Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Естественный метод изучения движения точки

Естественный метод изучения движения точки  [c.53]

Мы рассмотрим сначала основные аналитические методы изучения движения точки. При теоретических исследованиях и решении практических задач обычно применяют два метода 1) естественный, или натуральный" н 2) координатный. Мы гю-следовательно рассмотрим оба эти метода.  [c.53]

Алгебраическая скорость. Мы знаем, что вектор скорости движущейся точки направлен по касательной к траектории. Определим алгебраическую величину скорости и при естественном методе изучения движения. Пусть в момент времени I расстояние движущейся точки М от начала отсчета расстояний равно 5, а в момент времени tl = i-i-Af расстояние равно = 5 + Аналогично определению вектора средней скорости  [c.55]


Графики. При изучении движения точки при естественном способе по траектории часто пользуются графиче-определения движения закон методом. Графический метод при  [c.122]

Так как всякое материальное тело можно рассматривать как совокупность материальных точек, то логически вполне естественно, что изучению движения тела должно предшествовать изучение движения точки. Поэтому изложение методов кинематики разделяется в данном курсе на две главы Кинематика точки и Кинематика твердого тела .  [c.48]

Указания к рещению задач естественным методом. При изучении движения точки естественным методом траектория точки должна быть известной (заданной). Основными вопросами исследования обычно являются  [c.63]

Изучение движения точки при естественном методе можно проводить графическими приемами. Пусть нам известна функция 5=5(0, определяющая закон изменения расстояний.  [c.65]

Винт как совокупность вектора и пары, плоскость которой перпендикулярна вектору, есть геометрический образ, описываю-ш,ий как произвольное перемеш,ение твердого тела, так и произвольную систему сил, действующих на тело. При изучении движения винт как перемещение во многих случаях является наиболее естественным обобщенным перемещением, над которым можно непосредственно производить операции в то же время силовой винт является Соответственной обобщенной силой. Отсюда возникает такой метод механики, в котором все перемещения и их производные, а также силы выражаются винтами.  [c.3]

Итак, для изучения движения естественным методом необходимо знать 1) траекторию движущейся точки 2) начало отсчета расстояний с указанием положительного направления отсчета 3) закон движения точки вдоль траектории, т, е. функцию 5 = 5(/).  [c.54]

Построение общей теории движения тел переменной массы можно выполнить при помощи основных теорем механики теоремы об изменении количества движения, теоремы об изменении кинетического момента и теоремы об изменении кинетической энергии. Такой путь изучения движения тел переменной массы является наиболее простым и естественным. К формулировкам основных теорем механики для тел, масса которых изменяется с течением времени, можно идти различными путями. Мы будем следовать методу, широко применяемому в механике тел постоянной массы, рассматривая тело переменной массы как совокупность точек переменной массы, движение которых определяется уравнением Мещерского. Зная уравнения движения точки переменной массы и рассматривая тело как совокупность точек, можно получить простые формулы, выражающие основные теоремы динамики для тела переменной массы. Ограничимся в этой главе рассмотрением таких тел переменной массы, для которых излучение (отбрасывание) частиц происходит с некоторой части поверхности тела, причем частицы, не имеющие относительной скорости по отношению к системе осей координат, связанной с телом, считаются принадлежащими телу, а частицы, имеющие относительную скорость, телу не принадлежат и никакого влияния на его движение не оказывают. Реактивные силы и моменты понимаются во всем дальнейшем как результат контактного взаимодействия отбрасываемых частиц и тела в момент их отделения от основного тела.  [c.89]


В предыдущих главах мы пользовались эйлеровым методом описания движений жидкости. При использовании этого метода течение несжимаемой жидкости в момент I характеризуется полем скорости и(Х, 1)у т. е. значениями вектора скорости во всевозможных точках = Хи Х2, Хг) пространства (в настоящем разделе по причинам, которые будут ясны из дальнейшего, нам будет удобно обозначать координаты А /, а не л /, как в предыдущих главах). Уравнения гидродинамики (из которых давление можно исключить с помощью уравнения (1.9)) при этом в принципе позволяют определить значения переменных Эйлера и(Х, t) в любой момент времени > /о по заданным начальным значениям и(Х, о) = ио(Х). Однако для изучения таких явлений, как турбулентная диффузия (т. е. распространение примесей в поле турбулентности) или деформация материальных поверхностей и линий (состоящих из фиксированных элементов жидкости) в тур-булентном течении, более удобным оказывается лагранжев метод описания движений жидкости. Он заключается в том, что вместо скоростей жидкости в фиксированных точках X пространства за основу берется движение фиксированных жидких частиц , прослеживаемое, начиная от некоторого начального момента времени / = to. Под жидкими частицами при этом понимаются объемы жидкости, размеры которых очень велики по сравнению со средним расстоянием между молекулами (так что для соответствующих объемов имеет смысл говорить об их скорости, оставаясь в рамках механики сплошной среды), но все же настолько малы, что скорость и давление внутри частицы можно считать практически постоянными и в течение рассматриваемых промежутков времени эти частицы можно считать перемещающимися как одно целое (т. е. без заметной деформации). Лагранжев метод самым непосредственным образом связан с реальными движениями отдельных элементов жидкости, совокупность которых и составляет течение поэтому его можно считать физически более естественным, чем эйлеров метод описания. В то же время в аналитическом отношении использование переменных Лагранжа, относящихся к индивидуальным частицам жидкости, оказывается гораздо более громоздким, чем использование переменных Эйлера и(Х, t), вслед-  [c.483]

Естественно, методы расчета и средства, привлекаемые к анализу законов движения, зависят от того, какова цель расчета. Мы уже видели, что для ориентировочного определения полной дальности достаточно вообще продлить участок свободного полета дугой эллипса или даже прямой и не вникать в динамику торможения. Но для определения скорости и аэродинамических нагрузок, а затем и температур, необходимо вернуться к численному интегрированию. Поэтому первое приближение к истине мы получим, если откажемся пока от изучения процесса стабилизации и определим закон движения спускаемого аппарата как материальной точки, полагая, что его ориентация относительно потока каким-то образом обеспечена.  [c.331]

В настоящей главе изучение движения простейшей модели снаряда в виде одномерного движения материальной точки обобщено на случай двух- и трехмерного движения. Отсюда естественно возникает проблема оптимизации траектории, которая оказывается тесно связанной с целым рядом смежных проблем. Простейшей задачей из этого круга проблем является задача определения оптимального управления, когда динамические характеристики снаряда заданы и требуется найти такую траекторию, которая оптимизирует некоторую заданную величину. Для случаев, когда поле сил зависит от скорости и координат снаряда, дана общая постановка задачи оптимизации траектории, а в случаях, когда силовое поле однородно или когда сила зависит от расстояния линейно, оказывается возможным получить решение в замкнутой форме. Это особенно важно в применении к баллистическим снарядам (нанример, снарядам дальнего радиуса действия класса земля — земля или носителям спутников), где расстояние, проходимое за время выгорания топлива, мало по сравнению с земным радиусом. Простой и в то же время почти оптимальной траекторией в этих случаях оказывается траектория гравитационного разворота при движении снаряда в плотной атмосфере и затем переход на траекторию, определяемую соотношением (2.6). Хотя точного решения уравнений движения по траектории гравитационного разворота не существует, все же можно построить ряд графиков, позволяющих во многих случаях подбирать требуемые значения параметров. Если ограничиться лишь получением решений, удовлетворяющих условию стационарности, то обычными методами вариационного исчисления можно исследовать те задачи оптимизации, в которых масса снаряда, программа скорости истечения и время выгорания, так же как и программа управления, являются варьируемыми функциями. Для того чтобы найти решения, являющиеся действительно максимальными или минимальными в определенном смысле, нужно проводить специальное исследование каждого отдельного случая, так как не всегда решение, удовлетворяющее требованию стационарности, является оптимальным, и наоборот. В тех задачах, где скорость истечения есть известная функция времени, как, например, это имеет место в жидкостных ракетных двигателях, из анализа следует лишь то, что оптимальной программой для М ( ) будет, как правило, программа импульсного сжигания топлива. Поэтому для получения практически интересных результатов необходимо проводить более глубокий анализ, с учетом таких факторов, как параметры двигателя, топливных баков и т. д., при одновременном учете характера траектории полета снаряда. Для выполнения такого рода анализа используется схема расчета, где анализ различных элементов Конструкции и групп уравнений (одной  [c.63]


При обсуждении основных методов классической механики (см. конец предыдущей главы) мы упомянули, в частности, что один из них связан с введением некоторых специальным образом подобранных функций координат и скоростей точек системы и с изучением того, каким образом изменяются эти функции или при каких условиях они сохраняются неизменными. В качестве таких функций мы рассмотрим меры движения, которые были введены в предыдущей главе скалярную функцию — кинетическую энергию системы н векторную функцию — количество движения (импульс) системы. Рассматривая вектор количества движения Qi, естественно рассматривать также и момент этого вектора, т. е. ввести еще одну векторную характеристику, зависящую от координат точек и их скоростей.  [c.67]

Определенней прогнозирование траекторий. Точное определение и прогнозирование траекторий имеет большое значение для навигации, наведения и управления в космосе, а также для изучения естественных небесных тел — астероидов и метеоров. Несмотря на то, что методы определения и прогнозирования траекторий служили объектом широко проводившихся исследований в течение многих лет, довольно большой круг теоретических аспектов этой задачи до сих пор остается неразрешенным, особенно в связи с появлением новых, перспективных средств измерений. Основная проблема остается той же, которая всегда стояла перед учеными, исследующими физические явления определение и использование конкретных свойств детерминированного процесса на основе статистических наблюдений. Наличие ошибок измерений и условия устойчивости траекторий всегда играли важную роль в сложной экспериментальной задаче определения и прогнозирования траекторий. Дополнительным препятствием на пути к эффективному анализу траекторий является неполное знание траекторных характеристик в том случае, когда детерминированная модель движения включает в себя более одного притягивающего центра.  [c.70]

При изучении общих теорем динамики рассматривались лишь частные случаи систем, обладающих определенным классом возможных перемещений (поступательное, вращательное и т. д.). Для ряда механических систем эти условия общих теорем не выполняются, и последние не могут быть применимы без введения реакций связен. Метод Лагранжа позволяет изучать движение в самом общем случае. Естественно, что если за обобщенные координаты будут взяты параметры, соответствующие перемещениям, допускающим применение общих теорем, то уравнения Лагранжа будут совпадать с уравнениями, полученными из общих теорем.  [c.344]

Эта работа посвящена главным образом вопросам методики геометрии сферического движения. Однако, в известной мере она затрагивает также п другие главы кинематики твердого тела. Это дает возможность раскрыть методологическое единство названного раздела теоретической механики. Между тем, рассмотрение методических вопросов ни в коем случае не может быть изолировано от изучения вопросов, связанных с методологией данной дисциплины. В самом деле, задача лектора или автора учебного руководства отнюдь не ограничивается изложением основных результатов науки. Важнейшее значение имеет раскрытие основных методов исследования, применяемых в данной науке. Лектор должен помочь своим слушателям овладеть этими методами в такой мере, чтобы, став инженерами, они могли уверенно и свободно применять их в своей исследовательской практике. С этой точки зрения вовсе не безразлично, каким именно способом построить доказательство той или иной теоремы, ввести определение понятия, осуществить вывод тех или иных уравнений. Определения, выводы, доказательства не могут носить характер случайно созданных конструкций. Напротив, они должны отражать основные методы исследования, применяемые в данной науке, отражать методологическое единство этой науки. Что касается, в частности, раздела кинематики, то, помимо его самодовлеющего теоретического значения, он призван подготовить изучение геометрии механизмов. В прикладной механике в настоящее время применяются почти исключительно аналитические методы исследования. Естественно поэтому, что в теоретической кинематике существенное содержание этих методов должно быть надлежащим образом раскрыто.  [c.50]

В предыдущей главе мы рассматривали задачу о движении пассивно действующей материальной точки, находящейся под действием заданных сил, исходящих от неподвижных центров. Мы упомянули также, что представляет интерес рассмотреть еще более общую задачу, предполагая, что пассивная точка движется под действием активных масс, каждая из которых обладает заданным движением. Такие задачи называются в небесной механике — ограниченными задачами. Число активно действующих масс вообще может быть каким угодно. Например, прп изучении полета космического корабля (искусственного небесного тела ) в пределах Солнечной системы мы, естественно, можем считать, что это искусственное тело не оказывает никакого влияния и воздействия на планеты и их спутники. Движение планет мы можем считать заданным, так как эта задача издавна изучается в небесной механике, и мы знаем и свойства их движения и умеем рассчитывать их положения и скорости при помощи аналитических или хотя бы численных методов. Более того, так как планеты Солнечной системы движутся почти в одной плоскости и почти по круговым орбитам, то мы можем считать (по крайней мере в течение не очень большого промежутка времени), что активные тела в рассматриваемой модельной задаче движутся по окружностям, лежащим в одной плоскости. Такого рода задачи называются круговыми ограниченными задачами. Например, можно рассматривать в первом приближении движение Луны под действием притяжения Земли и Солнца, считая, что Луна не оказывает на Солнце и Землю никакого влияния.  [c.209]

Введение. Твердое тело представляет собой частный случай механической системы точек, когда расстояния между любыми двумя точками системы остаются постоянными во все время движения. Одним из наиболее эффективных методов изу-чершя движения твердого тела под действием приложенных к нему сил является метод, основанный на применении основных теорем динамики системы. Для изучения поступательного движения тела мы будем исходить из теоремы о движении центра масс при изучении вращения твердого тела около неподвижной оси наиболее рационально пользоваться теоремой об изменении кинетического момента. На примерах изучения простейших движений твердого тела под действием приложенных сил весьма отчетливо выявляется значение основных теорем динамики системы, позволяющих исследовать свойства движений систем ма-териальных точек, подчиненных некоторым дополнительным условиям (связям). Основные теоремы динамики системы были исторически первым, наиболее простым и естественным методом изучения движения несвободных механических систем точек, и в частности изучения динамики твердого тела В последующем развитии механики Лагранжем был создан метод обобщенных координат, позволяющий свести составление дифференциальных уравнений движения системы с 5 степенями свободы к ясной, логически безупречной последовательности алгебраических преобразований, однако физическая наглядность рассуждений была в значительной мере утрачена  [c.400]


Введение. Мы привели дифференциальные уравнения движения к особенно удобному каноническому виду. Однако наша конечная цель будет достигнута только тогда, когда мы сможем решить эти уравнения. Поскольку нам неизвестен метод непосрественного интегрирования этих уравнений, то приходится идти косвенными путями. Одним из таких путей является метод преобразований координат. Мы пытаемся отыскать такую систему координат в фазовом пространстве, в которой входящая в канонические уравнения функция Гамильтона имела бы настолько простой вид, чтобы уравнения движения могли быть непосредственно проинтегрированы. Естественно, что с этой точки зрения желательно исследовать всю группу преобразований координат, связанных с каноническими уравнениями. Изучение этих канонических преобразований оказывает ценную помощь при интегрировании уравнений механики. Теория канонических преобразований в основном связана с именем Якоби. Хотя он, возможно, и не обладал воображением, присущим Гамильтону, и его усилия были в основном направлены на решение задачи интегрирования уравнений, однако открытие канонических преобразований явилось все же огромным достижением. Получившаяся в результате теория интегрирования сыграла важную рель в развитии современной атомной физики. В далеко идущих исследованиях Гамильтона проблема интегрирования являлась второстепенной задачей.  [c.225]

Форма уравнений движения, используемых в численных расчётах или аналитических вычислениях, во многом предопределяет возможность успешного и экономного решения задачи. Естественно, что каждому варианту постановки задачи соответствует своя, наиболее рациональная форма записи уравнений. Поэтому здесь не будет использована некая универсальная система уравнений. Так, при решении задачи о движении тела в линейной постановке удобно использовать систему уравнений, записанную в связанных координатах. При исследовании движения тела с плоскостью симметрии предпочтительнее использовать уравнения в полусвязанной системе координат, а при изучении движения осесимметричного тела при больших углах атаки удобно записать уравнения в осях, связанных с пространственным углом атаки, что облегчает применение аналитических и асимптотических методов. Наконец, для тела произвольной формы, совершаюш,его свободное движение в атмосфере при произвольных углах атаки, наиболее экономичной, с точки зрения объёма вычислений при интегрировании, является система уравнений в направляюш,их косинусах, которая впервые была представлена в работе [41.  [c.20]

В то время как колебания молекул определяют грубую структуру колебательных спектров, их тонкая структура обусловливается вращением молекул, которое обнаруживается непосредственно о вращательных спектрах. Колзба-ния и вращение в молекулах тесно связаны между собой и поэтому естественно, что их следует изучать совместно. Данные о колебательном и вращательном движении молекул, основным источником получения которых являются колебательные и вращательные спектры, необходимы для решения целого ряда важнейших физико-химических задач. Колебания и вращзния, играют большую роль при течении химических реакций, при обмене энергии между возбужденными молекулами, они существенным образом сказываются на термодинамических свойствах вещества. Исследование изменения колебательного и вращательного движения молекул под влиянием их взаимодействия с окружающими молекулами в жидких и твердых телах является одним из методов изучения природы жидкого и твердого состояния.  [c.5]

К спорным вопросам методики изложения, принятой в настоящем курсе, мы относим, например, предлагаемый авторами способ вывода общего уравнения энергии на основе первого начала термодинамики ( 4-2). Нам представляется, что традиционный способ использования первого начала термодинамики при выводе уравнения энергии, принятый в лучших отечественных курсах газовой динамики, является более корректным и дает возможность яснее представить сущность делаемых при этом термодинамических допущений. Недостаточно ясна с математической точки зрения трактовка понятий материального метода и метода контрольного объема в 3-6. Оба метода опираются на эйлерово представление о движении жидкой среды. Их противопоставление, как нам кажется, носит иногда искусственный характер. При выводе общих уравнений движения вязкой жидкости — уравнений Навье — Стокса — авторы, видимо, следуя Г. Шлихтингу , опираются на аналогию с напряженным состоянием упругого тела. При этом предполагается знание читателем некоторых вопросов теории упругости. Вряд ли такой способ вывода фундаментальных гидродинамических уравнений будет удобен для любого читателя. Еще одним спорным в методическом отношении местом является то, что изложение теории турбулентного пограничного слоя опережает изложение представлений о турбулентном течении в трубах. Между тем, как известно, теория пограничного слоя использует некоторые зависимости, устанавливаемые при изучении течений в трубах. Поэтому, может быть, естественнее начинать изложение вопроса  [c.7]

Так как движение частиц жидкости в турбулентном потоке неупорядочено, хаотично, то, повидимому, естественнее всего применять для изучения турбулентного потока методы статистической механики, т. е. методы, с помощью которых построена, например, кинетическая теория газов. Имеются попытки последовательного применения в теории турбулентности принципов статистической механики ).  [c.479]


Смотреть страницы где упоминается термин Естественный метод изучения движения точки : [c.6]    [c.108]   
Смотреть главы в:

Курс теоретической механики Часть1 Изд3  -> Естественный метод изучения движения точки



ПОИСК



Движение естественное

Движение, метод

ИЗУЧЕНИЕ СИЛ

Метод точки

Методы изучения

Оси естественные

Точка — Движение



© 2025 Mash-xxl.info Реклама на сайте