Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пластическая деформация поверхностного слоя

Вредное влияние микронеровностей поверхности во многих случаях смягчается пластической деформацией, вызываемой в поверхностном слое механической обработкой и распространяющейся на некоторую глубину, зависящую от режимов резания и, в частности, от величины подачи. При грубой обточке она может достигать 1 мм и более, а при шлифовании и полировании измеряется сотыми долями миллиметра и микрометрами. Пластическая деформация поверхностного слоя может повысить предел выносливости на 10—20 %.  [c.672]


Значение предела выносливости может быть повышено упрочнением поверхностных слоев материала деталей. Это упрочнение может быть достигнуто двумя способами за счет пластической деформации поверхностных слоев (обкатка роликами, дробеструйная обработка) и за счет их термической и термохимической обработки (поверхностная закалка токами высокой частоты, азотирование). В этих случаях Кг > 1.  [c.341]

Механическая обработка материалов неизбежно вызывает упругую и пластическую деформации поверхностных слоев. Структурные особенности твердых тел хороню описываются теорией дислокаций. В соответствии с этой теорией структура любого кристаллического тела представляет собой сложную систему блоков, фрагментов зерен и выходов отдельных групп дислокаций. Дислокационная структура конкретного кристаллического тела на его поверхности реализуется в виде тонкой системы впадин и выступов.  [c.46]

При работе машины отказ деталей может возникнуть в результате их поломки, деформации, износа или пластической деформации поверхностных слоев, тепловых трещин, коррозии и т. д. (см, гл. 2, п. 3).  [c.35]

При работе, например, деталей газовых турбин, двигателей внутреннего сгорания воздействие термоусталостных напряжений сопровождается газоабразивным изнашиванием, коррозионным разрушением поверхности. Одним из эффективных способов защиты поверхности от воздействия продуктов сгорания является нанесение специальных покрытий. Известно, что усталостные трещины (в том числе и термоусталостные) зарождаются обычно на поверхности изделия. Поэтому важно знать характер влияния покрытия на кинетику термоусталостного разрушения. Защищая основной металл от воздействия среды, т. е. увеличивая тем самым долговечность, покрытие может стеснять пластическую деформацию поверхностных слоев, способствовать возникновению и росту трещин, уменьшать надежность детали.  [c.128]

Процесс контактной усталости отличается признаками, характерными для любого вида усталости (образование и постепенное развитие трещин, наличие в ряде случаев физического предела усталости, влияние концентрации напряжений, зависимость долговечности от нагрузки) и некоторыми индивидуальными. К иим относятся специфическое напряженное состояние при контактном нагружении, значительная пластическая деформация поверхностного слоя, явления трения и износа, протекающие параллельно с контактной усталостью, расклинивающая роль смазки, попадающей в трещины, а также некоторая условность критерия разрушения, связанная с тем, что контактно-усталостные выкрашивания в отличие от обычных усталостных разрушений приводят не к внезапным, а к постепенным отказам.  [c.272]


По контуру лунок могут быть видны следы пластической деформации металла и связанное с этим дробление структурных составляюш их (рис. 30). В данном случае рассматривается качественная картина рельефа изнашивания сталей высокой твердости. В рельефе изнашивания превалирует явно выраженная пластическая деформация поверхностного слоя. С увеличением содержания углерода в стали, а следовательно, ее твердости, после закалки глубина лунок уменьшается. Так, при сравнении рельефа сталей 20 и У10 установлено, что размеры лунок в стали У10 значительно меньше, чем в стали 20. Можно полагать, что глубина лунок предопределяет признаки хрупкого выкрашивания (рис. 31) или образование бугристой поверхности, не имеющей лунок. Это подтверждает предположение о том, что в сталях разной твердости и разного состава процесс формирования и отделения продуктов изнашивания идет по-раз-иому.  [c.77]

Предварительная подготовка поверхности с помощью пескоструйной или дробеструйной обработки [18, 19] представляет собой механическую обработку поверхности металлов струей рабочего материала, выбрасываемого с большой скоростью на поверхность обрабатываемого материала, без удаления стружки. Исходя из этого, на данный способ нельзя распространять законы обработки резанием или шлифованием. При такой обработке струя рабочего материала направляется на поверхность металла, и часть кинетической энергии падающей гранулы расходуется на пластическую деформацию поверхностных слоев и пластическую деформацию или раскалывание гранулы. Характер обработанной поверхности определяется формой гранул.  [c.66]

Особенности пластической деформации поверхностных слоев по сравнению с объемом материала могут оказать существенное влияние па процессы трения и износа. Согласно [60, 71, 73], толщина слоя с ослабленными механическими характеристиками ориентировочно равна размеру зерна. Во многих случаях эта величина соизмерима с зоной пластической деформации и разрушения при трении. В то же время при расчетах числа циклов до разрушения и интенсивности износа используются константы механических характеристик, свойственные материалу в объеме. По-видимому, это одна из причин того, что расхождение между расчетными и экспериментальными значениями интенсивности износа составляет не менее 50%, а в некоторых случаях они различаются на порядок. Количественное изучение структурных и энергетических закономерностей пластической деформации поверхностных слоев непосредственно в процессе трения необходимо для уточнения расчета сопряженных деталей на долговечность и поиска структурных критериев разрушения.  [c.27]

Для выявления роли смазки в характере развития пластической деформации поверхностного слоя проводились исследования в условиях, аналогичных испытанию при сухом трении (см. 3 главы 3). Смазка наносилась на поверхность капельным способом. Структурные изменения характеризовались шири-  [c.63]

Условия упруго-пластической деформации поверхностного слоя при обработке резанием весьма сложны давление, скорость деформации металла и температура по глубине поверхностного слоя затухают, имея максимум на поверхности.  [c.20]

Пластическая деформация поверхностного слоя сопровождается увеличением числа дефектов и искажением кристаллической решетки, изменением субструктуры и микроструктуры металла поверхностного слоя. В металле поверхностного слоя резко возрастает количество дислокаций, вакансий и других несовершенств кристаллической решетки, повышая его напряженность. Взаимодействие полей напряжений дислокаций между собой и с другими дефектами решетки затрудняет движение дислокаций, сопротивление пластической деформации возрастает, металл упрочняется (наклеп, деформационное или механическое упрочнение). Число дефектов в кристаллической решетке поверхностного слоя зависит от степени пластической деформации. Степень деформации, а следовательно, и число дефектов в решетке по глубине поверхностного слоя переменные, они уменьшаются с его глубиной.  [c.50]


При механической обработке деталей пластическая деформация поверхностного слоя металла сопровождается увеличением плотности дислокаций, концентрацией вакансий и других дефектов кристаллической решетки. Плотность дислокаций зависит непосредственно от степени деформации.  [c.131]

Пластическая деформация поверхностного слоя, соответствующая такой большой степени наклепа, в условиях циклического нагружения и действия высокой температуры, ускоряет диффузионные процессы, вызывая разупрочнение и потерю несущей способности металла поверхностного слоя.  [c.212]

В этих машинах (рис. П1.1, а) электродвигатель 1 преобразовывает энергию электрического тока в механическую энергию и передает ее производственной машине 2 непосредственно либо через передаточный механизм 3 (рис. П1.1, б). Bi производственной машине механическая энергия преобразовывается в работу, обусловленную технологическим процессом. Например, если производственной машиной является токарный станок, то механическая энергия затрачивается на работу пластической деформации поверхностных слоев обрабатываемого изделия и на трение между поверхностями резца и стружки, где они превращаются главным образом в теплоту, которая рассеивается в окружающую среду. Таким образом, в производственных машинах получаемая ими энергия поглощается окончательно.  [c.29]

Применение в гидравлических агрегатах пары трения металл по металлу также связано с определенными трудностями. Так, например, при взаимодействии бронзовой направляющей втулки и стального цилиндра гидродомкрата возможно появление сопутствующего износа — схватывания 1-го рода, т. е. интенсивного разрушения поверхностей деталей при трении. Выражается это в пластической деформации поверхностных слоев, возникновений  [c.40]

Фрикционное латунирование поверхностей образцов предотвращает схватывание и повреждение поверхностей трения и снижает усилия на протягивание образцов соответственно при температуре 15—20° С с 260 до ПО даН, при 200° С и сухом трении с 780 до 115 даН и при 200° С в условиях смазки ЦИАТИМ-201 с 420 до 130 даН. При испытании образцов на протягивание латунное покрытие, несмотря на пластическую деформацию поверхностного слоя, остается сплошным, что свидетельствует о высокой сцепляемости латунного покрытия со стальной поверхностью.  [c.145]

Процесс схватывания первого рода возникает и развивается главным образом в результате обычной пластической деформации поверхностных слоев металла под действием механических сил, возникающих при трении. Пластическая деформация в этом случае способствует образованию ювенильных поверхностей трения металлов, их сближению, образованию металлических связей и обусловливает интенсивность и характер разрушения поверхностей трения. Этот процесс не связан с влиянием температуры и диффузионными явлениями.  [c.8]

Процесс схватывания второго рода является более сложным процессом. Он возникает главным образом в результате сложной пластической деформации поверхностных слоев металлов под действием механических сил.  [c.16]

К основным причинам возникновения остаточных напряжений в поверхностных слоях деталей, обрабатываемых резанием, относятся пластическая деформация поверхностного слоя, связанная с увеличением удельного объема наклепанного поверхностного слоя металла неравномерная пластическая деформация  [c.385]

Обыкновенно обкатка галтелей дает значительное повышение усталостной прочности деталей, работающих под циклической нагрузкой. Способы упрочнения галтелей на Уралмашзаводе показаны в табл. 29. Обкаткой роликом упрочняются галтели с радиусом до 5—8 мм и свыше 100 мм. Обкатка галтелей радиусом 12—15 мм производится шариком, который разрешает повысить контактное давление в зоне пластической деформации поверхностного слоя. Галтели радиусом от 15 до 80 мм создают еще более значительную концентрацию напряжений, и их упрочнение производится способом динамического наклепа — ударниками.  [c.218]

При трении скольжения поверхностей твердых тел происходят процессы упруго-пластических деформаций поверхностных слоев, процессы  [c.215]

Обработка обкатыванием заключается в пластической деформации поверхностного слоя детали гладким полированным роликом высокой твердости. При этом в результате смятия неровностей, оставшихся от предшествующей обработки, создается новый профиль поверхности с уменьшенной высотой микро-неровностей.  [c.138]

Поверхностный наклеп является эффективным средством повышения усталостной прочности деталей, работающих в условиях циклических нагрузок. Наклеп может осуществляться различными методами пластической деформации поверхностного слоя дробеструйным и центробежным способами, обкатыванием роликами, чеканкой ударниками и т. д. 166].  [c.157]

Высокая эффективность поверхностного наклепа для образцов с концентраторами напряжений объясняется благоприятной ролью остаточных напряжений сжатия, возникающих при пластической деформации поверхностного слоя. Они позволяют в большой мере или даже полностью устранить вредное влияние концентраторов на прочность.  [c.157]

Известно в практике работы заводов упрочнение поверхностным наклепом валков обжимного стана 830. В результате обкатки ручьев срок службы валков увеличивается в среднем с 850 до 1400 н работы [58]. Многократное увеличение долговечности получено при эксплуатации таких упрочненных деталей, как клапанные пружины, рессоры, торсионные валы, железнодорожные оси и т. п. [63, 671. Однако данных, характеризующих эффективность поверхностного наклепа деталей диаметром более 200—250 мм, известно очень мало. В то же время в тяжелом машиностроении часто возникает необходимость упрочнения крупных деталей. Суждение об эффективности поверхностного упрочнения для деталей, имеющих диаметр 500 мм и более, может быть высказано на основании исследований пластической деформации поверхностного слоя и остаточной напряженности металла крупных деталей.  [c.158]


В общем случае физико-химическое взаимодействие твердых тел при трении определяется протеканием пластической деформации поверхностных слоев. Высокие температуры являются вторым фактором, активирующим диффузионные процессы в зоне трения.  [c.34]

Таким образом, проведенные исследования показывают, что пластическая деформация поверхностных слоев кристаллических материалов в условиях нагружения их силами контактного трения протекает па очень малой глубине (порядка 500—10 000 А) й при этом она может полностью обеспечить процесс образования соединения в твердой фазе.  [c.104]

Окислительный износ возникает под воздействием сил трения и кислорода окружающей среды. В процессе окислительного износа происходит пластическая деформация поверхностных слоев сопряженных деталей и диффузия кислорода в пластически деформируемые слои. Образующиеся при этом пленки твердых растворов во время работы сопряженной пары разрушаются.  [c.135]

Чрезвычайно важным фактором в оценке кавитационной эрозии является время. Чем больше продолжительность воздействия кавитации на направляющую поток поверхность, тем большему разрушению она будет подвергнута. Однако развитие эрозии во времени происходит нелинейно., Как показали опыты [21, 77, 111], кавитационное разрушение материала начинается не сразу, а по истечении времени, которое обычно называют инкубационным периодом. В течение этого периода происходят, как правило, значительные пластические деформации поверхностного слоя материала без каких-либо существенных потерь объема или веса.  [c.39]

В результате давления шарика на обрабатываемую поверхность происходит пластическая деформация поверхностного слоя.  [c.213]

Общие сведения. Отделочная обработка на токарных станках производится в основном в тех случаях, когда необходимо уменьшить шероховатость обработанной поверхности при невысоких требованиях к точности. Это достигается тонкой пластической деформацией поверхности детали, в результате сглаживаются гребешки микронеровностей и образуется наклепанный слой металла глубиной до 0,02 мм, который обеспечивает повышение твердости поверхности детали примерно на 30 %. Тонкая пластическая деформация поверхностного слоя металла может быть получена обкатыванием вращающимися роликами или шариками, а также выглаживанием инструментом из твердых или сверхтвердых материалов. Для достижения высокой точности размеров детали и снижения шероховатости поверхности применяется метод притирки (доводки).  [c.177]

Широкое применение закона Зибеля в теории обработки металлов давлением объясняется двумя обстоятельствами. Во-первых, применение условия Зибеля вместо закона Амонтона во многих случаях позволяет значительно упростить математические операции и получить более простые конечные формулы. Во-вторых, по мнению многих исследователей, закон Зибеля более правильно отражает физическую суть процесса трения, поскольку возникновение сил трения связано с пластической деформацией поверхностного слоя металла.  [c.16]

Эффективен наклеп в напряженном состоянии, представляющий собой сочетание упрочнения перегрузкой с наклепом. При этом способе деталь нагружают нагрз зкой того же направления, что н рабочая, вызывая в материале упругие пли упруго-пластические деформации. Поверхностные,слои металла, подвергающиеся действию наиболее высоких напряжений растяжения (случай изгиба) или сдвига (случай кручения), подвергают наклепу (например, дробеструйной обработкой). После снятия нагрузки в поверхностном слое возникают остаточные напряжения сжатия, гораздо более высокие, чем при действии только перенапряжения или только наклепа.  [c.320]

Критерий Гриффитса распространен па случай квазпхрупкого разрушения посредством добавления затрат энергии на пластическую деформацию поверхностного слоя трещины  [c.480]

Упруго-пластическая деформация поверхностного слоя в процессе механической обработки вызывает изменение структурночувствительных физико-механических и химических свойств в металле поверхностного слоя по сравнению с исходным его состоянием. В деформированном поверхностном слое возрастают все характеристики сопротивления деформированию пределы упругости, текучести, прочности, усталости. Изменяются характеристики прочности при длительном статическом и циклическом нагружении в условиях высоких температур. Снижаются характеристики пластичности относительное удлинение и сужение, повышается хрупкость (уменьшается ударная вязкость), твердость, внутреннее трение, уменьшается плотность. Металл в результате пластической деформации упрочняется.  [c.50]

Наибольшее применение взрыв находит при штамповке и сварке, причем сварка может сочетаться с упрочнением. Получение композитных плакированных листовых материалов — основная область применения сварки взрывом. Листовые заготовки из стали, например Ст. 3, могут быть плакированы с обеих сторон листами нержавеющей стали Х18Н10Т, причем толщина наружных слоев составляет всего 10—20% толщины среднего слоя. Листы для сварки укладывают пакетом, сверху насыпается слой взрывчатого вещества, взрыв которого осуществляется от детонатора. Под действием высокого давления происходит пластическая деформация поверхностных слоев соединяемых листов, они разогреваются и сплавляются. Под действием ударной волны зона соединения приобретает, волнистость, прочность соединения оказывается исключительно высокой. Трехслойный лист после закалки и отпуска обладает таким сочетанием механических свойств, которое невозможно получить у каждого из отдельных материалов. Нержавеющая сталь, допустим, имеет предел прочности 60 кгс/мм , в композиции с более прочной сталью ЗОХГСА (а зависимости от соотношения толщины листов), предел прочности может быть 140—150 кгс/мм , относительное удлинение при этом снизится и вместо 30% составит 7 или 10%.  [c.140]

В зависимости от физико-химических свойств и исходной структуры материала деталей, режимов резания, геометрии режущего инструмента на разной глубине поверхностного слоя возникают различные фазовые превращения и изменение физикомеханических свойств поверхностного слоя, что приводит к возникновению в поверхностном слое значительных по величине остаточных напряжений различного знака. На величину и распределение остаточных напряжений наибольшее влияние оказывают скорость резания, нодача и величина переднего угла режущего инструмента. При уве.яичении подачи возрастает толщина снимаемого слоя, увеличивается степень пластической деформации поверхностного слоя, возрастают силы трения и количество тепла, выделяющегося в зоне резания, а следовательно, растут величина и глубина распространения остаточных напряжений.  [c.386]

Наименьшая пластическая деформация поверхностного слоя закаленной стали достигалась после доводки алмазной пастой АСМ5/3.  [c.448]

В кавитационном разрушении материала определенное значение имеет абразивное изнашивание, так как в потоке жидкости в том или ином количестве всегда имеются абразивные частицы [37]. На разрушение влияет и электрохимическая коррозия, которая сказывается в большей степени при малых скоростях потока. Наиболее весомым процессом, определяющим разрушение материала в процессе кавита-Дйи, является механическое силовое воздействие, приводящее к разрушению при контактировании. При таком воздействии разрушение может произойти вследствие усталости либо хрупкого или вязкого отделения частиц. Кавитация вызывает пластическую деформацию поверхностных слоев. При создается определенная степень Деформационного упрочнения металла Возможным последующим разупрочнением. Однако, как правило, в процессе кавитации наблюдается повыше-йе твердости, что указывает на пре-JiaaaHne процессов упрочнения. При J еличении кавитационного воздей-таия свойства металла (прочность,  [c.167]



Смотреть страницы где упоминается термин Пластическая деформация поверхностного слоя : [c.608]    [c.185]    [c.375]    [c.31]    [c.10]    [c.304]    [c.161]    [c.404]    [c.405]    [c.151]   
Смотреть главы в:

Триботехника  -> Пластическая деформация поверхностного слоя



ПОИСК



Деформации поверхностные

Деформация пластическая

Особенности механизма пластической деформации поверхностных Слоев металла при контактном взаимодействии

Пластическая деформаци

Пластическая деформация поверхностного и срезаемого слоя

Слой поверхностный



© 2025 Mash-xxl.info Реклама на сайте