Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электрическое квадрупольное излучение

При захвате медленных нейтронов, который мы далее будем рассматривать, электрическое дипольное излучение не играет, однако, главной роли, и поэтому оказывается необходимым учитывать магнитное дипольное и электрическое квадрупольное излучение.  [c.96]

Поскольку магнитный дипольный момент — аксиальный вектор, его компоненты имеют те же типы симметрии, что и компоненты вращения Нх, Ву, В г (приложение I). Электрический квадрупольный момент — тензор, компоненты которого ведут себя подобно компонентам поляризуемости, т. е. как произведение двух трансляций. Следовательно, можно пользоваться данными табл. 55 тома II ([23], стр. 274) для типов симметрии составляющих хж, < х(/,. ... Например, для симметричных линейных молекул (точечная группа 1)ос ) компоненты магнитного дипольного момента относятся к типам симметрии и П , а компоненты электрического квадрупольного момента — к типам симметрии Е , Пg, Ад. Следовательно, для того чтобы данный переход был разрешенным для магнитного дипольного излучения, произведение электронных волновых функций верхнего и нижнего состояний должно относиться к тинам 2 или П . Так, при поглощении из полносимметричного основного состояния могут происходить переходы 2 — 2 , П — 2 . Аналогично нри переходах, разрешенных для электрического квадрупольного излучения, произведение волновых функций должно относиться к одному из типов симметрии 2 , П , или А . При поглощении из полносимметричного основного состояния могут иметь место переходы 2 — 2 , Пд — 2д и Ай — 2 .  [c.134]


Запрещенные переходы, которые возможны для магнитного дипольного и электрического квадрупольного излучений, для наиболее важных  [c.135]

Эти признаки были описаны Релеем в 1881 г. Математически эти явления описываются формулой, имеющей три члена (электрическое дипольное, магнитное дипольное и электрическое квадрупольное излучение см. разд. 10.3). Второй признак особенно удобен для оценок размера частиц, но, подобно другим признакам, он не годится, если приобретают значение члены более высоких порядков (см. табл. 39, разд. 18.4).  [c.459]

Перейдем к электрическому квадрупольному излучению. Согласно (89) для него А =(Дп), поэтому выражения для магнитного и электрического поля и вектора Пойнтинга получатся из электрических дипольных формул заменой (1  [c.283]

Для электрически квадрупольного излучения (маг-нитно-дипольное излучение у данных излучателей отсутствует) получены следующие выражения  [c.129]

Итак, полное излучение системы состоит из трех независимых частей они называются соответственно электрическим дипольным, электрическим квадрупольным и магнитным дипольным излуче ниями.  [c.253]

Как было рассмотрено для двухатомных молекул в томе I ([22], стр. 280 русский перевод, стр. 208), переходы, строго запрещенные для дипольного излучения, становятся разрешенными нри наложении сильных электрических полей, т. е. они могут происходить как вынужденное дипольное излучение. Правила отбора для вынужденного дипольного излучения подобны правилам для квадрупольного излучения, по подробно мы их рассматривать здесь не будем. В газах при высоких давлениях, в жидкостях или твердых телах роль внешнего поля, вызывающего вынужденные переходы, может играть межмолекулярное поле. Однако для свободных многоатомных молекул такие переходы до сих пор, по-видимому, не наблюдались.  [c.142]

Р—электрический квадрупольный момент электрона, к—волновой вектор излучения, п=к/А,  [c.93]

Так как длина волны внутри частицы равна к/т, то мы можем выразить это условие еще и в такой форме размер должен быть мал по сравнению с длиной волны внутри частицы. Если условие (1) выполняется, а (2) нет, то мы находимся в резонансной области . Здесь внутреннее поле пе совпадает по фазе с внешним полем. Волны проникают в частицу медленно, и они могут породить различные системы стоячих волн. Кроме электрического дипольного излучения, мы имеем магнитное дипольное излучение, квадрупольное излучение и т. д. каждое из них вступает в резонанс при вполне определенных значениях отношения размера к длине волны. Этот резонанс связан с собственными колебаниями частицы. Для эллипсоидов в этом случае не было разработано общей теории. Резонансные эффекты для шаров рассматриваются в разд. 10.5 и 14.31.  [c.93]


Т. е. квадрупольное излучение определяется уже не второй, а третьей производной электрического квадрупольного момента.  [c.284]

ЗАМЕЧАНИЕ Мы вычисляли вектор Пойнтинга и излучаемую энергию для каждого члена в (89) по отдельности. Но вектор Пойнтинга квадратичен по полям, поэтому в нем должны появиться интерференционные члены S - , и S >4 Легко проверить, что такие члены действительно появляются. Оказывается, однако, что при интегрировании по углам все они обращаются в нуль, и суммарное излучение системы, излучающей сразу электрическим дипольным, магнитным дипольным и электрическим квадрупольным образом, тем не менее представляется простой суммой трех формул (92).  [c.284]

Магнитно-дипольное излучение происходит при Д/г = 0 и Дш. = 0, 1, т. е. при переходах между компонентами тонкого или сверхтонкого расщепления линий (например, переход Ф -> Р ,). Возможны и смешанные квадрупольные электрические и дипольные магнитные переходы, например переход в конфигурации р2.  [c.427]

Излучение квадрупольное электрическое 134, 135, 173, 246 Изотопический эффект 181—183, 467, 508 использование при отнесении полос 183  [c.738]

Условия сохранения тангенциальных компонент волновых векторов [см. (3.1)] носят общий характер. Они легко могут быть использованы для определения направлений распространения волн с комбинационными частотами более высокого порядка. Эти условия остаются в силе независимо от того, является ли излучение гармоники дипольным (электрическим или магнитным) или квадрупольным они справедливы и для анизотропной среды. В этом случае существуют два направления для волнового вектора с заданными тангенциальными компонентами. В общем случае здесь возникнет четыре неоднородные волны с суммарной частотой, соответствующие смешению двух преломленных волн с частотой о)1 и двух преломленных волн с частотой (й2- Если линейная среда также является анизотропной, возникнут две однородные прошедшие волны (угол преломления 0 и две отраженные волны (угол отражения 0 ).  [c.346]

В отсутствие постоянного электрического поля в области г < О волна гармоники генерируется за счет квадрупольного эффекта при наложении поля пост области г>0 преобладает дипольное излучение. На границе (г = 0) волны интерферируют.  [c.357]

Распределение по направлениям волновой амплитуды у-лучей 0) или интенсивности (аФ ) характерно для осциллирующего электрического диполя, квадруноля и т. д. или осциллирующего магнитного диполя, квадруполя и т. д. Фактически электрическое квадрупольное излучение — = 2, нет изменения четности) является самым распространенным типом излучения ядерных у-лучей. Электрическими дипольными моментами в силу симметрии распределения заряда можно пренебречь, но электрические квадрупольные моменты могут быть относительно велики.  [c.35]

С классической точки зрения колебание магнитного дипольного момента или электрического квадрупольного момента также приводит к слабому испусканию или поглощению излучения. На основании квантовой теории вероятность перехода для магнитного дипольного или электрического квадрупольного излучения может быть рассчитана, если в выражение (11,1) для момента перехода вместо электрического дипольного момента подставить магнитный дипольный или электрический квадруполышй момент. Вероятность таких переходов будет отличной от нуля в том случае, если произведение г ) фе относится к тому же типу симметрии, что и одна из компонент магнитного дипольного или электрического квадрупольного момента.  [c.134]

Таким образом, и при квантовом истолковании излучения также можно выделить члены, соответствующие электрическому диполь-ному, магнитному динольному, электрическому квадрупольному и т. д. излучениям.  [c.255]

Слабый переход между состояниями Ф и Ф" с поглощением или испусканием электромагнитного излучения может происходить, если даже матричный элемент электрического дииольного момента (11.144) равен нулю, так как матричные элементы операторов магнитного дипольного или электрического квадруполь-ного момента молекулы могут быть отличными от нуля (более высокие мультипольные переходы также возможны, но пока не наблюдались). Вероятности магнитных днпольных и электрических квадрупольных переходов обычно составляют около 10 и 10 соответственно от вероятности электрических ди-нольных переходов. Такие переходы также называются запре-  [c.354]


Если рассматривать взаимодействие между электромагнитным полем излучения и различными электрическими и магнитными моментами молекулы, то наиболее сильно взаимодействуют между собой электрическая компонента поля и электрический ди-польный момент. Соответственно высоки и вероятности переходов, связанных с изменением электрического дипольного момента молекулы. Они на 5—8 порядков выше, чем вероятности остальных переходов, при которых изменяются магнитные дипольпые и электрические квадрупольные моменты. Поэтому при изучении оптических спектров наблюдаются практически спектральные линии, обусловленные только электрическими дипольными переходами. Однако в длинноволновой области спектра (радиодиапазоне) интенсивности всех трех типов спектров становятся сравнимы.  [c.55]

Магнитные дипольные переходы. Как уже указывалось в разд. 1, некоторые электронные переходы, запрещенные для электрического дипольного излучения, могут происходить для магнитного дипольного (и квадрупольного) излучения. Это относится также и к электронно-колебательным переходам, когда учитывается взаимодействие колебательного и электронного двшкений. Так, например, электронно-колебательные переходы — Ах в молекулах точечной группы или электронно-колебательные переходы Ag — Ag точечной группы С2/-,, строго запрещенные для электрического дипольного излучения, могут происходить в случае магнитного дипольного излучения (табл. 10). Правила отбора для квантовых чисел / и А те же самые, что и для электрического дипольного излучения, а правило отбора для элек-тронпо-колебательно-вращательных типов симметрии противоположно. Следовательно, как это показано на фиг. 113, при магнитном дипольном переходе А2 — Ах наблюдаются те же подполосы и те же ветви, что и при электрическом дипольном переходе — Ль в частности, в подполосе А = О - —>-  [c.270]

Таким образом, видна характерная разница в относительном значении этих членов. Заключение Шалёна, что аг и Ь (описывающие электрическое квадрупольное и магнитное дипольное излучение) оказываются одного и того же порядка, согласуются с теми результатами, которые обычно получаются для диэлектрических шаров (а также в атомной физике). Это объясняется тем, что первые члены разложений этих коэффициентов в ряды оказываются порядка X (см. разд. 10.3). Однако эти разложения зависят от разложения бесселевых функций как с аргументами х, так и с аргументами тх. Приведенного небольшого количества членов достаточно только, скажем, при т х 0,6. Расчеты Лоуана, в которых т заключено в интервале примерно от 2 до 9, можно поэтому сравнивать с этими разложениями в ряды самое большее до х = 0,3.  [c.322]

О выборе величин, входящих в эту таблицу, нужно сделат несколько замечаний. Внешняя объемная сила f (например, сила тяжести) предполагается непрерывной на поверхности ст(/), Мы предполагаем, что нет ни внутреннего спина, так что Ф в уравнении импульсов состоит только из орбитального момента импульса г X V, ни поверхностных пар, так что электрические квадрупольные моменты, эффекты электричества и ферри-магнетизма выбрасываются. Рассмотрение, например, эффектов ферромагнетизма требует другой формулировки, которая будет дана в гл. 6. Приток тепла за счет излучения, например по закону Стефана — Больцмана, может быть включен как в вектор потока тепла я, так и в вектор Пойнтинга, входящий в уравнение для да . Мы предпочитаем включить этот приток тепла за счет излучения в член р/г, исключив, тем самым, из электромагнитных членов в балансном уравнении для энергии электромагнитные величины, связанные с этим типом излучения. Поэтому электромагнитные поля не содержат высокочастотных компонент, существующих при излучении тепла. Однако некоторые авторы включают эту часть излучения в я. Наконец, надо сказать, что, за исключением обсуждавшегося слагаемого в р/г, как объемные, так и поверхностные электромагнитные источники энтропии считаются отсутствующими.  [c.196]

Другое важное О. п. связано с законом сохранения полной чётности для изолированной квант, системы (этот закон нарушается лишь слабым взаимодействием). Квант, состояния атомов, всегда имеющих центр симметрии, а также тех молекул и кристаллов, к-рые имеют такой центр, делятся на чётные и нечётные по отношению к пространств, инверсии (отражению в центре симметрии, т. е. к преобразованию координат х- х, у- —г/, Z-I—2) в этих случаях справедлив т. н. альтернативный запрет для излучательных квант, переходов для электрического дипольного излучения запрещены переходы между состояниями одинаковой чётности (т. е. между чётными или между нечётными состояниями), а для дипольного магнитного и квадрупольного электрического излучений (и для комбинац. рассеяния) — переходы между состояниями разл. чётности (т. е. между чётными и нечётными состояниями). В силу этого запрета можно наблюдать, в частности в ат. спектрах астр, объектов, линии, соответствующие магн. дипольным и электрич. квадрупольным переходам, обладающим очень малой вероятностью по сравнению с дипольными электрич. переходами (т. н. запрещённые линии).  [c.505]

Y-Лучи, испускающиеся ядром при переходе в низшее энергетическое состояние, могут уносить различный момент количества движения I. Излучение, уносящее момент количества движения / = 1, называется дипольным, / = 2 — квадрупольным, I = 3 — октупольным и т. д.. Каждое из них характеризуется определенным характером углового распределения. Кванты различной мультипольности возникают в результате различных колебаний ядерной жидкости электрических (дипольные, квадрупольные и т. д.) и магнитных (дипольные, квадруполь-ные и т. д.).  [c.166]


В заключение настояш.его параграфа мы еще кратко остановимся на вероятности квадрупольного и магнитно-дипольного излучения, В обш.ем случае момент атома может быть разложен в ряд, где первый член соответствует электрическому дипольному моменту, а второй — электрическому квад-рупольному и магнитному дипольному моментам, Следуюш,ие члены соответствуют моментам еш.е более высоких переходов. Изменение со временем этих моментов также ведет к излу-  [c.427]

Согласно теории таких переходов, разработанной Вейцзекке-ром, у-кванты различной мультипольности возникают в результате разных колебаний внутри ядра. Некоторые из этих процессов связаны с перераспределением электрических зарядов внутри ядра (электрические дипольное, квадрупольное и т. д. излучения), другие — с перераспределением токов или магнитных моментов нуклонов (магнитные дипольное, квадрупольное и т. д. излучения). Между моментами начального состояния ядра /1 и конечного состояния ядра /2 и моментом А/, уносимым у-квантом, должно существовать соотношение  [c.123]

Ядерный квадрупольный резонанс (ЯКР) — еще один вид спектроскопии, где используется радиочастотное излучение с очень низкой энергией. ЯКР возникает в результате взаимодействия квадрупо 1ьно-го момента атомного ядра с электрическим полем, создаваемым окружающими его атомами, поэтому в данном методе не приходится использовать магнитное поле.  [c.90]


Смотреть страницы где упоминается термин Электрическое квадрупольное излучение : [c.256]    [c.135]    [c.135]    [c.751]    [c.284]    [c.271]    [c.75]    [c.246]    [c.280]    [c.272]    [c.249]   
Электронные спектры и строение многоатомных молекул (1969) -- [ c.134 , c.136 , c.173 , c.246 , c.270 ]



ПОИСК



Запрещенные переходы, которые возможны для магнитного дипольного I и электрического квадрупольного излучений, для наиболее важных точечных групп

Излучение квадрупольное

Излучение квадрупольное электрическо

Излучение квадрупольное электрическо



© 2025 Mash-xxl.info Реклама на сайте