Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Детали Несущая способность

Несущая способность деталей при действии статических напряжений соответствует тем значениям нагрузок, при которых либо возникают перемещения, превышающие предельно допустимые (несущая способность по пере.мещениям), либо резко увеличиваются линейные или угловые относительно деформации при незначительном увеличении нагрузки (несущая способность по деформации), либо возникает разрушение детали (несущая способность по разрушению).  [c.486]


При действии на деталь статических или кратковременных (не вызывающих разрушения) нагрузок в предельном состоянии должна еще обеспечиваться нормальная работа машины. Нарушение нормальной работы машины может происходить в результате разрушения детали за счет достижения значительных перемещений какого-либо узла, а также в том случае, когда при малых возрастаниях нагрузок резко увеличивается деформация детали. Поэтому несущая способность деталей при действии статических нагрузок соответствует тем их значениям, при которых возникает разрушение детали (несущая способность по разрушению), или возникают перемещения, превышающие предельно допустимые (несущая способность по перемещениям), или резко увеличиваются деформации (несущая способность по деформациям).  [c.71]

Несущая способность при действии переменных напряжений определяется сопротивлением детали усталостному разрушению. Несущая способность определяется теми нагрузками, которые вызывают начало разрушения в наиболее напряжённых или технологически наиболее ослабленных местах. Это разрушение в виде трещин усталости обычно распространяется по сечению детали, приводя её к окончательной поломке. В зависимости от условий работы детали несущая способность может определяться для любого числа циклов, а также для режимов переменных напряжений, меняющихся по величине. Предельные нагрузки по сопротивлению усталости определяются экспериментально и аналитически в связи с типом напряжённого состояния, конструкцией детали, технологическими и другими факторами.  [c.334]

Чаще всего несущую способность соединения лимитируют не напряжения смятия на контактных иоверхностях, а напряжения разрыва в охватывающей детали или сжатия в охватываемой.  [c.462]

Шлицевые соединения имеют по сравнению со шпоночными следующие преимущества а) большую несущую способность при одинаковых габаритах благодаря значительно большей рабочей поверхности и равномерному распределению давления по высоте зубьев б) большую усталостную прочность вала в) детали на валах лучше центрируются и имеют лучшее направление при передвижении вдоль вала.  [c.131]

При расчете на усталость предельное сопротивление должно включать соответствующие коэффициенты, уменьшающие несущую способность детали (коэффициент концентрации, масштабный коэффициент и т. д.).  [c.336]

Соединения призматическими шпонками (рис. 3.44) имеют наибольшее распространение. Стандартизованы обыкновенные и высокие призматические шпонки. Последние обладают повышенной несущей способностью, их применяют, когда закрепляемые детали (ступицы) имеют малую длину. Момент передается узкими боковыми гранями шпонок. По форме торцов различают шпонки трех исполнений А, В и С (рис. 3.45). Шпонки с закругленными торцами (исполнение А) обычно размещают на валу в пазах, обработанных пальцевой фрезой (рис. 3.45, а) плоские торцы шпонок (исполнение В и С) помещают вблизи деталей (концевые шайбы, кольца и т. д,), препятствующих осевому перемещению шпонок (рис. 3.45, б).  [c.295]


Пластмассовые колеса из текстолита ПТ, ПТК и полиамидной смолы П-68 применяют в передачах, где требуется бесшумная работа, а детали должны обладать коррозионной стойкостью, износостойкостью, небольшой массой и инерционностью. Несущая способность передач с пластмассовыми колесами в 3... 5 раз ниже по сравнению с колесами из стали.  [c.204]

Призматические шпонки широко применяют в неподвижных соединениях. Стандартизованы обыкновенные и высокие шпонки шириной до ft = 100 мм для валов с d 5О0 мм (табл. 16). Высокие шпонки обладают повышенной несущей способностью, их применяют, когда закрепляемые детали (втулки) имеют малую длину или изготовлены из материала, плохо работающего на смятие.  [c.372]

Практика эксплуатации реальных деталей показывает, что из-за концентрации напряжений, неточности сборки, влияния среды и т. п. стадия разрушения, состоящая из возникновения и развития трещины, начинается задолго до исчерпания несущей способности детали. При этом прочность материала детали не реализуется. В результате постепенного роста трещины длительность процесса разрушения от начала до полного разрушения занимает 90 % времени жизни детали и более. Вот почему практически интересно не столько наличие трещины, сколько скорость ее роста в lex или иных условиях. В связи с этим основная задача механики разрушения — изучение прочности тел с трещинами, геометрии трещин, а также разработка критериев несущей способности элементов конструкций с трещинами.  [c.728]

Статистическая оценка действующих в детали номинальных переменных напряжений и напряжений, характеризующих ее несущую способность (с учетом влияния концентрации, неравномерности распределения напряжений и размеров сечений) позволяет определить запас прочности в зависимости от вероятности разрушения для совокупности одинаковых деталей парка однотипных изделий. Для стационарно нагруженных изделий условие разрушения отдельных из них определяется вероятностью превышения амплитуды переменных напряжений ffa над пределом выносливости (ст-1)д, имея в виду их статистическое распределение, независимое друг от друга. Разность этих величин, если они описываются нормальным распределением  [c.168]

При статических напряжениях. При статическом нагружении деталей (когда число циклов за весь период работы 10 ), изготовленных из пластичных материалов, концентрация напряжений не снижает несущей способности детали, так как местные пластические деформации способствуют перераспределению и выравниванию напряжений по сечению. В этом случае расчеты на прочность выполняют по номинальным напряжениям а или т.  [c.17]

Усталостное разрушение материала не обязательно должно привести к поломкам детали. Возможно возникновение усталостных трещин, которые до определенных размеров незначительно снижают работоспособность изделия, и опасность представляет в основном возможность их быстрого роста, приводящая к снижению несущей способности изделия.  [c.83]

Наиболее характерным проявлением процесса старения материала является необратимая деформация детали. Рост деформации во времени приводит к постепенному изменению начальных параметров изделия, и при высоких требованиях к точности, которые характерны для современных машин, отказ наступает значительно раньше, чем будет исчерпана несущая способность детали.  [c.84]

Например, при местных повреждениях тела детали или при возникновении пластических зон о степени повреждения судят по потере несущей способности (прочности) о локальных повреждениях золотника гидросистемы судят по падению давления и т. п.  [c.92]

Потеря несущей способности детали  [c.99]

Следовательно, ни в пределах заданного ресурса конструкции, ни тем более при продлении ее ресурса невозможно обеспечить безопасную эксплуатацию без учета факта появления и развития усталостных трещин. Именно поэтому в практику введен принцип конструирования отдельных деталей и конструкции в целом по безопасному повреждению [2-4]. В ряде мест конструкции допускаются усталостные трещины. Их размер определяется предельной несущей способностью детали и всего узла. Существование трещины в такой ситуации не является браковочным признаком для замены детали. На первый план выходит представление о длительности последующего, после обнаружения, роста трещины в эксплуатации до критических размеров. Получить такую информацию наиболее достоверно можно только на основе непосредственного анализа скорости роста трещины в эксплуатации и на основе использования подходов механики разрушения к определению предельного состояния тел с трещинами.  [c.18]


Устанавливаемый в отверстия крепеж выбирают с учетом различных требований, которые предъявляются именно к крепежным элементам. Для высокой эффективности задержки развития трещин твердость и несущая способность (усталостная прочность) крепежа должны быть выше ремонтируемой детали (элемента конструкции). При установке крепежа необходимо обеспечивать небольшой натяг в отверстии, что увеличивает интенсивность поля сжимающих напряжений вдоль поверхности отверстия. Поскольку осуществление этой операции является технологически сложным, то можно в каждое отверстие под болт помещать специальные полувтулки (А. с. 1165552 СССР. Опубл. 07.07.85. № 25). Их ориентируют плоскостью разреза вдоль плоскости распространения усталостной трещины. В отверстия полувтулок устанавливается крепеж с радиальным натягом 5-  [c.447]

Природа образования повреждений в элементах конструкций при термоциклических нагрузках сложна, мало изучена, и до настоящего времени от--200 сутствуют прямые методы измерения и оценки повреждаемости материала поэтому повреждаемость оценивают -400 показателями, характеризующими несущую способность или долговечность детали.  [c.16]

ЭТОГО параметра можно установить момент потери несущей способности конструктивным элементом в связи с появлением значительных пластических деформаций в характерном сечении детали.  [c.120]

Предельные отклонения формы и расположения поверхностей должны назначаться только тогда, когда по условиям эксплуатации или изготовления деталей соединения величины отклонений формы и расположения должны быть меньше допуска на размер. Отклонения формы должны регламентироваться комплексными показателями, так как они, характеризуя совокупность встречающихся отклонений, позволяют наиболее полно ограничить отклонения формы и более обоснованно установить требования к точности формы исходя из эксплуатационного назначения детали. Исключения могут быть допущены лишь в тех случаях, когда по конструктивным или технологическим условиям требуется установление дифференцированных показателей отклонений формы, например, в подшипниках качения. Отклонение формы и расположения поверхностей уменьшает контактную жесткость стыковых поверхностей деталей машин и быстро изменяет установленный при сборке начальный характер подвижных посадок. В подвижных посадках деталей, работающих при жидкостном трении, когда между трущимися поверхностями находится слой смазки и они не имеют непосредственного контакта, указанные погрешности приводят к неравномерному зазору в продольных и поперечных сечениях, что нарушает ламинарное течение смазки, повышает температуру и снижает несущую способность масляного слоя.  [c.164]

Несущая способность деталей при действии статических нагрузок, при которой сохраняется надежная работа машин, бз дет обеспечена при действии на деталь нагрузок, не вызывающих разрушения деталей, недопустимых условиями эксплуатации перемещений и деформаций. В условиях длительного действия статических нагрузок и повышенных температур расчет на ирочность конструктивных элементов (детали паровых и газовых турбин, реакторов и др.) основывается на анализе перераспределения напряжений в связи с ползучестью материала и на оценке сопротивления хрупкому разрушению металла, постепенно теряющего пластичность. В результате ползучести деформации деталей могут во времени достигать  [c.221]

На рис. 242 схематично изображена одна из таких колодок А. При вращении вала колодка установится к опорной плоскости пяты под некоторым углом е, обеспечивающим клиновое действие зазора и несущую способность масляному слою. Сегментные пяты представляют собой существеннейшие детали в гидротурбинах и в паровых и газовых турбинах [45, 461.  [c.346]

При выполнении пригоночных работ в процессе сборки необходимо учитывать, что состояние поверхности, наряду с качеством материала и способом изготовления детали, существенно влияет на ее прочность, надежность и долговечность. На шероховатых поверхностях смазка растекается по микроскопическим впадинам несущая способность масляного слоя вследствие этого снижается, происходит частичное или полное соприкосновение трущихся поверхностей, сопровождаемое деформацией срезания выступов, т. е. быстрым износом.  [c.76]

Это распределение свойственно внезапным отказам, характерным для статических разрушений от однократной перегрузки. Параметр X является чувствительной характеристикой надежности в смысле сопротивления таким отказам, опасность которых убывает с увеличением срока службы. Отказы по прочности, оцениваемые как разрушения или повреждение трещинами, могут возникнуть в результате постепенного изменения состояния материала и несущей способности детали. Это, как упоминалось, связано с процессами усталости, длительного статического повреждения при повышенных темпера-  [c.140]

В курсе Детали машин студенты могут продолжить освоение вероятностных представлений о запасах прочности и о роли точности сопряжений, конструктивных и технологических факторов для несущей способности.  [c.289]

Эффективность дробеструйного наклепа оценивают а) по повышению срока службы детали в эксплуатации или по ее долговечности (в часах или в циклах нагружений) при стендовых испытаниях б) по повышению несущей способности летали, т. е. по повышению той предельной нагрузки (того напряжения), при которой деталь еще не разрушается при определенном количестве циклов нагружений. Дробеструйный наклеп особенно эффективен 1) в отношении деталей, на поверхности которых сосредоточены концентраторы напряжений 2) в тех случая, когда поверхностные слои детали являются носителями вредных растягивающих напряжений, обусловленных ранее проведенными технологическими процессами, или когда они испытывают повышенную напряженность вследствие самого характера нагружения детали (изгиб, кручение) 3) при обработке деталей повышенной твердости, прошедших жесткую термическую обработку.  [c.586]


При недостаточных радиальных размер х опоры иногда используют подшипники, кольцами которых служ т непосредственно детали узла, например вал и корпус, между которыми расположены тела качения с сепаратором или без него. Во подшипники качения выполняют в основном стандартных размеров, с разделением па размерные серии по диаметрам и ширине. По диаметрам подшипники качения имеют две сверхлегкие, две особо легкие, две легкие, среднюю и тяжелую серии, а по ширине — узкую, нормальную, широкую и особо широкую. Ряд однотипних подшипников, размеры (диаметры и ширина) которых соответсгвуют размерным рядам ГОСТа, составляют стандартную размерную серию, в которой одинаковые по конструкции подшипники с одним и тем же посадочным размером внутреннего кольца инеют разные диаметры наружных колец и ширину. Наличие различных серий подшипников качения позволяет применять подшипники различной несущей способности при одних и тех же посадочных размерах валов.  [c.87]

EA/d = 1. Давление (а следовательно, и несущая способность соединения) максимально при д = 2 = О, слабо снижается при увеличении й1 и.Дг до 0,5 (заштрихованный участок),-а с дальнейщим увеличением Дт и Дг (тонкостенные детали) резко падает, стремясь к нулю при =Дг = 1.  [c.463]

Применение мягких покрытий и сборка с охлаждением вала повышают несущую способность соединений в 3 — 4 раза по сравнению с соединениями без покрытий, собираемыми под прессом. Следовательно, при заданной несущей способности появляется возможность применять меньшие натяги с соответственным у.меньщением растягивающих напряжений в охватывающей детали и напряжений сжатия в охватываемой. Кроме того, гальванические покрытия предохраняют контактные поверхности от коррозии и предотвращают сваривание.  [c.485]

Однако в условиях эксплуатации деталей, в результате наличия надрезов, перекосов, влияния среды и т.п., стадия разрушения (т.е. возникновение и развитие трещины) появляется задолго до исчерпания несущей способности (до максимальной величины нагрузки, выдерживаемой деталью). При этом прочность материала (детали в идеализированных условиях) недоиспользуется или даже не используется вовсе. Длительность процесса разрушения (роста трещины) до полного разрушения занимает значительную часть жизни детали, доходя до 90% и выше. Главное - темп роста трещины, а не факт ее наличия. Поэтому для повышения прочности необязательно повышать среднее сопротивление отрыву - достаточно регулировать процесс появления и, в особенности, развития трещин. В конструкциях применяют различные препятствия, тормозящие развитие трещин и сигнализирующие об их появлении, а также дополнительные элементы конструкции, берущие на себя часть нагрузки при уменьшении жесткости от возникшей трещины. Необходимо развивать методы расчета, пути распространения трещины (траектории трещины), связи ее размеров с внешней нагрузкой и кинематические характеристики движения конца трещины.  [c.118]

В первом случае будут иметь место внезапные отказы, так как превышение внешними нагрузками допустимых значений не связано с длительностью предшествуюш,ей эксплуатации изделия. Усталостные разрушения относятся к постепенным отказам, так как при работе детали происходит изменение несущей способности материала, и время предшествующей эксплуатации (число циклов нагружения) влияет на вероятность возникновения отказа — усталостной поломки детали.  [c.82]

Подземные детали, изготовленные из нелегпрованных черных металлов, могут быть поражены равномерной сплошной коррозией, а также язвенной и сквозной. Вид коррозии зависит от свойств грунта, но в первую очередь от протяженности и свойств подземного сооружения у сооружений малой площади или не имеющих пассивной защиты обычно преобладает равномерная сплошная коррозия, тогда как у сооружений большой площади или имеющих пассивную защиту, например у трубопроводов, следует ожидать преимущественно местную коррозию. Для оценки коррозионной опасности решающим фактором является рассмотрение функционального назначения сооружения (см. раздел 2.1). Так, для трубопроводов и резервуаров коррозионное разъедание (местная коррозия) представляет существенную опасность ввиду возможного прорыва стенки, тогда как равномерная сплошная коррозия практически не имеет значения. Напротив, у подземных транспортных сооружений, например у транспортных туннелей, равномерная сплошная коррозия может снизить несущую способность. Местная коррозия при этом представляет второстепенный интерес.  [c.137]

Система нагружения. На рис. 1 изображена схема нового криостата. Все силовые детали изготовлены из сплава Ti—6А1—4V. Титан и его сплавы по сравнению с другими традиционными конструкционными материалами при низких температурах имеют значительно больший предел текучести и меньшую теплопроводность. Верхнее и нижнее основания соединены тремя полыми титановыми штангами диаметром 13, длиной 457, толщиной стенки 0,25 мм. Верхнее основание крепится болтами к криостату. В средней части штанги дополнительно фиксируются пластиной. Основания и промежуточная пластина, создавая достаточную жесткость конструкции, обеспечивают течение гелия вдоль стенок сосуда Дьюра. Дополнительными элементами жесткости служат цилиндры (толщина стенки 1.6 мм), концентрично расположенные между нижним основанием и промежуточной пластиной, изготовленные из нержавеющей стали. Цилиндры находятся в жидком гелии и не являются дополнительным теплопроводом. В цилиндрах размещаются электрические провода и трубки для подачи гелия. Диаметр титановой тяги составляет 3.2 (нижняя часть) и 6.3 мм (верхняя часть). Такая тяга выдерживает нагрузку до 4,5 кН (при комнатной температуре). При низких температурах несущая способность удваивается (Э,0 кН при 4 К). Соосность образца относительно оси растяжения обеспечивается жесткими допусками на обработку ( 0,013 мм) и посадочным местом между нижним основанием и гайкой на конце тяги, имеющем сферическую поверхность.  [c.385]

Однако то, что является предельным для материала, не является предельным для конструкции. Выше уже говорилось, что появление пластических деформаций в небольшом объеме детали не нарушает существенно несущей способности конструкции. Мало того, даже возникновение местных трещин далеко не всегда приводит к разрушению конструкции. Примером тому могут служить железобетонные конструкции, в которых образование местных трещпп не вызывает, как правило, опасений за все сооружение в целом.  [c.84]

Старение деталей машин, их несущая способность и прочность при переменной нагруженности зависят от концентрации напряжений, абсолютных размеров, свойств материалов и качества поверхностного слоя деталей, окружающей среды п других факторов. Металлографические, рентгеновские и исследования, выполненные с помощью электронных микроскопов, позволили открыть ряд новых явлений, сопровождающих повторную деформацию и последующее (часто внезонное) разрушение материалов под действием повторных нагрузок. Это явление называется пределом выносливости металлов. Субми-кроскопические трещины усталости образуются на ранней стадии деформирования, после числа циклов, составляющего 10—20% общей долговечности. Видимая трещина образуется незадолго до окончательного разрушения детали. С помощью методов дефектоскопии в ряде случаев можно контролировать величину и скорость распространения трещин в деталях машин и определять пределы безотказной работы при медленно развивающихся трещинах усталости.  [c.223]


В начальной стадии пластического деформирования наиболее интенсивно происходит перераспределение напряжений по сечению деталей, приводящее к увеличению несущей способности детали. По мере роста пластических деформаций, когда они в два-три раза превосходят деформации, соответствующие пределу текучести материала, процесс перераспределения напряжений ослабевает. Несущая способность детали повышается медленнее и в основном вследствие упрочнения материала. При отсутствии упрочнения нарастание деформаций существенно опережает рост нагрузки. Так как при указанном уровне пластических деформаций в зонах краевого эффекта они, как правило, охватывают все сечение детали, этот уровень является в данной работе исходным для проверки сходимости метода расчета. Как показали приведенные расчеты, сходимость предложенного метода является весьма быстрой. Как правило, достаточным оказывается вьшолнение четырех-пяти приближений. Время расчета при этом составляет для ЭВМ типа БЭСМ-6 несколько секунд.  [c.214]

Рассматривая несущую способность конструкции как случайную величину, характеризующуюся некоторой генеральной совокупностью значений, можно, сказать,что в результате испытаний получается случайная выборка малого объема из генеральной совэкуоности значений несущей способности испытуемой конструкции. Увеличение объема выборки путем увеличения числа испытываемых образцов одной той же ковструкции в большинстве случаев экономически не выгодно. В этих условиях необходимое увеличение может быть достигнуто путем объединения в одну выборку результатов испытаний различных конструкций, т.е. объединения случайных выборок из различных генеральных совокупностей. Получаемая при этом случайная выборка бу дет характеризовать некоторую генеральную совокупность,которая является композицией генеральных совокупностей исходных конструкций.  [c.78]


Смотреть страницы где упоминается термин Детали Несущая способность : [c.414]    [c.93]    [c.43]    [c.322]    [c.336]    [c.117]    [c.13]    [c.19]    [c.167]    [c.109]   
Справочник машиностроителя Том 3 (1951) -- [ c.332 , c.342 ]

Справочник машиностроителя Том 3 Изд.2 (1956) -- [ c.287 ]



ПОИСК



Несущая способность

Ток несущий



© 2025 Mash-xxl.info Реклама на сайте