Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общие теоремы о моментах

Интегралы эти понятны непосредственно из общих теорем. Первый интеграл является интегралом живых сил, второй интеграл — интеграл момента количеств движения. В самом деле. Действительные неремещения твердого тела с одной неподвижной точкой находятся среди возможных. Работа активных сил, приводящихся к одной равнодействующей, проходящей через неподвижную точку, на действительном перемещении равна нулю следовательно, имеет место интеграл живых сил 2Т = h. Далее, твердое тело может вращаться вокруг любой неподвижной оси, проходящей через неподвижную точку О. Результирующий момент действующих сил относительно неподвижной точки равен нулю, поэтому из общей теоремы о моменте количеств движения следует,  [c.185]


По (9.9) вычисляется диаметр круглого вала, не имеющего ослабленных сечений. В соответствии с общей теоремой о моментах сечений и теоремой о мом>ентах сечений относительно параллельных осей, в сечеиии, ослабленном шпоночной канавкой, (рис. 93) момент сопротивления изгибу  [c.319]

Общие теоремы о моментах. Остановимся на некоторых основных и очевидных свойствах статических моментов н моментов инерции. При перечислении этих свойств мы будем употреблять просто слово момент в тех случаях, когда речь идет о свойстве, общем для всех моментов. В противном случае будет указываться, о каком моменте идет речь.  [c.208]

ОБЩИЕ ТЕОРЕМЫ О МОМЕНТАХ У =У1—Ун-  [c.209]

Геометрическую теорию скользящих векторов, рассмотренную в первом томе, дополним понятием о производной системы скользящих векторов. Это понятие дает возможность рассматривать теоремы об изменении количества движения и изменении кинетического момента системы как частные случаи одной общей теоремы о скользящих векторах.  [c.76]

Теорема о количестве движения и теорема о моменте количества движения для установившихся движений. Теоремы о количестве движения и о моменте количества движения, хорошо известные из общей механики, находят своеобразное применение к установившимся движениям жидкостей, а также к таким неустановившимся движениям, которые во времени могут рассматриваться в среднем как установившиеся. Ценность этих теорем состоит в том, что для их применения требуются только данные о состоянии потока на граничных поверхностях рассматриваемой области, но не внутри области это позволяет получать из них выводы о таких гидродинамических явлениях, детали которых не могут быть полностью учтены.  [c.113]

Количеством движения массы, как известно из общей механики, называется произведение массы на скорость (количество движения есть векторная величина и имеет, как и всякий вектор, три составляющих). Согласно теореме о количестве движения изменение количества движения во времени, т. е. его производная по времени равна результирующей всех сил, приложенных к массе. Согласно теореме о моменте количества движения производная по времени от момента количества движения относительно какой-либо точки равна главному моменту относительно той же точки всех внешних сил, приложенных к массе. Применяя эти теоремы к системе материальных точек, необходимо иметь в виду ( 2 гл. I), что внутренние силы, действующие внутри механической системы, при суммировании по всем массам системы на основании закона о равенстве действия и противодействия взаимно уничтожаются и что остаются только силы, обусловленные массами, не принадлежащими к системе, т.е. внешние силы.  [c.113]


Если сечение может быть разбито на отдельные части, для которых моменты инерции относительно своих центральных осей определяются по готовым формулам или приводятся в таблицах сортамента (прокатные профили), то момент инерции всего сечения относительно его центральной оси вычисляется путем суммирования моментов инерции отдельных частей сечения и применения теоремы о моментах инерции относительно параллельных осей. При этом моменты инерции отдельных частей сложного сечения суммируются только после приведения их к общей оси.  [c.160]

Движение свободного твердого тела. Общим приемом составления уравнений движения свободного твердого тела является совокупное применение теоремы о движении центра инерции и динамических уравнений Эйлера, выражающих теорему об изменении главного момента количеств движения твердого тела в относительном движении по отношению к центру инерции.  [c.543]

Если заданы массы точек механической системы и внешние силы, которые в общем случае зависят от времени, координат и скоростей точек системы, то теоремы о количестве движения и кинетическом моменте не позволяют определить движение точек системы. Это находится в согласии с тем, что теоремы недостаточны для описания движения системы. Только в частном случае внешних сил, зависящих от времени нли постоянных, теоремы о движении центра масс и кинетическом моменте позволяют определить движение точки С и кинетический момент К системы для любого момента времени, если заданы начальные условия точек механической системы.  [c.63]

Теорема о простом нагружении. А. А. Ильюшиным было установлено, что основные законы теории малых упругопластических деформаций справедливы по крайней мере в том случае, когда процесс нагружения в каждой точке тела является простым. При однородном напряженном состоянии нагружение будет простым, если внешние силы будут изменяться с момента их приложения пропорционально одному параметру. В общем случае неоднородного напряженного состояния А. А. Ильюшин сформулировал и доказал следующую теорему о простом нагружении для того чтобы нагружение в каждой точке тела произвольной геометрической формы при пропорциональном изменении внеш.них сил было простым, до-  [c.270]

Теорема 6 (теорема сложения). Систему пар скользящих векторов можно заменить равнодействующей парой. Момент равнодействующей пары равен векторной сумме моментов составляющих пар. Эта теорема является следствием общего заключения о то.м, что пара скользящих векторов полностью определяется своим моментом и ее момент — свободный вектор.  [c.168]

Главный момент системы И , согласно теореме о паре вращений ( 91), соответствует некоторому мгновенному поступательному движению. Однако общая поступательная скорость точек тела будет зависеть также от скоростей V,- поступательных движений, которые имело тело перед приведением системы го к полюсу О. Итак, можно непосредственно написать выражение скорости о мгновенного поступательного движения, которое будет иметь место после приведения системы векторов м к полюсу  [c.172]

Заканчивая рассмотрение цикла вопросов, связанных с теоремой об изменении кинетической энергии материальной точки, кратко остановимся на некоторых моментах исторического развития понятий о количестве движения, кинетической энергии и работе механической силы. Эти понятия объединяются общим представлением о мерах движения .  [c.383]

Общие замечания о количестве движения, кинетическом моменте системы и соответствующих теоремах  [c.76]

Из теоремы о вириале в ее общем виде (112) следует не только то, что материальные точки, связанные между собой силами, действующими по закону обратных квадратов, должны иметь кинетическую энергию, но и то, что кинетическая и потенциальная энергии такой системы всегда сравнимы по величине. Даже если часть материальных точек в начальный момент не движется, силы притяжения, значения которых обратно пропорциональны квадрату расстояния, сближают эти точки друг с другом, увеличивая как потенциальную, так и кинетическую энергии до тех пор, пока средняя кинетическая энергия не станет равной с обратным знаком половине средней потенциальной энергии. В приводимом ниже примере мы воспользуемся теорем ой. о вириале, чтобы оценить температуру внутри Солнца, представляющего собой, как почти все звезды, массу сжатого раскаленного газа.  [c.302]


В отличие от абсолютно твердой среды, для которой теорема о ее бесконечно малом перемещении формулировалась безотносительно к размерам перемещающегося тела, причем составляющие перемещения поступательное перемещение и малый поворот тела вокруг оси — были одинаковы в данный момент времени для всех точек тела, в более общем случае сплошной  [c.338]

К числу общих теорем динамики относятся теорема об изменении количества движения с ее модификациями — теоремой импульсов и теоремой о движении центра масс, теорема об изменении момента количеств движения, сводящаяся в частном случае центральных сил к теореме площадей, а также теорема  [c.105]

Указания к решению задач. Среди задач, относящихся к этому параграфу, следует обратить внимание на такие задачи, в которых требуется исследовать движения плоских механизмов, состоящих из нескольких звеньев. Механизм при решении задачи надо изображать на чертеже в том положении, для которого требуется определить скорости соответствующих точек. При этом необходимо последовательно рассмотреть движение отдельных звеньев механизма, начиная с того звена, движение которого по условию задачи задано, и при переходе от одного звена к другому определить скорости тех точек, которые являются общими для этих двух звеньев механизма. Рассматривая движение отдельного звена механизма, нужно выбрать две точки этого звена, скорости которых известны по направлению, а скорость одной из этих точек известна и по модулю. По этим данным можно найти положение мгновенного центра скоростей рассматриваемого звена. Картина распределения скоростей точек этого звена находится тогда, как при чистом вращении. Следует подчеркнуть, что мгновенный центр скоростей и угловую скорость можно находить только для каждого звена в отдельности, так как каждое звено имеет в каждый момент свой мгновенный центр скоростей и свою угловую скорость. В ряде случаев целесообразно определение скоростей точек рассматриваемого звена механизма производить с помощью теоремы о равенстве проекций скоростей концов неизменяемого отрезка на его направ-  [c.333]

ЧТО момент количеств движения твердого тела о есть вектор неподвижный в неподвижном пространстве. Отсюда следует, что его длина = V- постоянна. Из общей теоремы мы получили больше, чем второй первый интеграл, а именно, что <т имеет не только постоянную длину, но что ои имеет неизменным свое направление в неподвижном пространстве.  [c.186]

Более общий метод решения статически неопределимых или, иначе, неразрезных балок, имеющих большое количество пролетов, построен на использовании теоремы о трех моментах, выведенной Клапейроном в 1857 г. Рассмотрим неразрезную балку, представленную на рис. 14.3.1.  [c.246]

Заметим, что условия, при которых справедлива теорема о сохранении обобщенного импульса, являются более общими, чем ге, при которых верны теоремы о сохранении количества движения и кинетического момента, полученные ранее. Так, например, полученная сейчас теорема о сохранении справедлива и тогда, когда нарушается закон равенства действия и противодействия, что имеет место при наличии электромагнитных сил. Пусть, например, мы имеем свободную частицу, находящуюся в электромагнитном поле, причем функции ф и Л не зависят от X. Тогда X не войдет и в L и, следовательно, эта координата будет циклической. Поэтому соответствующий обобщенный импульс Рх должен оставаться постоянным. Согласно (1.61) этот импульс равен  [c.63]

Что касается точной формы, в которой эти новые физические гипотезы должны быть введены, то в этом отношении мы имеем некоторую свободу выбора. Согласно одному предположению, лк >бую часть материи можно рассматривать как состоящую из математических точек, находящихся одна от другой на конечном расстоянии, наделенных коэ-фициентами инерции, действующих одна на другую с силами, направленными вдоль прямых, их соединяющих и подчиненных закону равенства действия и противодействия 1). В случае твердого тела" предполагается, что эти силы таковы, что сохраняют неизменной общую конфигурацию системы. На основании этой гипотезы мы можем сразу применить теоремы о количестве движения системы и о моменте количеств движения системы, доказанные в предыдущей главе. Мы увидим, что эти теоремы достаточны для необходимого обоснования динамики твердого тела.  [c.136]

При таком выборе лишних неизвестных уравнения для их определения упрощаются и могут быть составлены в общем виде при помощи теоремы о трех моментах.  [c.344]

Здесь j — знак суммирования, а для возможных перемещений, т. е. бесконечно малых мгновенных изменений координат, согласных с уравнениями связи при фиксированном значении времени, применен знак б. Лагранж показывает, что его общая формула динамики дает столько дифференциальных уравнений движения, сколько требуется по условиям любой задачи. Он строит эти уравнения для систем со связями по методу неопределенных коэффициентов и получает аналогичные статическим уравнения Лагранжа первого рода , в которые явно входят реакции связей. Он дает и вторую открытую им форму уравнений движения — уравнения Лагранжа второго рода , вводя обобщенные координаты и скорости (это одно из его самых замечательных открытий в механике). Посредством анализа общей формулы (Ь), с использованием многих положений, установленных в статике, выводятся общие свойства движения . Это не что иное, как доказательство общих теорем динамики системы теоремы о движении центра инерция, теоремы моментов , теоремы живых сил .  [c.156]


При движении тела подвижной аксоид катится без скольжения по неподвижному. Это заключение, аналогичное теореме о центроидах ( 81), дает наглядную геометрическую картину движения твердого тела вокруг неподвижной точки. Понятно, что качение подвижного аксоида по неподвижному происходит без скольжения потому, что скорости точек тела, лежащих па мгновенной оси вращения (на общей образующей, вдоль которой касаются оба аксоида), в данный момент равны нулю.  [c.336]

Доказанной теоремой широко пользуются при изучении враш,а-тельного движения тела, а также в теории гироскопа и в теории удара. Но значение теоремы этим не ограничивается. В кинематике было показано, что движение твердого тела в общем случае слагается из поступательного движения вместе с некоторым полюсом и вращательного движения вокруг этого полюса. Если за полюс выбрать центр масс, то поступательная часть движения тела может быть изучена с помощью теоремы о движении центра масс, а вращательная — с помощью теоремы моментов. Это показывает важность теоремы для изучения движения свободного тела (летящий самолет, снаряд, ракета см. 158) и, в частности, для изучения плоскопараллельного движения ( 156).  [c.362]

Таким образом, доказана вторая часть сделанного нами утверждения. Итак, если угловая координата Qj будет циклической, то обобщенная сила Qj, являющ,аяся моментом всех действующих сил относительно оси п, будет равна нулю кинетический момент системы относительно оси п будет при этом постоянным. Таким образом, мы вновь доказали теорему о сохранении кинетического момента, получив ее из общей теоремы о сохранении для циклических координат.  [c.66]

Последнее предварительное замечание. Если не вводится никаких специальных предположений относительно распределения масс, то общие теоремы о движении системы не приводят к другим первым интегралам, кроме интегралов живых сил и момента количеств движения (относительно вертикали) на системе уравнений (34), (35) это сказывается в том, что эта система, вообще говоря, не заключает в себе никаких соотношений в конечном виде между векторами о> и и, кроме соотношений (28), (32). Хотя, с аналитической точки зрения уравнение (35) допускает очевидный интеграл = onst.  [c.103]

Мы видели, что дифференциальное уравнение (84) относительного движения материальной точки имеет тот же вид, что и дифференциальное уравнение движения точки относительно неподвижной системы отсчета различие между этими уравнениями состоит лишь в том, что в уравнение относительного движения, кроме заданных сил и реакций связей, входят еще переносная и кориолисова силы инерции. С другой стороны, в главе 21 мы видели, что все общие теоремы динамики точки (теорема о количестве движения, теорема о моменте количества движения, теорема о кинетической энергии) являются следствием основного дифференциального уравнения динамики точки, выражающего второй закон Ньютона. Отсюда следует, что все эти обпще теоремы применимы и к относительному движению точки, но понятно, что, применяя эти теоремы к относительному движению, мы должны принять во внимание переносную и кориолисову силы инерции. В частности, при решении задач, относящихся к относительному движению точки, нередко приходится пользоваться теоремой о кинетической энергии. Нри составлении уравнения, выражающего эту теорему в относительном движении, необходимо принять во внимание работу переносной и кориолисовой сил инерции на относительном перемещении точки. Но так как ускорение Кориолиса Н7д всегда перпендикулярно к относительной скорости v , то следовательно, работа кориолисовой силы инерции в относительном движении равна нулю, и эта сила в уравнение теоремы о кинетической энергии не войдет. Поэтому это уравнение в дифференциальной форме будет иметь следующий вид  [c.456]

Н. Г. Четаев (1926) исследовал вопрос о существовании непрерывной последовательности устойчивых фигур равновесия однородной в каждый момент времени вращающейся жидкой массы, находящейся под действием сил ньютоновского притяжения, сил лучистого сжатия к центру тяжести с постоянной скоростью и постоянного давления на свободной поверхности. Для выделения устойчивой последовательности фигур равновесия автор использовал теорему Лагранжа об устойчивости равновесия, которую доказал применительно к рассматриваемой системе. Несколько позднее Четаев (1931), пользуясь теоремой Ляпунова об устойчивости фигур равновесия, доказал, что если существует не бесконечно малый нижний предел для массы отдельных тел, на которые под влиянием сил ньютоновского притяжения и центробежной может распасться некоторая масса однородной несжимаемой жидкости, то для этой массы существует по крайней мере одна устойчивая фигура равновесия. Далее автор доказал две важные общие теоремы о числе реальных ветвей кривой ] авновесия механической системы, проходящих через точку бифуркации и о смене устойчивости. Частные случаи указанных теорем были установлены  [c.32]

Эта очевидная для одноосного растяжения закономерность может быть обобщена на общий случай напряженного и деформированного состояния, если выполняются условия, сформулированные А. А. Ильюшиным в теореме о разгрузке. Теорема о разгрузке формулируется следующим образом для вычисления напряжений ац, деформаций гц и перемещений щ в процессе разгрузки достаточно решить задачу линейной теории упругости при внешних нагрузках, равнь1х разностям их значений в момент начала разгрузки и текущих значений.  [c.271]

Полученное выражение свидетельствует о том, что кинетический момент в рассматриваемом примере зависит как от движения центра масс тела, так и от его вращательного движения по отношению к центру масс. Этот результат является частным случаем более общей теоремы, которую мы сформулируем без доказательства кинетический момент механической системы относительно неподвижного центра равен геометрической сумме момента относительно этого центра количества движения системы, условно приложенного в центре масс, и кинетического момента системы относит ьно центра масс в ее относительном двизкении по отноиГению к центру масс.  [c.196]

Важное значение для решения задач М. имеют понятия о динамич. мерах движения, к-рымя являются кол-во движения (см. И.чпульс), момент количестеа движения и кинетическая анергия, и О мерах действия силы, каковыми служат импульс силы и работа. Соотношение между мерами движения и мерами действия силы дают т. н. общие теоремы динамики. Эти теоремы и вытекающие из них законы сохранения кол-ва движения, момента кол-ва движения и механич. энергии выражают свойства движения любой системы материальных точек и сплошной среды.  [c.127]


В развитии механики тел переменной массы и теория реактивного движения после Великой Отечественной войны можно наметить два этапа. Первый из них — примерно до середины 50-х годов. В этот период основное внимание уделяется движению с отбрасыванием частиц, притом главной целью является уже не столько решение отдельных задач, сколько систематическое построение теории. В значительной мере это было выполнено А. А. Космодемьянским. В его работе Общие теоремы механики тел переменной массы (J946) исходным является уравнение Мещерского, кото])ое удовлетворяется для каждой из точек системы переменной массы. Отсюда получены законы изменения главного вектора количества движения, кинетического момента и кинетической энергии для тела переменной массы.  [c.302]

В связи с этим следует обратить внимание на различие между уравнениехм (115) и уравнениями, выражающими общие теоремы динамики системы, рассмотренные в предыдущих параграфах. Как мы видели выше, в уравнения, выражающие теоремы о количестве движения, о движении центра масс и о кинетическом моменте системы, внутренние силы не входят, но реакции связей, если они относятся к внешним силам, из этих уравнений не исключаются в уравнение же, выражающее теорему о кинетической энергии системы, внутренние силы войдут, так как работа внутренних сил вообще не равна нулю. Чтобы убедиться в этом, достаточно рассмотреть следующий простой пример пусть имеем систему, состоящую из двух материальных точек, притягивающихся по какому угодно закону (например, по закону Ньютона). Силы взаимного притяжения этих точек являются для рассматриваемой системы внутренними силами эти силы равны по модулю и направлены по прямой, соединяющей данные точки, в противоположные стороны. Ясно, что если под действием этих сил точки будут сближаться, то работа каждой силы будет положительна и, следовательно, сумма работ внутренних сил не будет равна нулю, а будет больше нуля.  [c.489]


Смотреть страницы где упоминается термин Общие теоремы о моментах : [c.86]    [c.491]    [c.469]    [c.199]    [c.138]    [c.437]    [c.38]    [c.2]    [c.10]   
Смотреть главы в:

Сопротивление материалов  -> Общие теоремы о моментах



ПОИСК



Общая теорема о моменте количества движении

Общие теоремы

Общий случай, когда теоремы проекций и моментов количеств движения дают первый интеграл

Производная системы скользящих векторов. Общие замечания о количестве движения, кинетическом моменте системы и соответствующих теоремах

Теорема моментов



© 2025 Mash-xxl.info Реклама на сайте