Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Симметрия вращения и группа вращения

Симметрия вращения и группа вращения  [c.39]

Подведем итоги рассмотрения аэродинамики винта на режиме висения, включая реакции втулки и движение вала. Для простоты не будем рассматривать циклическое движение лопасти в плоскости вращения и особый случай двухлопастного винта. Осевая симметрия обтекания винта на режимах вертикального полета позволяет разделить движения винта на две группы. Группа вертикальных движений связана с коэффициентом момента при угле конусности силой тяги и крутящим моментом  [c.545]


Книга адресована читателю, серьезно изучающему молекулярную спектроскопию, и хотя предполагается, что он знаком с основными постулатами квантовой механики, теория групп рассматривается здесь из первых принципов. Идея группы молекулярной симметрии вводится в начале книги (гл. 2) после определения понятия группы, основанного на использовании перестановок. Далее следует рассмотрение точечных групп и групп вращения. Определение представлений групп и общие соображения об использовании представлений для классификации состояний молекул даны в гл. 4 и 5. В гл. 6 рассматривается симметрия точного гамильтониана молекул и подчеркивается роль перестановок тождественных ядер и вращения молекулы как целого. Чтобы классифицировать состояния молекул, необходимо выбрать подходящие приближенные волновые функции п понять, как они преобразуются под действием операций симметрии. Преобразование волновых функций и координат, от которых волновые функции зависят, особенно углов Эйлера и нормальных координат, под действием операций симметрии подробно описывается в гл. 7, 8 и 10. В гл. 9 рассматриваются определение группы молекулярной симметрии и применение этой группы к различным системам. В гл. 11 определяется приближенная симметрия и описывается применение групп приближенной симметрии (таких, как точечная группа молекул), а также групп точной симметрии (таких, как группа молекулярной симметрии) для классификации уровней энергии, исследования возмущений, при выводе правил отбора для оптических  [c.9]

Я надеюсь, что эта книга поможет читателю понять роль групп молекулярной симметрии и их связь с точечными группами молекул и группами вращения при применении теории групп к проблемам молекулярной спектроскопии. Для облегчения понимания материала в книге приводится много примеров применения развиваемых здесь идей и много рисунков, показывающих действие операций симметрии, а также задачи с решениями. Читатель может сам регулировать темп чтения этой книги, либо опуская задачи и решения, либо решая задачи по мере их появления и сравнивая их с решениями, приведенными в тексте, либо просто читая задачи и решения как составную часть текста.  [c.10]

Точечные группы Та, Oh и Ih содержат все операции симметрии вращения, отражения и вращения-отражения правильного тет-  [c.43]


Поскольку магнитный дипольный момент — аксиальный вектор, его компоненты имеют те же типы симметрии, что и компоненты вращения Нх, Ву, В г (приложение I). Электрический квадрупольный момент — тензор, компоненты которого ведут себя подобно компонентам поляризуемости, т. е. как произведение двух трансляций. Следовательно, можно пользоваться данными табл. 55 тома II ([23], стр. 274) для типов симметрии составляющих хж, < х(/,. ... Например, для симметричных линейных молекул (точечная группа 1)ос ) компоненты магнитного дипольного момента относятся к типам симметрии и П , а компоненты электрического квадрупольного момента — к типам симметрии Е , Пg, Ад. Следовательно, для того чтобы данный переход был разрешенным для магнитного дипольного излучения, произведение электронных волновых функций верхнего и нижнего состояний должно относиться к тинам 2 или П . Так, при поглощении из полносимметричного основного состояния могут происходить переходы 2 — 2 , П — 2 . Аналогично нри переходах, разрешенных для электрического квадрупольного излучения, произведение волновых функций должно относиться к одному из типов симметрии 2 , П , или А . При поглощении из полносимметричного основного состояния могут иметь место переходы 2 — 2 , Пд — 2д и Ай — 2 .  [c.134]

Для полных типов симметрии групп полной симметрии также имеется правило отбора (см. стр. 223), заключающееся в том, что произведение полных типов симметрии верхнего и нижнего состояний должно иметь тип симметрии произведения Т В трансляции и вращения. Это правило справедливо только для электрического дипольного излучения. В табл. 15 приводятся типы симметрии произведения Т В для всех точечных групп асимметричного волчка и определенные из них разрешенные электронно-колебательно-вращательные переходы. Можно отметить, что если опустить индексы g vi и для точечных групп С,, штрихи для точечной группы s и индексы  [c.246]

Как будет показано ниже, операции симметрии кристалла образуют группу (в математическом смысле). Благодаря требованию трансляционной симметрии выбор точечных групп для кристалла резко ограничен по сравнению с группами, возможными для отдельных молекул. Так, например, можно показать, что кристалл может обладать симметрией относительно вращений лишь на углы 60 , 90 и кратные им.  [c.19]

Примеры свободное вращение твердого тела и задача трех тел. Рассмотрим сначала задачу Эйлера о вращении твердого тела вокруг неподвижной точки по инерции (см. п. 2.4 гл. 1). Здесь Л1 = Г50(3) =50(3)X/ , группой симметрий О является группа вращений 50(3) ей соответствует пуассонов-ская алгебра первых интегралов, изоморфная алгебре Ли 50(3). Зафиксируем значение кинетического момента и рассмотрим интегральный уровень Мс=Рв<цз) Чс). Нетрудно показать, что при всех значениях с множество Мс является трехмерным многообразием, диффеоморфным пространству группы 50(3). Стационарной группой Ос является одномерная группа поворотов 50(2) твердого тела в неподвижном пространстве вокруг постоянного вектора кинетического момента. Приведенное фазовое пространство Л7е = 50(3)/50(2) диффеоморфно двумерной сфере.  [c.110]

Разнообразные детали, являющиеся телами вращения, можно разделить на два класса 1) детали, имеющие плоскость симметрии, перпендикулярную к оси вращения, и 2) детали, не имеющие такой плоскости (табл. 3). Для деталей первой группы необходимо ориентирование только по отношению к оси вращения, а для деталей второй группы — еще и по отношению плоскости, перпендикулярной к этой оси. В соответствии с этим для деталей второй группы требуется двойное ориентирование в пространстве. Подобным образом классифицируют и детали, не являющиеся телами вращения (табл. 4).  [c.34]


Сложность процесса детализации, в частности вероятность корректировки даже тех элементов, которые наносятся на чертеж методом поиска линий, подготовленных к прочерчиванию, вызывает постоянное опасение преждевременности проработки того или иного узла. Поэтому симметричные узлы бывает выгодно до поры до времени расчерчивать лишь с одной стороны от оси симметрии. Это особенно относится к сложным узлам и группам деталей, например таким, как валы с набором шестерен и шарикоподшипников, коллекторы, части оптических устройств, состоящие из тел вращения, и т. п. При конструировании подобных узлов может возникнуть несколько вариантов. Очевидно, что вычерчивать один из вариантов с обеих сторон от оси симметрии до того, как конструкция полностью определилась, преждевременно.  [c.107]

Э. имеет трансформационные свойства псевдоскаляра, то есть однокомпонентной величины, сохраняющей численное значение при любых преобразованиях симметрии, но при отражении в плоскости, инверсии, зеркальном или инверсионном повороте изменяющей знак. Предельная группа симметрии псевдоскаляра—группа вращений оооо. Из 4 нецентросимметричных предельных групп Э. допускают три оооо, оо2 и 00,  [c.613]

Структурную симметрию как молекул, так и макроскопических тел можно описать, используя представления об осях вращения и плоскостях отражения. Например, молекула метала и тетраэдр имеют одну и ту же структурную симметрию. Эту симметрию можно определить, относя молекулу к некоторой точечной группе, состоящей из определенного набора операций вращения и отражения (или элементов), для молекулы метана такая группа обозначается символом Та. В физике молекул симметрия широко используется для классификации уровней энергии молекул. В этой книге подробно рассматриваются различные виды симметрии, поскольку точечная группа симметрии — не единственный вид симметрии, присущий молекулам. Рассматривается также применение различных групп симметрии для классификации состояний молекул и для изучения молекулярных процессов.  [c.11]

Основная задача этой книги состоит в том, чтобы показать, что в физике молекул используется два типа симметрии, точная симметрия и приближенная симметрия. Группа молекулярной симметрии является группой операций точной симметрии изолированной молекулы, тогда как точечная группа молекулы является группой операций приближенной симметрии. Точная симметрия сохраняется при учете всех деталей строения и динамики молекулы, а приближенная симметрия применима тогда, когда пренебрегают определенными деталями динамики молекулы. Для точечных групп молекул такой малой деталью, которой пренебрегают, является влияние вращения молекулы. Группы точной симметрии не лучше , чем группы приближенной симметрии, оба типа групп в применении к молекулам дополняют друг друга. Однако при изучении теории групп и ее применений в молекулярной спектроскопии полезнее и проще использовать группы молекулярной симметрии, а не точечные Группы молекул.  [c.13]

В этой главе рассматривается геометрическая симметрия некоторых трехмерных объектов для того чтобы дать определение групп вращения и точечных групп. Применение этих групп к молекулам обсуждается только в предварительном порядке.  [c.39]

Си — вращение на 2я/3 рад по часовой стрелке вокруг оси d (при этом верщина 1 занимает место 3) и d — вращение на 4я/3 рад по часовой стрелке вокруг оси d. Добавляя к этим пяти операциям операцию тождественного преобразования Е, которая не производит вращения, и определяя умножение операций как их последовательное применение, получим группу симметрии вращения D3  [c.40]

Симметрию вращения объекта можно получить, определив имеющееся у него число и тип осей симметрии вращения. Объект, обладающий одной осью симметрии вращения п-го порядка и не обладающий другими осями вращения, имеет симметрию вращения С . Например, пирамида с квадратным основанием имеет симметрию вращения С4, а группа вращения С4 имеет элементы Е, i, С, С4 , где вращения производятся вокруг  [c.41]

Определим действие операций вращения и на любую функцию симметричного волчка /, k, т). Это позволит определить свойства преобразований волновой функции в группе МС любого симметричного или асимметричного волчка, как только будет идентифицировано эквивалентное вращение для каждой операции группы МС (они приведены в таблице характеров группы МС в приложении А, где R° — тождественное вращение). Симметрия волновых функций сферического волчка получается приведением представлений молекулярной группы вращений К(М). В этом разделе рассматриваются лишь состояния с целочисленными значениями /. Состояния с полуцелыми I будут обсуждаться в конце главы.  [c.258]

Примеры П. и. 1]. Отклонение зависящей от координат плотности атомов в кристалле от её ср. значения преобразуется под действием общей группы трансляций и пространственных вращений, входящих в группу симметрии G изотропной жидкости, но остаётся инвариантным относительно преобразований из пространственной группы симметрии кристалла. 2). Анизотропная часть тензора. диэлектрич. проницаемости в жидком кристалле преобразуется под действием группы пространственных вращений как симметричный тензор с нулевым следом. 3). Намагниченность в ферромагнетике преобразуется как вектор при вращениях подсистемы спинов и меняет знак при обращении времени. 4). Волнован ф-ция Y бозе-кошденсата в сверхтекучем Не (см. Гелий жидкий. Сверхтекучесть) преобразуется под действием калибровочного преобразования группы И ), входящей в группу G изотропной жидкости Ч — Р ехр(гф). 5). Комплексная матрица Ааг в сверхтекучем 3fle преобразуется как вектор по второму индексу при пространственных вращениях, как вектор по первому индексу при спиновых вращениях, умножается на ехр((ф) при калибровочных преобразованиях, переходит в комплексно сопряжённую матрицу при обращении времени и меняет знак при пространственной инверсии. Согласно теории Ландау, равновесное значение П. п. вблизи фазового перехода 2-го рода находят, минимизируя функционал Гинзбурга — Ландау, инвариантный относительно преобразований из группы G.  [c.534]


Настоящая книга посвящена применению теории групп в квантовой механике, причем особое внимание уделено проблемам молекулярной спектроскопии. На эту тему написано так много книг—и хороших книг, — что, казалось бы, трудно найти оправдание для написания еще одной. Но такое оправдание есть, и основано оно на том, что вся имеющаяся литература посвящена применениям точечных групп молекул, элементами которых являются вращеиия и отражения вибронных переменных, тогда как настоящая книга посвящена применению групп молекулярной симметрии, элементами которых являются перестановки тождественных ядер с инверсией и без инверсии. Группы молекулярной симметрии имеют более широкую область применений, чем точечные группы молекул, так как в них учитываются молекулярное вращение и туннелирование вследствие нежесткости молекул (типа инверсионного туннелирования в молекуле аммиака). Кроме того, в силу фундаментальной природы ее элементов группа молекулярной симметрии очень удобна с методической точки зрения при изучении теории групп и ее применений к проблемам молекулярной спектроскопии.  [c.9]

На рис. 3.4 изображена пирамида с равносторонним треугольным основанием используем ее для введения понятия точечной группы. Пирамида имеет симметрию вращения 3-го порядка вокруг оси d, а также симметрию отражения в плоскостях ad, bd и d. Операция симметрии отражения трехмерных объектов является отражением объекта в плоскости (плоскость симметрии отражения), которое оставляет объект в эквивалентной пространственной ориентации. Плоскость должна проходить через центр масс объекта, и эта точка центра должна быть общей для всех осей симметрии вращения и плоскостей симметрии отражения (отсюда и название точечная группа). Точечная группа трехмерного объекта содержит все операции симметрии вращения, все операции симметрии отражения и все возможные произведения таких операций (хотя индивидуальные операции вращения и отражения, которые составляют операцию симметрии произведения вращения-отражения, не обязательно должры быть операциями симметрии). Точечная группу  [c.42]

Проблема точного интегрирования уравнений динамики — одна из самых популярных тем исследования, начиная со знаменитых Математических начал натуральной философии Ньютона. Руководящей идеей в этом круге вопросов является общая идея симметрии. При решении задачи о центральном движении Ньютон уже использовал соображения симметрии факторизуя орбиты группы вращений, он свел эту задачу к изучению движения по прямой в потенциальном поле. Впоследствии Лагранж и Якоби заметили, что классические интегралы задачи многих гравитирующих тел связаны с инвариантностью уравнений движения относительно группы преобразований Галилея. Это фундаментальное наблюдение обобщено Эмми Нётер каждой группе преобразований, сохраняющих действие по Гамильтону, отвечает интеграл уравнений движения. Верно и обратное фазовый поток уравнений Гамильтона, в которых гамильтонианом служит известный интеграл, переводит решения исходных уравнений движения в решения тех же уравнений. На этой идее основано доказательство известной теоремы Лиувилля о полной интегрируемости уравнений Гамильтона фазовые потоки инволютивных интегралов попарно коммутируют и порождают абелеву группу симметрий максимально возможной размерности на многообразиях их совместных уровней.  [c.6]

На возможное возражение, что группа сама по себе является априорным понятием, можно указать, что понятие группы является результатом абстрагирования от различных подвижных инструментов циркуль, линейка и т. д., являющихся орудием геометрического исследования ). Напомним, что уже в геометрии Евклида неявно предполагалось, что все геометрические построения следует проводить с помощью только циркуля и линейки. Смысл этого требования становится ясен только с точки зрения программы Клейна. Геометрические свойства тел выражаются, таким образом, в терминах инвариантов группы и допускают изоморфную подстановку элементов пространства, в котором реализуется группа, и, следовательно, совершенно не зависят от самих геометрических объектов. Укажем, например, на реализацию геометрии Лобачевского на плоскости, предложенную А. Пуанкаре. Приведенный пример указывает на большую методологическую ценность программы Клейна. Аналогичный подход возможен также и в физике, где различные законы сохранения интерпретируются как свойства симметрии относительно различных групп. Основными группами современной физики являются группа Лоренца, заданная в пространстве Минковского, и группа непрерывных преобразований, заданная в криволинейном пространстве общей теории относительности, коэффициенты метрической формы которого определяют поле гравитации. В релятивистской квантовой механике мы переходим от группы Лоренца к ее представлениям, определяющим преобразования волновых функций. Как было показано П. Дираком, два числа I и 5, задающих неприводимое представление группы Лоренца, можно интерпретировать как константы движения угловой момент и внутренний момент частицы (спин). Иначе говоря, операторы, соответствующие этим инвариантам, перестановочны с гамильтонианом (квантовые скобки Пуассона от гамильтониана и этих операторов равны нулю). Числа, обладающие этими свойствами, называются квантовыми числами. В работах Э. Нетер дается общий алгоритм, позволяющий найти полную систему инвариантов любой физической теории, формулируемой в терминах лагранжева или гамильтонова формализмов. В основу алгоритма положена указанная выше связь между инвариантами группы Ли и константами движения уравнений Гамильтона или Лагранжа. В качестве простейшего примера рассмотрим вывод закона сохранения углового момента механической системы, заданной лагранжианом Г(х, X, (). Вводим непрерывную группу вращения, заданную системой инфи-  [c.912]

ГОЛДСТОУНОВСКИЕ БОЗОНЫ — бозоны с пулевой массой и нулевым спином, существование к-рых в теориях со спонтанным нарушением непрерывной группы симметрии (см. Спонтанное нарушение симметрии) вытекает из Голдстоуна теоремы. Примеры Г. б. в нерелятивистской квантовой теории ын. тел спонтанному нарушению симметрии изотропного ферромагнетика относительно вращений трёхмерного пространства соответствуют магноны, спонтанному нарушению калибровочной симметрии в сверхтекучем гелии — фонопы и т. д.  [c.501]

О. а. вещества определяется суммой вкладов отд. молекул, к-рая зависит от их расположения и ориентации. При беспорядочном расположении молекул (напр., в жидкости или в газе) эффект дают только хиральные молекулы к ним относятся энантиоморфные (зеркальные) группы симметрии С , Л , Т, О (см. Энантио-морфизм, Симметрия кристаллов). В этом случае вращение определяется силой вращения П (псевдоскаляром)  [c.426]

Различают строгие и приближённые О. п. Квантовый переход наз. запрещённым, если нарушается хотя бы одно О. п. Строгие О. п, обусловлены симметрией системы и строгими законами сохранения и налагают абс. запреты на квантовые переходы. Приближённые О. п. характеризуют переходы между уровнями энергии, к-рые описываются приближёнными законами сохранения. Квантовое число полного угл. момента атома (/) или молекулы (F) является точным, т, к. полный угл. момент является инвариантом группы вращения, поэтому О. п. для J (или F) — строгие, В случае электрич. дипольных переходов возможны изменения квантовых чисел Д/ = J — / = 0, 1 и ЛМ = М — М =  [c.486]


Одним вз наиб, завершённых разделов общей теории П. г. является теория представлений компактных групп, к к-рым. относятся все конечные группы, группы вращений плоскости И пространства, группы при различных N, рассматриваемые в теории злементарвых частиц (см. Калибровочные поля, Унитарная симметрия), и т. д. Если группа компактна, то любому её представлению можно сопоставить эквивалентное ему унитарное представление, т. е. изучение представлений компактной группы сводится к изучению её унитарных представлений. Свойства унитарного представления полностью определяются свойствами его неприводимых компонент. Всякое неприводимое унитарное представление компактной группы конечномерно.  [c.102]

Свободная частица массы т с импульсом р Й = рЧЪт.. Группа симметрии — группа движений трёхмерного пространства (совокупность трёхмерных вращений и произвольных трансляций). Имеющиеся в данной задаче интегралы движения — компоненты импульса р и момента импульса I. = [V р], делённые на К, представляют собой набор генераторов упомянутой группы.  [c.176]

Классификация нормальных колебаний молекулы по типам симметрии. Молекула, состояхцая из N атомов, имеет 3IV степеней свободы (N — число атомов в молекуле), из к-рых 3N — 6 связаны с относит, движением атомов — их колебаниями, а остальные 6 относятся к вращениям и аоступат. движениям молекулы в целом. Для симметричных молекул смещения атомов в данном колебании или вращении (трансляции) относятся к определённому типу симметрии точечной группы или ПИ-группы. Число степеней свободы типа симэлет рни определяется по ф-ле  [c.516]

Все три типа групп, которые мы рассмотрели, — группа молекулярной симметрии, молекулярная точечная группа и молекулярная группа вращений — очень важны для понимания строения молекул и внутримолекулярной динамики. Обсуждая точечные группы, группы вращений, группы перестановок и инверсионную ( ) симметрию, мы отмечали, что они представляют различные виды симметрии. Точечные группы и группы вращения являются группами симметрии макроскопических трехмерных тел эти тела имеют определенную геометрическую (или структурную) симметрию, проявляющуюся в наличии осей вращения и плоскостей отражения. Применение этих двух групп к молекулам основывается на том важном факте, что ядра атомов в молекуле обычно образуют жесткий каркас, который можно представить себе как классическую структуру. Мы можем говорить о равновесной структуре ядер в молекуле H3F как о пирамидальной и можем сказать, что она относится к  [c.46]


Смотреть страницы где упоминается термин Симметрия вращения и группа вращения : [c.42]    [c.43]    [c.44]    [c.412]    [c.634]    [c.501]    [c.502]    [c.540]    [c.511]    [c.608]    [c.575]    [c.176]    [c.516]    [c.517]    [c.543]    [c.292]    [c.43]    [c.46]    [c.47]    [c.102]   
Смотреть главы в:

Симметрия молекул и молекулярная спектроскопия  -> Симметрия вращения и группа вращения



ПОИСК



SU (3)-Симметрия

Группа симметрии вращения молекул

Группа симметрий

Общие замечания. Элементы симметрии и операции симметрии. Точечные группы ВРАЩЕНИЕ И ВРАЩАТЕЛЬНЫЕ СПЕКТРЫ Линейные молекулы

Симметрии и группы симметрии

Симметрия вращения



© 2025 Mash-xxl.info Реклама на сайте