кратковременности пребывания металла в этом интервале температур фер])ит — основа структурной составляю-ш,ей чугуна при комнатной температуре — не успевает полностью раствориться. После охлаждения в атом участке мои ет наблюдаться HeitoTopoe измельчение зерна. При быстром охлаждении металлическая основа может приобрести частичную закалку.  [c.325]

Холодная сварка чугуна электродами, составы которых приведены в табл 92, положительных результатов не обеспечивает, так как при больших скоростях охлаждения, соответствующих даннылг условиям проведения сварки, образуется структура белого чугуна в И1ве и высокотемнерату1)иой области околошовной зоны, а также происходит резкая закалка металлической основы участков зоны термического влияния, нагревающихся в процессе сварки выше температуры Ас . Возникающие при этом деформа-  [c.330]

Более удачным оказался другой путь. В металл шва вводят сильный карбидообразователь — ванадий. В этом случае в основном образуются карбиды данного элемента, ие растворяющиеся в железе и имеющие форму мелкодисперсных нетвердых включений. Металлическая основа при этом оказывается обезуглерожен-иой и достаточно пластичной. Примером могут служить электроды марки Ц 1-4 со стержнем из ниакоуглеродистой проволоки марок Сб-08 или Сп-08А и покрытием следующего состава мрамор 12%, плавиковый ншат 10%, феррованадий 66%, ферросилиций 4%, noTain 2%, жидкое стекло 30% массы сухой смеси.  [c.335]

Из рассмотрения структур указанных трех ви/ии чугуна можно заключить, что их металлическая основа похожа на структуру эвтектоидной стали, доэвтектоидной стал г и жслса. .  [c.210]

На схемах структур (рис. 168) обобщается описанная выше лассификация чугуна по строению металлической основы и форме графита.  [c.211]

Рис. 163, Классификация чугуна по структуре металлической основы и форме графитных включеит" (схемы структур) Рис. 163, <a href="/info/152827">Классификация чугуна</a> по <a href="/info/347971">структуре металлической</a> основы и форме графитных включеит" (схемы структур)

Пластичность мало зависит от строения металлической основы (ннжние значения типичны для перлитных чугунов, верхние — для феррптных). Твердость НВ, определяемая структурой металлической основы, имеет следующие значения  [c.213]

Из антифрикционных металлокерамических материалов изготовляют подшипники скольжения для различных отраслей промьии-ленности. В антифрикционных материалах с пористостью 10—35 % металлическая основа является твердой составляющей, а поры, заполняемые маслом, графитом или пластмассой, выполняют роль мягкой составляющей. Пропитанные маслом пористые подшипники способны работать без дополнительного смазочного материала в течение нескольких месяцев, а иодшипникн со специальными карманами для запаса масла — в течение 2—3 лет.  [c.420]

Твердость является важной характеристикой чугуна она зависит от структуры, легирующих примесей и, размера графитных включений. Наименьшую твердость имеют ферритные чугуны, в которых почти весь С находится в свободном состоянии, перлитный чугун с пластинчатым графитом имеет НВ 220—240, чугун с мартенситной металлической основой имеет НВ 40.0—500, а структура цементита НВ 750, Наибольшее применение в на юдном хозяйстве имеют серые чугуны. Сварка серых чугунов производится двумя способами.  [c.94]

Металлическая основа в сером чугуне обеспечивает наибольшую прочность и износостойкость, если она имеет перлитную структуру (см. рис. 91, б). Присутствие в структуре феррита, не увеличивая пластичность м вязкость чугуна, снижает его прочность и износо ToiiKo Tb. Наименьн1ей прочностью обладает ферритный серьп т чугун.  [c.146]

Модифицированный чугун (СЧ 30, СЧ 35, СЧ 40 и СЧ 45) получают ири добавлении в жидкий чугун перед разливкой специальных добавок — модификато[)ов (графит, 75 /o-in n i ферросилиций, силикокальций в количестве 0,3—0,8 % и т. д.). Модис1л1-цирование применяют для получения в чугунных отливках с различной толщиной стенок перлитной металлической основы с вкраплением небольшого количества изолированных пластинок графита средней величины. Модифицирование наиболее эффективно при исиользованин чугуна определенного состава и перегрева его перед модифицированием до 1400 С. Перегрев обеспечивает измельчение графитных включений и способствует получению более плотных отливок.  [c.147]

Влияние углерода. Углерод определяет структуру и свойства чугуна. С повышением содержания С ухудшаются механические свойства серого чугуна, что объясняется увеличением количества включений графита, ослабляющих металлическую основу чугуна. Вместе с тем С повышает литейные свойства чугуна, позволяя получать качественное тонкостенное литье. Содержание С в чугуне не должно пре-вышать 4,3%.  [c.72]

Стали, имеющие в структуре первичные карбиды (независимо от строения металлической основы) часто называют карбидными (или ледебуритными). Они содержат значительное количество С и карбидо-обра-зующих элементов (Сг, АУ, V и Мо).  [c.175]

Амидопласты и фторопласты обладают текучестью под нагрузкой (амидопласты при повышенных, а фторопласты при обычных температурах). Применение амидопластов и фторопластов в виде тонких пленок ( толщиной 0,05—0,5 мм) на металлической основе устраняет текучесть.  [c.367]

Неметаллические подшинниковые материалы. Пластические массы — термореактивные типа текстолита и термопластичные, в основном полиамидные, широко используют для изготовления втулок и вкладышей подшипников их физико-механические свойства приведены в табл. 19. Коэффициент теплопроводности пластмасс в 200 раз меньше, чем коэффициент теплопроводности стали, что затрудняет теплоотвод из рабочей зоны подшипника. Для уменьшения нагрева вкладышей следует изготовлять их с малой толщиной стенок или же применять облицовку на металлической основе из тонкого слоя полиамидной смолы.  [c.423]

Как было изложено ранее, в реальных условиях п ючность сплавов, состоящих из жаропрочных и тугоплавких металлов (Сг, Мо, W, Nb, V il др.) на основе никеля значительно ниже прочности чистых кристаллов. Наличие границ в металлической основе  [c.417]


Смотреть страницы где упоминается термин Металлическая основа : [c.323]    [c.210]    [c.218]    [c.220]    [c.145]    [c.145]    [c.146]    [c.146]    [c.149]    [c.150]    [c.78]    [c.232]    [c.105]    [c.80]    [c.50]   
Металловедение Издание 4 1963 (1963) -- [ c.145 ]



ПОИСК



583, 584 при непрерывном горизонтальном перлитоферритная, с перлитной металлической основой

Влияние структуры металлической основы на эрозионную стойкость чугуна

Композиционные материалы на металлической основе

Композиционные материалы на металлической основе Солнцев)

Композиционные материалы на основе борных волокон и металлической матрицы

Коррозионная стойкость различных металлических материалов в теплоносителе на основе

Краткая характеристики и общие методы получения и обработки композитов на основе металлической матрицы

МАТЕРИАЛЫ ИЗ МЕТАЛЛИЧЕСКИХ ПОРОШКОВ И КЕРМЕТЫ Основы порошковой металлургии (А. К. Натансон)

Материалы из металлических порошков и керметы Основы порошковой металлургии

Материалы матричные металлические на основе

Материалы пористые на металлической основ

Металлическое топливо на основе урана

Основные виды композитов на основе металлической матрицы. Свойства, методы получения и области применения

ПРОИЗВОДСТВО ДЕТАЛЕЙ ИЗ МЕТАЛЛИЧЕСКИХ ПОРОШКОВ Основы порошковой металлургии

Получение композиционных материалов на металлической основе, армированных волокнами

Пористые материалы иа металлической основе (Третьяков

Порошки металлические Виды насыпной на железной основе со сферическими частицами — Способы получения

Порошки металлические Виды насыпной на железной основе — Насыпной

Примеры композитов на основе металлической матрицы

Свариваемость, понятие пористых на металлической основе

ТОНКОСЛОЙНЫЕ ИЗНОСОСТОЙКИЕ АНТИФРИКЦИОННЫЕ ПОКРЫТИЯ НА МЕТАЛЛИЧЕСКОЙ ОСНОВЕ Твердосмазочные покрытия на основе мягких металлов

Улучшение Структура • металлической основы

Чугун Структуры металлической основ

Чугун металлической основы

Шайбы — Материалы пластмассовые с металлической основой



© 2025 Mash-xxl.info Реклама на сайте