Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общая теорема о моменте количества движении

Интегралы эти понятны непосредственно из общих теорем. Первый интеграл является интегралом живых сил, второй интеграл — интеграл момента количеств движения. В самом деле. Действительные неремещения твердого тела с одной неподвижной точкой находятся среди возможных. Работа активных сил, приводящихся к одной равнодействующей, проходящей через неподвижную точку, на действительном перемещении равна нулю следовательно, имеет место интеграл живых сил 2Т = h. Далее, твердое тело может вращаться вокруг любой неподвижной оси, проходящей через неподвижную точку О. Результирующий момент действующих сил относительно неподвижной точки равен нулю, поэтому из общей теоремы о моменте количеств движения следует,  [c.185]


Теорема о количестве движения и теорема о моменте количества движения для установившихся движений. Теоремы о количестве движения и о моменте количества движения, хорошо известные из общей механики, находят своеобразное применение к установившимся движениям жидкостей, а также к таким неустановившимся движениям, которые во времени могут рассматриваться в среднем как установившиеся. Ценность этих теорем состоит в том, что для их применения требуются только данные о состоянии потока на граничных поверхностях рассматриваемой области, но не внутри области это позволяет получать из них выводы о таких гидродинамических явлениях, детали которых не могут быть полностью учтены.  [c.113]

Количеством движения массы, как известно из общей механики, называется произведение массы на скорость (количество движения есть векторная величина и имеет, как и всякий вектор, три составляющих). Согласно теореме о количестве движения изменение количества движения во времени, т. е. его производная по времени равна результирующей всех сил, приложенных к массе. Согласно теореме о моменте количества движения производная по времени от момента количества движения относительно какой-либо точки равна главному моменту относительно той же точки всех внешних сил, приложенных к массе. Применяя эти теоремы к системе материальных точек, необходимо иметь в виду ( 2 гл. I), что внутренние силы, действующие внутри механической системы, при суммировании по всем массам системы на основании закона о равенстве действия и противодействия взаимно уничтожаются и что остаются только силы, обусловленные массами, не принадлежащими к системе, т.е. внешние силы.  [c.113]

Заметим, что условия, при которых справедлива теорема о сохранении обобщенного импульса, являются более общими, чем ге, при которых верны теоремы о сохранении количества движения и кинетического момента, полученные ранее. Так, например, полученная сейчас теорема о сохранении справедлива и тогда, когда нарушается закон равенства действия и противодействия, что имеет место при наличии электромагнитных сил. Пусть, например, мы имеем свободную частицу, находящуюся в электромагнитном поле, причем функции ф и Л не зависят от X. Тогда X не войдет и в L и, следовательно, эта координата будет циклической. Поэтому соответствующий обобщенный импульс Рх должен оставаться постоянным. Согласно (1.61) этот импульс равен  [c.63]

Что касается точной формы, в которой эти новые физические гипотезы должны быть введены, то в этом отношении мы имеем некоторую свободу выбора. Согласно одному предположению, лк >бую часть материи можно рассматривать как состоящую из математических точек, находящихся одна от другой на конечном расстоянии, наделенных коэ-фициентами инерции, действующих одна на другую с силами, направленными вдоль прямых, их соединяющих и подчиненных закону равенства действия и противодействия 1). В случае твердого тела" предполагается, что эти силы таковы, что сохраняют неизменной общую конфигурацию системы. На основании этой гипотезы мы можем сразу применить теоремы о количестве движения системы и о моменте количеств движения системы, доказанные в предыдущей главе. Мы увидим, что эти теоремы достаточны для необходимого обоснования динамики твердого тела.  [c.136]


Подобно теореме о сохранении момента количеств движения для определения постепенных изменений, происходящих в движении в результате изменения массы, может быть также использована теорема о сохранении количества движения. Общая теория состоит в следующем.  [c.261]

Движение свободного твердого тела. Общим приемом составления уравнений движения свободного твердого тела является совокупное применение теоремы о движении центра инерции и динамических уравнений Эйлера, выражающих теорему об изменении главного момента количеств движения твердого тела в относительном движении по отношению к центру инерции.  [c.543]

Геометрическую теорию скользящих векторов, рассмотренную в первом томе, дополним понятием о производной системы скользящих векторов. Это понятие дает возможность рассматривать теоремы об изменении количества движения и изменении кинетического момента системы как частные случаи одной общей теоремы о скользящих векторах.  [c.76]

К числу общих теорем динамики относятся теорема об изменении количества движения с ее модификациями — теоремой импульсов и теоремой о движении центра масс, теорема об изменении момента количеств движения, сводящаяся в частном случае центральных сил к теореме площадей, а также теорема  [c.105]

ЧТО момент количеств движения твердого тела о есть вектор неподвижный в неподвижном пространстве. Отсюда следует, что его длина = V- постоянна. Из общей теоремы мы получили больше, чем второй первый интеграл, а именно, что <т имеет не только постоянную длину, но что ои имеет неизменным свое направление в неподвижном пространстве.  [c.186]

Общим механическим принципом, пригодным для истолкования всех гироскопических явлений, служит теорема Резаля. Применим ее к случаю фиг. 140. Пусть так же, как в 98, Оа изображает величину момента количеств движения по оси Ох. Положим, что обойма идет по кругу DK , по направлению стрелки. Тогда перемещение полюса аа даст проекцию его скорости на ось z) следовательно, по теореме Резаля должна существовать внешняя пара, дающая момент  [c.228]

Теорема 4. Необходимым условием существования прецессий общего вида тяжелого твердого тела является равенство к = О, где к — постоянная интеграла момента количества движения.  [c.245]

Под общими законами динамики понимаются законы изменения количества движения, момента количества движения и кинетической энергии, а также различные условия, при выполнении которых из этих законов могут быть получены интегралы движения. Несмотря на значительные успехи аналитической механики, общие законы динамики и получающиеся из них интегралы движения играют до настоящего времени очень важную роль. Н. Е. Жуковский в своих исследованиях широко использовал общие законы динамики. В 1893 г. была решена сложная задача о движении без скольжения по горизонтальной плоскости полого шара с гироскопом внутри. В 1897 г. С. А. Чаплыгин указал на ряд новых условий, при выполнении которых имеют место интегралы движения, представляющие собою обобщение известных интегралов сохранения количества движения и момента количества движения. Одновременно он проиллюстрировал их применение на ряде систем, состоящих из нескольких катающихся и скользящих друг по другу твердых шаров. В 1903 г., опираясь на найденное им обобщение закона сохранения момента количества движения (теоремы площадей), С. А. Чаплыгин дал блестящее решение общей задачи о катании симметричного шара по горизонтальной плоскости.  [c.48]

При изучении движения механич. систем часто применяют т. н. общие теоремы Д., к-рые также могут быть получены как следствия второго и третьего законов Д. К ним относятся теоремы о движении центра масс (или центра инерции) и об изменении количества движения, момента количеств движения и кинетич. энергии системы. Иной путь решения задач Д. связан с использованием вместо второго закона Д. принципов механики (см. Д Аламбера принцип, Д Аламбера — Лагранжа принцип. Вариационные принципы механики) и получаемых с их помощью ур-ний движения, в частности Лагранжа уравнений механики.  [c.159]

Важное значение для решения задач М. имеют понятия о динамич. мерах движения, к-рыми явл. количество движения, момент количества движения (или кинетич. момент) и кинетическая энергия, и о мерах действия силы, каковыми служат импульс силы и работа. Соотношение между мерами движения и мерами действия силы дают т. н. общие теоремы динамики. Эти теоремы и вытекающие из них законы сохранения кол-ва движения, момента кол-ва движения и механич. энергии выражают св-ва движения любой системы матер, точек и сплошной среды.  [c.415]

Если заданы массы точек механической системы и внешние силы, которые в общем случае зависят от времени, координат и скоростей точек системы, то теоремы о количестве движения и кинетическом моменте не позволяют определить движение точек системы. Это находится в согласии с тем, что теоремы недостаточны для описания движения системы. Только в частном случае внешних сил, зависящих от времени нли постоянных, теоремы о движении центра масс и кинетическом моменте позволяют определить движение точки С и кинетический момент К системы для любого момента времени, если заданы начальные условия точек механической системы.  [c.63]


Заканчивая рассмотрение цикла вопросов, связанных с теоремой об изменении кинетической энергии материальной точки, кратко остановимся на некоторых моментах исторического развития понятий о количестве движения, кинетической энергии и работе механической силы. Эти понятия объединяются общим представлением о мерах движения .  [c.383]

Общие замечания о количестве движения, кинетическом моменте системы и соответствующих теоремах  [c.76]

Во-первых, движение можно отнести к трем осям Ох, Оу, Oz, неподвижным в пространстве. Тогда необходимо найти достаточно простое выражение через координаты тела момента количеств вижения тела относительно неподвижной прямой (см. п. 73), затем воспользоваться общей теоремой, доказанной в п. 78,  [c.225]

Мы видели, что дифференциальное уравнение (84) относительного движения материальной точки имеет тот же вид, что и дифференциальное уравнение движения точки относительно неподвижной системы отсчета различие между этими уравнениями состоит лишь в том, что в уравнение относительного движения, кроме заданных сил и реакций связей, входят еще переносная и кориолисова силы инерции. С другой стороны, в главе 21 мы видели, что все общие теоремы динамики точки (теорема о количестве движения, теорема о моменте количества движения, теорема о кинетической энергии) являются следствием основного дифференциального уравнения динамики точки, выражающего второй закон Ньютона. Отсюда следует, что все эти обпще теоремы применимы и к относительному движению точки, но понятно, что, применяя эти теоремы к относительному движению, мы должны принять во внимание переносную и кориолисову силы инерции. В частности, при решении задач, относящихся к относительному движению точки, нередко приходится пользоваться теоремой о кинетической энергии. Нри составлении уравнения, выражающего эту теорему в относительном движении, необходимо принять во внимание работу переносной и кориолисовой сил инерции на относительном перемещении точки. Но так как ускорение Кориолиса Н7д всегда перпендикулярно к относительной скорости v , то следовательно, работа кориолисовой силы инерции в относительном движении равна нулю, и эта сила в уравнение теоремы о кинетической энергии не войдет. Поэтому это уравнение в дифференциальной форме будет иметь следующий вид  [c.456]

Последнее предварительное замечание. Если не вводится никаких специальных предположений относительно распределения масс, то общие теоремы о движении системы не приводят к другим первым интегралам, кроме интегралов живых сил и момента количеств движения (относительно вертикали) на системе уравнений (34), (35) это сказывается в том, что эта система, вообще говоря, не заключает в себе никаких соотношений в конечном виде между векторами о> и и, кроме соотношений (28), (32). Хотя, с аналитической точки зрения уравнение (35) допускает очевидный интеграл = onst.  [c.103]

Задача о движении тела переменной массы. В качестве примера на применение теоремы об изменении количества движения рассмотрим задачу о движении системы материальных точек с переменной массой относительно неподвижной системы осей Oxyz. Пусть общая масса системы М = onst и вся система ограничена некоторой контрольной поверхностью 2. При движении системы некоторые нз ее точек выходят за пределы этой контрольной поверхности (рис. 187). Обозначим через m t) массу частиц, находящихся внутри контрольной поверхности в момент t, а через dm — приращение массы внутри контрольной поверхности за промежуток времени dt. Массу частиц, выделив-щихся за пределы контрольной поверхности за интервал времени dt, обозначим через dm. Контрольная поверхность 2 может перемещаться по отношению к системе координат Oxyz и изменять свою форму. Через 2 обозначим контрольную поверхность 2 в момент t + dt.  [c.312]

Полученное выражение свидетельствует о том, что кинетический момент в рассматриваемом примере зависит как от движения центра масс тела, так и от его вращательного движения по отношению к центру масс. Этот результат является частным случаем более общей теоремы, которую мы сформулируем без доказательства кинетический момент механической системы относительно неподвижного центра равен геометрической сумме момента относительно этого центра количества движения системы, условно приложенного в центре масс, и кинетического момента системы относит ьно центра масс в ее относительном двизкении по отноиГению к центру масс.  [c.196]

В развитии механики тел переменной массы и теория реактивного движения после Великой Отечественной войны можно наметить два этапа. Первый из них — примерно до середины 50-х годов. В этот период основное внимание уделяется движению с отбрасыванием частиц, притом главной целью является уже не столько решение отдельных задач, сколько систематическое построение теории. В значительной мере это было выполнено А. А. Космодемьянским. В его работе Общие теоремы механики тел переменной массы (J946) исходным является уравнение Мещерского, кото])ое удовлетворяется для каждой из точек системы переменной массы. Отсюда получены законы изменения главного вектора количества движения, кинетического момента и кинетической энергии для тела переменной массы.  [c.302]

В связи с этим следует обратить внимание на различие между уравнениехм (115) и уравнениями, выражающими общие теоремы динамики системы, рассмотренные в предыдущих параграфах. Как мы видели выше, в уравнения, выражающие теоремы о количестве движения, о движении центра масс и о кинетическом моменте системы, внутренние силы не входят, но реакции связей, если они относятся к внешним силам, из этих уравнений не исключаются в уравнение же, выражающее теорему о кинетической энергии системы, внутренние силы войдут, так как работа внутренних сил вообще не равна нулю. Чтобы убедиться в этом, достаточно рассмотреть следующий простой пример пусть имеем систему, состоящую из двух материальных точек, притягивающихся по какому угодно закону (например, по закону Ньютона). Силы взаимного притяжения этих точек являются для рассматриваемой системы внутренними силами эти силы равны по модулю и направлены по прямой, соединяющей данные точки, в противоположные стороны. Ясно, что если под действием этих сил точки будут сближаться, то работа каждой силы будет положительна и, следовательно, сумма работ внутренних сил не будет равна нулю, а будет больше нуля.  [c.489]

Теорема сохранения. При втором применении закона сохранения количества движения и кинематической связи между количеством движения и завихренностью будем рассматривать средний шаг вихревой цепочки с вихрями равной знакопеременной интенсивности х как в вязкой, так и в невязкой жидкостях. Для облегчения задачи мы пренебрежем влиянием тела на развитие во времени следа вниз по потоку. Будем также полагать, что след в начальный момент времени t = О состоит из бесконечного ряда знакочередующихся вихрей интенсивностью X, расположенных в полосе по обе стороны от оси х, причем средний продольный шаг 12) равен й и поперечный шаг равен h. Эти же предположения приняты в теории устойчивости Кармана (п. 7), и поэтому настоящее более общее рассмотрение применимо также и там.  [c.368]


Смотреть страницы где упоминается термин Общая теорема о моменте количества движении : [c.86]    [c.138]    [c.556]    [c.416]    [c.151]    [c.494]    [c.437]    [c.224]   
Смотреть главы в:

Аналитическая динамика  -> Общая теорема о моменте количества движении



ПОИСК



Количество движения

Момент количеств движения

Момент количества движени

Общие теоремы

Общие теоремы о моментах

Теорема движения

Теорема количества движения

Теорема моментов

Теорема о моментах количеств движения

Теорема о моменте количеств движени



© 2025 Mash-xxl.info Реклама на сайте