Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Нагрузка кинематическая

Силы тяжести О, определяемые материалом и конструкцией звена. В ряде случаев вес звеньев механизма оказывает значительное влияние на нагрузку кинематических пар. Например, масса подвижной щеки дробилки достигает 2500 кг.  [c.271]

Следовательно, силы трения в зависимости от назначения механизма или устройства играют двоякую роль. Величина сил трения зависит от полной нагрузки кинематической пары и ряда других факторов (материала, обработки, смазки).  [c.272]


Воспользуемся выполненным на рис. 19 построением, связанным с разложением сил, чтобы определить нагрузки кинематических пар  [c.56]

Следует отметить, что выражение (3.45), полученное из уравнения моментов (3.44), совпадает с уравнением (3.29), которое определяет предельную нагрузку кинематическим методом, т. е. как функцию работ внутренних сил.  [c.195]

Таким образом, для нахождения предельной нагрузки кинематическим и статическим (17") методами имеем разные формулы. Предельная нагрузка для произвольной зоны разрушения, определенная по этим формулам, будет иметь разные значения. Однако для фактической зоны разрушения предельные нагрузки и должны быть равны.  [c.211]

Аналогичное выражение будет иметь место при определении предельной нагрузки кинематическим методом. Подставив выражение (3.1236) в выражение (3.122) и проведя преобразование, получим  [c.257]

Конструкции сильно нагруженных механизмов, исходя из условий нагрузки кинематических пар и звеньев стараются выполнять симметричными относительно плоскости механизма, что упрощает силовой анализ последнего.  [c.494]

Л г—работа сил трения, зависящая от инерционной нагрузки кинематических пар механизма, т. е. пропорциональная значению кинетической энергии  [c.437]

Кинематический метод определения предельной нагрузки (кинематическая теорема)  [c.151]

Верхняя граница предельной нагрузки, В соответствии с теоремой о верхней границе предельной нагрузки (см. гл. 3) всякое кинематически возможное поле скорости хи> приводит к верхней границе предельной нагрузки — кинематически возможному коэффициенту предельной нагрузки  [c.617]

Для передач с малыми нагрузками (кинематических) и силовых передач 6 — 7-й степени точности (по ГОСТ 1643 — 81 установлено 12 степеней точности, из которых самая низкая — двенадцатая) предельное значение 5а может быть уменьшено до  [c.229]

Найдем предельную нагрузку кинематическим методом. Выберем за кинематически возможное такое состояние, в котором пластическая область сосредоточена "в наиболее ослабленном месте в окрестности отверстия. Тогда поле линий скольжения состоит из логарифмических спиралей, примыкающих к контуру отверстия,  [c.216]

Мера упрочнения 58 Метод допускаемых напряжений 5 -- определения нагрузки кинематический 211 --определения нагрузки статический 209  [c.390]

Определить реакции в кинематических парах Л, В, С и D кривошипного механизма с качающимся ползуном и уравновешивающий момент уИу, приложенный к звену 1, от нагрузки Р., приложенной к звену 2 (кулисе) в точке К, если 1ав = 100 мм, 1цс =  [c.114]


Определить реакции в кинематических парах А, В я D н точках С и С" синусного механизма и уравновешивающий момент Му, приложенный к звену АВ, от нагрузки Рз, приложенной к звену 3 (кулисе), если 1ав — ЮО мм. I e = 200 мм, угол фх = 45 и сила Рз = 100 н.  [c.115]

Определить реакции в кинематических парах А, В и С кулачкового механизма и уравновешивающий момент Л4у от нагрузки Р , приложенной к толкателю 2 под углом р, если /до = 30 мм  [c.116]

В каждом конкретном случае мы получаем ту или иную схему нагружения и можем определить истинные нагрузки на элементы кинематических пар с целью их расчета на прочность.  [c.275]

При движении звеньев механизма в кинематических парах возникают дополнительные динамические нагрузки от сил инерции звеньев. Так как всякий механизм имеет неподвижное звено-стойку, то и стойка механизма также испытывает вполне определенные динамические нагрузки. В свою очередь через стойку эти нагрузки передаются на фундамент механизма. Динамические нагрузки, возникающие при движении механизма, являются источниками дополнительных сил трения в кинематических парах, вибраций в звеньях и фундаменте, дополнительных напряжений в отдельных звеньях механизма, причиной шума и т. д. Поэтому при проектировании механизма часто ставится задача о рациональном подборе масс звеньев механизма, обеспе-  [c.275]

Для пуска приводов с большими инерционными массами (грузоподъемные машины, приводы конвейеров, прессов, центрифуг и др.) электродвигатели должны обладать большими пусковыми моментами. При жестком соединении звеньев кинематической цепи разгон масс происходит быстро, в течение долей секунды (обычно до 0,5 с). Это приводит к большим инерционным нагрузкам деталей привода. В таких приводах следует применять пусковые муфты. Основой таких муфт могут быть автоматические самоуправляемые центробежные муфты различных конструктивных исполнений. Пусковые муфты позволяют электродвигателю легко разогнаться и, по достижении им определенной частоты вращения, начать плавный разгон рабочего органа. Одновременно пусковые муфты являются и предохранительными.  [c.330]

Зубья некорригированы, нормальной высоты, с углом зацепления а = 20°. Редуктор предназначен для непрерывной работы. Нагрузка реверсивная. Требуется на основании чертежа составить кинематическую схему, а по данным таблицы определить (из расчета зубьев каждой ступени на контактную прочность) допускаемую мош,ность на ведущем валу. Потери в зубчатых передачах и подшипниках не учитывать. Срок службы неограничен. Коэффициент нагрузки К = 1,25.  [c.165]

Одним из положительных качеств низших кинематических пар является их способность передавать значитель-н /ю нагрузку от одного зве-н,1 другому, так как звенья  [c.11]

Определим теперь интенсивность предельной нагрузки кинематическим методом. На рис. 10.5 штриховой линией показано кинематически возможное состояние гистемы.  [c.213]

Статически допустимое распределение напряжений, сконструированное как в пластической, так и в жесткой зоне, позволяет дать оценку снизу для величины предельной нагрузки. Кинематически возможный механизм разрушения и дает возможность оценить предельную нагрузку сверху. Часто оценки сверху и снизу удается сблизить, подбирая соответствуюгцпм образом статические и кинематические поля.  [c.202]

Если при силовом расчете механизма в число известных внешних сил не включена инерционная нагрузка на звенья, то силовой расчет механизма называется статическим. Такой расчет состоит из а) определения реакций в кинематических парах механизма, б) нахождения уравновешивающих силы Яу или момента Л1у. Если же при силовом расчете механизма в число известных внешних сил, приложенных к его звеньям, входит инерционная нагрузка на звенья, то силовой расчет механизма называется кинетостатическим.Лдя проведения его необходимо знатг закон движения ведущего звена, чтобы иметь возможность предварительно определить инерционную нагрузку на звенья.  [c.103]


У к а 3 а и и е. При силовом расчете планетарных редукторов для того, чтобы задачу об определении реакций в кинематических парах решать поэвенно, рекомендуется ведущим звеном считать водило Н. Поэтому, если уравновешивающий момент Му предполагается приложенным к колесу 1, а момент, представляющий собою нагрузку на редуктор, — к водилу Н, то надо предварительно найти этот момент. Му находится из равенства нулю алгебраической суммы мощностей, которые создаются моментами Му и М  [c.109]

П.)имер 4. Для механизма шасси самолета (рис. 63, а) найти мощность N, затрачиваемую на трение во всех кинематических парах, при том пологкении его звена /, когда q)i = 195. Угловая скорость звена I постоянна и равна Wj = = 0,3 ei . Размеры звеньев = 1,0 л<, = 1,32 м, 1 = 0,4 м, = 0,6 м, = 0,95 м, = 0,3 м. К механизму приложены нагрузки к звену 3 — сила тяжести = 100 н (приложена в центре масс S3, координата центра масс = 0,46 м), горизонтальная сила от набегающего воздушного  [c.111]

Определить реакции в кинематических парах А, В, С и D шарнирного четырехзвенника и величину необходимого уравновешивающего момента Му, приложенного к звену АВ, от нагрузки, приложенной к звеньям ВС и D, если 1аи = 50 мм, 1цс = 1сп = 200 мм, угол ф1 = 90°, ось звена ВС горизонтальна, а ось звена D вертикальна. Силы приложены в точках /( и Ж, делящих меж-шлрнирные расстояния пополам, и равны Ра = Р- =-= 100 н, углы  [c.113]

Оиределить реакции в кинематических парах Л, В, С к D шарнирного четырехзвеиннка и величину уравновешивающей силы fy, приложенной в точке К звена АВ перпендикулярно к его оси (Г/.1 = 90"") и делящей отрезок АВ пополам, от нагрузки, приложенной к звеньям ВС и D, если 1ав = 100 мм, 1цс = 1сп — 200 мм, угол ф1 = 90", ось звена ВС горизоитлльна, ось звена D вертикальна. Моменты пар, приложенных к звеньям ВС и D, равны = = М., = 2 нм.  [c.114]

Определить реакции в кинематических парах А, В, С ь D кривошиино-ползунного механизма и уравновешивающий момент Л у, приложенный к звену АВ, от нагрузки Р , приложенной к ползуну 3, если /лв = 100 мм, 1вс = 200 мм, угол = 90° и сила Р, = 1000 н.  [c.114]

Определить реакции в кинематических парах А, В, С D ку/исного механизма Витворта и уравновешивающий момент Му, ripi ложениый к звену АВ, от нагрузки, приложенной к звену 3  [c.115]

Определить реакции в кинематических парах А, В н точках С и С" кулачкового механизмл и необходимый уравновешивающий момент Му, приложенный к кулачку, от нагрузки Р., приложенной к толкателю 2, если = 45 , h = а — Ь — 100 мм п сила Р., = 100 н.  [c.116]

При рассмотрении явления сухого трения во вращательной кинематической паре пользуются различными гипотезами о законах распределения нагрузки на поверхностях элементов этой пары. С помощью этих гипотез могут быть выведены соответствующие формулы для определения сил трения и мощности, затрачиваемой на преодоление этих сил. Такие гипотезы были предложены некоторыми учеными (Рейе, Вейсбах и др.). Недостатком всех этих гипотез, так же как это имело место и для винтовой пары, является отсутствие достаточного экспериментального материала по вопросам распределения давлений во вращательных парах, работающих без смазки. Поэтому мы не будем останавливаться на всех различных формулах определения сил трения во вращательных парах, ограничившись выводом простейших из них, сделанным на основе элементарнейших предположений, схематизирующих явление.  [c.227]

Г. Решение задачи об уравновешивании динамических нагрузок в кинематических парах механизмов от сил инерции звеньев в общем виде представляет весьма большие практические трудности. Решение этой задачи заключается в таком распределении масс звеньев, при котором полностью или частично устраняются динамические нагрузки. При этом подборе масс конфигурации звеньев и их вес в большинстве случаев получаются мало конструктивными, а потому такой способ применяется главным образом при уравновешиваппи вращающихся деталей, обладающих  [c.292]

При больилпх нагрузках и высоких скоростях двн кеиия деформации звеньев механизмов оказывают заметное влияние иа их кинематические и динамические характеристики. Проектирование механизмов (в том числе и кулачковых) с учетом упругости звеньев относится к задачам динамического синтеза. Разработке методов решения таких задач посвящены работы И. Н. Вульфсона, Н. И. Ле-витского и др.  [c.65]

Колебания скорости начального звена (звена приведения) ме.ха-иизма вызывают дополнительные динамические нагрузки в кинематических иарах и отрицательно влияют на технологический процесс. Поэтому они допускаются лишь в определенных пределах. Например, для компрессоров и автомобильных двигателей б==0,01—0,02 для металлорежунгнх станков — 0,02—0,05 для прессов и ножниц — 0,1—0,15.  [c.130]

Спокойная нагрузка без толчков 1,0 Маломогцные кинематические редукторы и приводы. Механизмы ручных кранов, блоков. Тали, кошки, ручные лебедки. Приводы управления  [c.107]

Ошибки шага и профиля нарушают кинематическую точность и плавность работы передачи. В передаче сохраняется постоянным только среднее значение передаточного отношения i. Мгновенные значения i в процессе вращения периодически изменяются. Колебания передаточного отношения особенно нежелательны в кииедгатмческпх цепях, вы.полняющих следящие, делительные и измерительные функции (станки, приборы и др.). В силовых быстроходных передачах с ошибками шага и профиля связаны дополнительные динамические нагрузки, удары и шум в зацеплении.  [c.101]

Точность изготовления зубчатых передач регламентируется СТ СЭВ 641—77, который предусматривает 12 степеней точности. Каждая степень точности характеризуется тремя показателями 1) нормой кинематической точности, регламентирующей наибольшую погрешность передаточного отношения или полную погрешность угла поворота зубчатого колеса в пределах одного оборота (в зацеплении с эталонным колесом) 2) нормой плавности работы, регламентнруюнгей многократно повторяющиеся циклические ошибки передаточного отношения или угла поворота в пределах одного оборота 3) нормой контакта зубьев, регламентирующей ошибки изготовления зубьев и сборки передачи, влияющие на размеры пятна контакта в зацеплении (распределение нагрузки по длине зубьев).  [c.101]


Винтовая передача (рис. 8.56) осуществляется цилиндрическими косозубыми колесами. При перекрестном расположении осей валов начальные цилиндры колес соприкасаются в точке, поэтому зубья имеют точечный контакт. Векторы окружных скоростей колес направлены под углом перекрещивания, поэтому в зацеплении наблюдается больиюе скольжение. Точечный контакт и скольжение приводят к быстрому износу и заеданию даже при сравнительно небольших нагрузках. Поэтому винтовые передачи применяют главным образом в кинематических цепях приборов. В силовых передачах их заменяют червячными передачами с многозаходными червяками. Во многих случаях такая замена целесообразна и в передачах приборов. Проч-  [c.171]

Большие нагрузки на валы и опоры и неизбежность проскальзывания между телами качения ограничивают применение фрикционных передач, несмотря на их существенные достоинства — простоту, бесшумность и возможность использования для бесступенчатого регулированил скорости. Фрикционные передачи с постоянным передаточным числом применяют преимущественно в кинематических цепях приборов.  [c.82]


Смотреть страницы где упоминается термин Нагрузка кинематическая : [c.201]    [c.55]    [c.113]    [c.548]    [c.211]    [c.325]    [c.286]   
Моделирование конструкций в среде MSC.visual NASTRAN для Windows (2004) -- [ c.291 ]



ПОИСК



Влияние кинематических параметров процесса прохождения колебаний на нагрузки в механизмах

Кинематически возможные состояния и кинематический метод определения предельной нагрузки

Кинематический метод определения предельной нагрузки

Кинематический метод определения предельной нагрузки (кинематическая теорема)

Метод допускаемых напряжений определения нагрузки кинематический

Нагрузки предельные 208 — Кинематический метод определения 211 Статический метод определения 209Оценка

Нагрузки предельные 208 — Кинематический метод определения 211 Статический метод определения 209Оценка ние условия пластичности ТрескаСен-Венана 232—235 — Примеры

Нагрузки предельные 208 — Кинематический метод определения 211 Статический метод определения 209Оценка определения

Нагрузки предельные Кинематический метод кольцевых пластин — Примеры

Нагрузки предельные Кинематический метод круглых пластин — Использов

Перераспределение нагрузки в кинематических парах

Примеры определения предельной нагрузки кинематическим методом

Распределение нагрузок в звеньях привода и компоновка кинематических схем

Статический коэффициент. Предельная нагрузка. Теорема о единственности предельной нагрузки. Кинематический коэффициент. Основная теорема о предельной нагрузке. Теорема о существовании девиатора напряжений для предельной нагрузки Стационарные течения

Уравновешивание динамических нагрузок п кинематических парах



© 2025 Mash-xxl.info Реклама на сайте