Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механическая энергия частицы в поле

Механическая энергия частицы в поле  [c.98]

Итак, из предыдущих двух уравнений следует, что приращение полной механической энергии частицы в стационарном поле консервативных сил при перемещении ее из точки 1 в точку 2 можно записать в виде  [c.100]

Если сторонние силы отсутствуют, то полная механическая энергия частицы в данном поле, т. е. Е, не меняется в процессе движения и мы можем просто решить, например, такие вопросы, как  [c.101]


В дальнейшем мы будем предполагать, что имеем дело с движением частицы в поле с потенциальной энергией V. В качестве координат выберем обычные прямоугольные координаты X, у, Z. В следующем пункте будет показано, что все наши выводы применимы и к движению произвольных механических систем.  [c.303]

Закон сохранения механической энергии. При движении материальной На материальную частицу, находящуюся частицы под действием силы в потенциальном поле, действует сила  [c.396]

Закон сохранения механической энергии. На материальную частицу, находящуюся в потенциальном поле, действует сила этого поля, поэтому при движении частицы скорость, а следовательно, и кинетическая энергия ее в общем случае меняются. Выражая в уравнении (207) работу А равенством (213), найдем зависимость изменения кинетической энергии от изменения силовой функции  [c.241]

Наглядное представление о таком движении заряженной частицы можно получить, если воспользоваться его механической моделью. В механической модели заряженная частица подобна шарику, который катится с малым трением по склону холма, имеющему криволинейный профиль. Холм строится так, что высота h любой точки на его поверхности обратно пропорциональна расстоянию г этой точки от центра, т. е. h = r (рис. 95). Поэтому потенциальную энергию тяготения шарика на холме можно сопоставить с потенциальной энергией заряженной частицы в центральном поле сил отталкивания. Иначе говоря, механическая модель изображает плоскость, проходящую через центр поля, в которой третье измерение соответствует значениям потенциальной энергии.  [c.125]

Каждый вид энергии имеет определенный характер взаимодействия между частицами и телами в соответствующих полях. Следует отметить некоторые особенности механической и тепловой энергии и их взаимодействия. Механическая энергия, т. е. энергия свободно движущейся частицы или системы, может возникать не только при механических, но и электрических, магнитных, гравитационных и других факторах. Тепловое взаимодействие хотя и представляет в своей основе как бы механическое взаимодействие между хаотически движущимися частицами (атомами, молекулами), однако, являясь результатом совокупного действия многих частиц, оно относится к качественно иному виду взаимодействия, осуществляемому как среднее статистическое взаимодействие систем, характеризующихся различным тепловым состоянием.  [c.37]


Хотя все это очень ясно, такое разделение системы на механическую и термическую неудобно тем, что работу термической части над механической совершает не все поле, существующее в месте расположения заряда е , а только та его часть, которая создается связанными зарядами диэлектрика. Можно иначе провести границу между термической и механической частями нашей системы, так чтобы это неудобство исчезло. Определение термической части, в которой могут иметь место как видимые, так и скрытые движения, настолько широко, что в ее состав можно включать какие угодно механические системы. Требуется лишь, чтобы остающиеся (не включенные в ( ])) механические системы ограничивали скрытое движение в пространстве, не давая ему уходить в бесконечность. Кроме того, когда мы говорим о части системы, не нужно непременно иметь в виду какие-то частицы, составляющие эту часть. Система может и не состоять из частиц, и характеризует ее определенный вид движения. Поэтому в нашей системе, состоящей из внешних зарядов, поля и диэлектрика, можно взаимную потенциальную энергию зарядов е (т. е. энергию их поля) включить в термическую часть. Тогда энергия механической части будет только кинетической, а работа будет определяться полной электрической напряженностью, действующей на заряды е  [c.13]

Энергию, необходимую для перевода электрона в свободное состояние ли для образования дырки, может доставить не только тепловое движение, но и другие источники энергии, например, поглощенная материалом энергия света, энергия потока электронов и ядерных частиц, энергия электрических и магнитных полей, механическая энергия и т. д., и т. п.  [c.36]

Для механических систем, находящихся в нестационарных потенциальных силовых полях, тоже можно ввести понятие о полной потенциальной энергии как сумме потенциальной энергии системы во внешнем силовом поле, явно зависящем от времени, и энергии взаимодействия частиц, входящих в систему  [c.64]

При движении частицы в стационарном силовом поле U (г) сохраняются ее полная механическая энергия Е и момент импульса L относительно центра поля. Сохранение неизменным направления вектора L, как указывалось в 12 (см. пример 12.3), приводит к тому, что движение частицы в центрально-симметрическом поле и (г) оказывается плоским траектория частицы лежит в плоскости  [c.105]

Такой качественный анализ движения в центрально-симметрическом поле проводится с помощью графиков одномерного эффективного потенциала /эфф ( ). строящихся в общем случае для различных фиксированных значений механического момента I, и графика полной энергии частицы Е.  [c.109]

Указанная особенность полей —а/г и кг 12 сохраняется и в квантовомеханическом случае. Квантовая механика показывает, что уровни энергии связанных состояний [г-частицы в произвольной сферически-симметричной яме (например, электрона в атоме щелочного металла лития, имеющего потенциальную энергию и (г) = = —е /г + Л/г ) являются функциями двух квантовых чисел п и I, т. е. Е 1 = / (п, I), где л — главное квантовое число (или номер электронной оболочки атома) и I — орбитальное квантовое число, определяющее орбитальный механический момент электрона  [c.124]

Закон сохранения энергии и импульса для замкнутой изолированной релятивистской системы. Рассмотрим сначала макроскопическую систему заряженных тел (материальных точек) и непрерывного (электромагнитного) поля. Система называется в механике замкнутой, если в ней действуют только внутренние силы, т. е. силы взаимодействия только между точками системы. Как известно, для потенциальных сил в замкнутой системе сохраняется механическая энергия, а для любых сил — импульс и момент импульса системы. Соответствующие величины введены выше для релятивистских частиц, и показано, что в системе невзаимодействующих частиц, т. е. системе без поля, они сохраняются. Теперь переходим к системе с взаимодействием.  [c.275]


Однако волновое поле в металле создает и механическая энергия. Эти поля в зависимости от частот являются звуковыми, ультразвуковыми и гиперзвуковыми. Вполне естественно было.признать, что для звуковых волновых полей должна существовать своя элементарная квазичастица — носитель энергии. Эту квазичастицу назвали ф о н о н. Она является элементарным квантом звуковой энергии, т. е. энергии механических колебаний. Согласно идеям волновой (квантовой) механики, каждой движущейся микрочастице соответствует определенная волна. И, наоборот, любой волновой поток мы можем представлять как движение массы частиц реальных и квазичастиц.  [c.60]

Полупроводники качественно отличаются от металлов природой химических связей, структурой и физико-механическими свойствами. От диэлектриков полупроводники отличаются лишь количественно. Полупроводники — это вещества, имеющие при нормальной температуре удельную проводимость в интервале 10" —10 Ом" м , которая зависит от вида и количества примесей, структуры вещества и внешних условий температуры, давления, электрических и магнитных полей, освещения, облучения ядерными частицами. В соответствии с зонной теорией у металлов валентные электроны легко переходят на уровни зоны проводимости и все валентные электроны участвуют в создании тока. У полупроводника энергетическая зона валентных электронов занята полностью и отделена от зоны проводимости зоной запрещенных энергий. К полупроводникам относятся вещества, для которых запрещенная зона равна (0,16- -5,1) 10" Дж. Вещества с большей шириной запрещенной зоны относятся к диэлектрикам. Основу полупроводникового прибора составляет кристалл полупроводникового материала с одним пли несколькими электронно-дырочными р—м-переходами, которые получают,, вводя разнообразные примеси в различные участки одного и того же кристалла.  [c.230]

Полная механическая энергия частицы. Согласно (4.28), приращение кинетической энергии частицы равно элементарной работе результирующей F всех сил, действующих на частицу. Что это за силы Если частица находится в интересующем нас стационарном поле консервативных сил, то на нее действует консервативная сила Fkoh со стороны этого поля. Кроме того, на частицу могут действовать и другие силы, имеющие иное происхождение. Назовем их сторонними силами Рстор-  [c.99]

Отдельные слагаемые этой суммы представляют отнесенные к единице массы 1) кинетическую энергию частицы, 2) потенциальную энергию поля объемного действия сил давления в данной точке потока и 3) потенциальную энергию поля объемных сил. Сумма Е этих трех слагаемых представляет, как уже ранее упоминалось, отнесенную к единице массы полную механическую энергию потока в данной точке. Равенство (52) дает следующую формулировку теоремы Бернулли при стационарном, баротропном движении идеальной жидкости или газа под действием потенциального поля объемных сил приведенная к еданице массы полная механическая энергия потока сохраняет постоянную величину вдоль любой траектории или линии така.  [c.146]

Допустим, что в момент времени t = —оо некоторая частица массой 2, покоящаяся относительно л-системы, обстреливается частицей массой rtii, имеющей относительно той же системы отсчета скорость ио. Пусть в процессе неупругого столкновения (ядерной реакции) частицы и погибают, но рождаются новые частицы с массами и т . Допустим также, что в ходе реакции выделяется или поглощается некоторое количество энергии Q, называемое тепловым эффектом реакции. Если Q — энергия электромагнитного излучения, сопровождающего реакцию, то, строго говоря, следовало бы учитывать переход некоторой части импульса механического движения частиц в импульс электромагнитного поля. Мы будем предполагать, что импульс, уносимый излучением, пренебрежимо мал по сравнению с импульсами частиц. Это позволяет считать, что скорость центра масс ядерных частиц V (как вступающих в реакцию и т , так и вновь рождающихся и  [c.103]

Шульц-Грунов свидетельствует о противоположном осевом перемещении периферийно расположенных масс газа и масс газа, находящихся в приосевой области камер энергоразделения. В этом случае на фанице раздела потоков, движущихся противоположно, возникает свободная турбулентность. Пристенная турбулентность во вращающихся потоках газа проявляется значительно интенсивнее, чем при прямолинейном течении, но в процессе энергоразделения ей отводится меньщая роль. Шульц-Грунов, ссылаясь на Ричардсона [249], считает, что частицы газа, расположенные на более высоких радиальных позициях, в процессе турбулентного движения могут перемещаться к оси, а приосевые перескакивать на более высокие радиальные позиции. Частицы, перемещающиеся к центру, должны произвести работу против центробежных сил, так как они плотней приосевых. Частицы, перемещающиеся к периферии, должны произвести работу против сил, вызванных фадиентом давления. Эта механическая работа осуществляется в центробежном поле за счет кинетической энергии турбулентности, которая в свою очередь входит в общую кинетическую энергию направленного течения, т. е. элементы газа, перемещающиеся за счет радиальной составляющей пульса-ционного движения с одной радиальной позиции на другую, могут рассматриваться как рабочее тело холодильной машины, обеспечивающей под действием турбулентности перекачку энергии от приосевых слоев к периферийным. Физический процесс энергоразделения имеет аналог среди атмосферных явлений. Шмидт [256] показал, что в атмосфере тепло переносится от бо-  [c.161]

Таким образом, если материальная частица движется в потенциальном поле под действием сил этого поля, то во всякое мгновение при всяком положении частицы сумма ее кинетической и потенциальной энергий есть величина постоянная. Равенство (247) выражает закон сохранения механической энергии и имеет применение в тех случаях, если на частицу не действуют никакие силы, кроме сил потенциального поля. Поэтому потенциальные поля называют также консервативными (от лат. onservativus — сохраняющий).  [c.396]


Для классификации отказов и процессов их возникновения по виду энергии важнейшими являются механическая — энергия свободно движущихся отдельных микрочастиц и макросистем и энергия упругой деформации системы (тела) тепловая— энергия неупорядоченного, хаотического движения большого числа микрочастиц (атомов, молекул и др.) электрическая (электростатическая и электродинамическая) — энергия взаимодействия и движения электрических зарядов, электрически заряженных частиц химическая — энергия электронов в атоме, частично освобождаемая в результате перестройки электронных оболочек атомов и молекул при их взаимодействии в процессе химических реакций электромагнитная—энергия движения фотонов электромагнитного поля аннигиляционная — полная энергия системы, вещества (энергия покоя и энергия движения), освобождаемая в процесе аннигиляции (превращения частиц вещества в кванты поля).  [c.37]

ПИНЧ-ЭФФЕКТ есть свойство канала электрического разряда в электропроводящей среде уменьшать свое сечение под действием собственного магнитного поля тока ПИРОЭЛЕКТРИК— кристаллический диэлектрик, обладающий самопроизвольной поляризацией ПИРОЭЛЕКТРИЧЕСТВО — возникновение электрических зарядов на поверхости некоторых кристаллов диэлектриков при их нагревании или охлаждении ПЛАЗМА (есть частично или полностью ионизированный газ, в котором объемные плотности положительных и отрицательных электрических зарядов практически одинаковы высокотемпературная имеет температуру ионов выше 10 К газоразрядная находится в газовом разряде кварк-глюонная возникает в результате соударения тяжелых ядер при высоких энергиях ядерного вещества низкотемпературная имеет температуру ионов менее 10" К твердых тел — условный термин, обозначающий совокупность подвижных заряженных частиц в твердых проводниках, когда их свойства близки к свойствам газоразрядной плазмы) ПЛАСТИНКА вырезанная из двоя-копреломляющего кристалла параллельно его оптической оси, толщина которой соответствует оптической разности хода обыкновенного и необыкновенного лучей, кратной [длине волны для пластинки в целую волну нечетному числу (половин для волн для пластинки в полволны четвертей длин волн для пластинки в четверть волны)] зонная — прозрачная плоскость, на которой четные или нечетные зоны Френеля для данного точечного источника света сделаны непрозрачными нлоскопараллельная — ограниченный параллельными плоскостями слой среды, прозрачной в некотором интервале длин волн оптического излучения ПЛАСТИЧНОСТЬ — свойство твердых тел необратимо изменять свои размеры и форму под действием механических нагрузок ПЛОТНОСТЬ тела — одна из основных характеристик тела (вещества), равная отношению массы элемента тела к его объему  [c.259]

Разность скоростей фаз в ядре потока (на значительном расстоянии от тела) и у омываемых поверхностей приводит к необходимости учета механического взаимодействия между жидкими (или твердыми) частицами и паровой фазой. Следует также иметь в виду, что это взаимодействие происходит в условиях значительных градиентов скоростей паровой фазы у поверхности тела. Капли жидкости, попадая в пограничный слой, тормозятся, отдавая часть своей кинетической энергии пару. В результате полнота профиля скоростей пара увеличивается, наступает более ранняя турбулиза-ция потока, вероятность отрывных явлений уменьшается. Однако необратимые потери энергии в пограничном слое возрастают, что обусловлено возрастающей разностью скоростей фаз и увеличением градиента скоростей пара в пограничном слое. Двигаясь в градиентном поле, частицы жидкости приобретают вращательное движение, в результате чего появляются дополнительные силы, стремящиеся прижать (или оттолкнуть) частицы к поверхности тела. Это приводит к дополнительному изменению концентрации по сечению и вдоль потока и дополнительным потерям энергии. Особенно сложными и трудно поддающимися расчету являются неравновесные  [c.275]

Этот классический гамильтониан вьп лядит точно так же, как гамильтониан осциллятора с массой. В случае осциллятора с массой изменятся лишь формулы (1.18), описывающие безразмерный импульс и координату. Однако этот факт не повлияет на динамику системы, т е. на ее поведение во времени. В гармоническом осцилляторе с массой колебания сопровождаются периодическим переходом энергии из потенциальной формы в кинетическую, а в электромагнитном поле она переходит из электрической формы в магнитную. Следовательно электрическое поле играет роль обобщенного импульса, а магнитное поле — роль обобщенной координаты. Слово обобщенный появилось здесь не случайно, так как обобщенный импульс поля не имеет никакого отношения к импульсу электромагнитного поля, который определяется с помощью вектора Пойнтинга. В осцилляторе же с массой обобщенный импульс совпадает с механическим импульсом частицы.  [c.14]

Для начала рассмотрим весьма простую задачу, которая, хотя и не имеет непосредственного отношения к статистико-механическим системам, весьма ярко демонстрирует фантастическую сложность поведения тривиальных на первый взгляд систем. Эта задача рассматривалась в пионерской работе Хенона и Хейлеса (1963) она касается движения в пространстве одиночной точки под влиянием цилиндрически симметричного потенциала. (Такая задача моделирует движение звезды в среднем поле галактики.) После учета тривиальных интегралов движения, таких, как полная энергия и полный момент количества движения, задача сводится к движению частицы в плоскости, т. е. в четырехмерном фазовом пространстве. Для такой редуцированной задачи имеется дополнительный изолирующий интеграл  [c.365]

В последнее время получил распространение способ обработки твердых материалов с помощью ультразвуковых колебаний. Этот способ состоит в следующем. Под торцовую плоскость инструмента, имеющего форму обрабатываемого отверстия, непрерывно поступает суспензия, состоящая из абразива в воде или масле. Под воздействием ультразвуковых колебаний абразивные зерна ударяются в обрабатываемую поверхность и, отрываясь от нее, уносят частицы материала. Огромное количество абразивных зерен, имеющих до 25000 колебаний в секунду, непрерывно участвуют в процессе удаления материала. Амплитуда колебаний составляет 0,1 мм. Скорость обработки стекла равна Ъ мм мин, а твердого сплава — 0,25 мм мин. Обработанная поверхность имеет чистоту в пределах у9. На фиг. 16 показана схема преобразователя электрического тока в механическую энергию ультразвуковой установки. Колебания инструмента 4 происходит после поступления электрического тока из генератора в преобразователь (трансдуктор). Верхняя часть 1 преобразователя, имеющая спиральную обмотку, называется магнитостриктором и служит для преобразования ультразвуковой энергии в механические колебания. Магпитостриктор представляет собой стержень-пакет, набранный из тонких пластинок чистого никеля или пермендюра, имеющих свойство изменять свои размеры под действием магнитного поля. При прохождении магнитного потока через стержень, обладающий магнитострикционными свойствами, длина стержня изменяется. Частота изменения длины магнитостриктора будет соответствовать частоте переменного тока, исходящего от генератора. Во избежание перегрева станка предусматривается водяное охлаждение.  [c.40]


Требованиям длительного управляемого космич. полета могут удовлетворить ЭРД — ионные и плазменные (находящиеся нока в стадии разработки). Предполагается, что скорости истечения в ЭРД будут достигать от 2-10 до 2-105 м/сек. Это возможно при применении в качестве рабочего тела заряженных частиц, к-рые разгоняются в электростатич. и магнитных полях. Общее для этой группы двигатол(щ то, что для ионизации рабочего тела или для преврагцения его в плазму и последующего ускорения до больших скоростей требуются огромные затраты электрич. энергии на единицу массы. Как первичный источник энергии, для ЭРД рассматривают в основном атомный, обладающий большой энергоемкостью. Тепловая энергия, получаемая в реакторе, может быть преобразована в элоктрическ то либо непосредственно (иапр., с помощью термоэмиссионных и термоэлектрич, элементов), либо последовательным преобразованием тепловой энергии в механическую, а затем в электрическую с помощью турбогенераторов с газовым или паровым циклом.  [c.382]

При. рассмотрении двух- или трехмерных задач аэродинамики, когда учитывается неоднородность поля скоростей в потоке, простое приравнивание теплоты трения и работы трения уже неприемлемо. Часть работы трения действительно превращается в теплоту, которая как бы подводится извне к выделенному из потока и во всех направлениях мало.му элементу. Эту часть работы касательных сил с .теп. в аэродинамике называют диссипнруе.мой (рассеиваемой) механической энергией. Другая же часть работы трения не превращается в теплоту, а вызывает чисто механический эффект—перестройку поля скоростей, сводящуюся к перераспределению кинетической энергии между взаимодействующими элементами потока. Те грани выделенного из потока элемента, которые движутся быстрее смежных частиц, подтормаживаются под действием вязкостных сил, грани же, движущиеся относительно медленнее, ускоряются. Картина усложняется еще тем, что выделенный элемент может расщи-ряться в направлении, нормальном к вектору его скорости. При этом на соответствующих поверхностях элемента также возникают касательные силы вязкости, которые возбуждают дополнительные механические эффекты.  [c.68]

Здесь Г — кососимметрическая, а Р (detP 7 0) — симметрическая матрицы. Можно себе представлять, что на частицу, движущуюся в Ж", действуют гироскопическая сила — Гж и потенциальная сила — Рх. Гироскопические силы появляются при переходе во вращающуюся систему отсчета (сила Кориолиса), при понижении порядка систем с симметриями, а также при изучении движения заряженных частиц в магнитном поле (сила Лоренца). Они не влияют на сохранность полной механической энергии  [c.96]

В предыдущих параграфах мы уже указывали на существование ряда явлений, из которых следует, что представление об электронах, как механических частицах, не может быть сохранено. Понятие об электронах, как частицах, движущихся подобно материальным точкам классической механики по определенным траекториям, возникло на основании тех опытов, которые в начале этого столетия были произведены над электронными пучками и над отдельными быстрыми электронами. В вакуумной трубке можно с помощью диафрагм получить достаточно резко ограниченный пучок электронов. При воздействии на этот пучок, например, магнитного поля он искривляется так, как должны искривляться траектории отдельных заряженных частиц, на которые действует магнитная сила. Метод сцинтиляций позволяет регистрировать отдельные электроны, попадающие в определенное место флуоресцирующего экрана. В камере Вильсона можно заснять следы быстрых электронов. Но наряду с этими явлениями в двадцатых годах нынешнего столетия были открыты другие явления, обнаружившие волновые свойства электронов. Было установлено, что электроны при прохождении через кристаллы и при отражении от них обнаруживают свойства дифракции, вполне аналогичные тем, которые присущи рентгеновым лучам. Как показал де-Бройль, можно получить согласие с опытом, если допустить, что пучок однородных по скоростям электронов характеризуется частотой v и длиной волны X, связанными с кинетической энергией электронов и их количеством движения М соотношениями  [c.87]

Так как удельный лагранжиан мы не будем теперь связывать с определенной механической системой, то он не обязательно должен быть равен разности удельных энергий — кинетической и потенциальной. Вместо этого мы можем взять для Й любое выражение, приводящее к нужным уравнениям поля. Рассмотрим, йапример, поле, возникающее при звуковых колебаниях газа. В 11.3 при описании этого поля мы рассматривали перемещения отдельных частиц газа и принимали эти перемещения за обобщенные координаты. Однако это поле является, в сущности  [c.394]

ВЕРОЯТНОСТЬ термодинамическая характеризуется чис-ло 1 способов, которыми может быть реализовано данное состояние системы ВЗАИМОДЕЙСТВИЕ [—воздействие тел или частиц друг на друга, приводящее к изменению их движения ближнего порядка — взаимодействие между соседними частицами, составляющими вещество гравитационное — взаимодействие между любыми телами, выражающееся в их взаимном притяжении с силой, зависящей от масс тел и расстояния между ними дальнего порядка — взаимодействие между далекими частицами, составляющими вещество звеньями полимерной молекулы при случайном сближении их в процессе теплового движения) обменное — специфическое взаимное влияние одинаковых частиц, входящих в состав квантовой системы, связанное со свойствами симметрии волновой функции системы относительно перестановки координат частиц, а также приводящих к согласованному движению частиц и изменению энергии системы пондемоторное токов — механическое взаимодействие электрических токов посредством создаваемых ими магнитных полей снин-орбитальное — взаимодействие частиц, входящих в состав квантовой системы, зависящее от велггчины и взаимной ориентации их орбитального и спинового моментов импульса, а также приводящих к тонкой структуре уровней энергии системы сннн-решеточ-ное — взаимодействие орбитального магнитного момента атома с кристаллическим полем спин-спиновое — взаимодействие частиц, входящих в состав квантовой системы, обусловленное наличием у частиц собственных магнитных моментов, а также приводящих к сверхтонкой структуре уровней энергии системы электромагнитное — взаимодействие частиц, обладающих электрическим зарядом или магнитным моментом, осуществляемое посредством электромагнитного поля]  [c.226]

ЗАКОН сохранения [количества движения ( при любом взаимодействии между телами, образующими замкнутую систему, скорость движения центра инерции этой системы не изменяется в электромагнитном поле в замкнутом объеме, ограниченном поверхностью, остается неизменным механический импульс и импульс электромагнитного поля ) массы масса (вес) веществ, вступающих в реакцию, равна массе (весу) веществ, образующихся в результате реакции материи в изолированной системе сумма масс и энергий постоянна момента углового если на систему не действуют моменты внешних сил (замкнутая система), то ее полный угловой момент остается постоянным по величине и направлению магнитного потока магнитный поток связан с частицами среды и перемещается вместе с ними массы масса тела не зависит от скорости его движения, а масса изолированной системы тел не изменяется при любых происходящих в ней процессах даркуляции скорости при движении идеальной жидкости баротронной в потенциальном поле массовых сил циркуляция скорости вдоль произвольного контура, проведенного через одни и те же частицы жидкости, не изменяется с течением времени энергии ( энергия не может исчезать бесследно или возникать из ничего механической в замкнутой механической системе сумма механических видов энергии (потенциальной и кинетической, включая энергию вращательного движения) остается неизменной ) и превращения энергии при любых процессах, происходящих в изолированной системе, ее полная энергия не изменяется энергии электромагнитного поля убыль энергии  [c.237]

КОЛЕБАНИЯ (вынужденные [возникают в какой-либо системе под влиянием внешнего воздействия переменного пружинного маятника (характеризуется переходным режимом и установившимся состоянием вынужденных колебаний резонанс выявляется резким возрастанием вынужденных механических колебаний при приближении угловой частоты гармонических колебаний возмущающей силы к значению резонансной частоты) электрические осуществляют в электрическом колебательном контуре с включением в него источника электрической энергии, ЭДС которого изменяется с течением времени] гармонические относятся к периодическим колебаниям, а изменение состояния их происходит по закону синуса или косинуса затухающие характеризуются уменьшающимися значениями размаха колебаний с течением времени, вызываемых трением, сопротивлением окружающей среды и возбуждением волн когерентные должны быть гармоническими и иметь одинаковую частоту и постоянную разность фаз во времени комбинационные возникают при воздействии на нелинейную колебательную систему двух или большего числа гармонических колебаний с различными частотами кристаллической решетки является одним из основных видов внутреннего движения твердого тела, при котором составляющие его частицы колеблются около положений равновесия крутильные возршкают в упругой системе при периодически меняющейся деформации кручения отдельных ее элементов магнитострикционные возникают в ферромагнетиках при их намагничивании в периодически изменяющемся магнитном поле модулированные имеют частоту, меньшую, чем частота колебаний, а также определенный закон изменения амплитуды, частоты или фазы колебаний неавтономные описываются уравнениями, в которые явно входит время некогерентные характерны для гармонических колебаний, частоты которых различны незатухающие не меняют свою энергию со временем нормальные относятся к гармоническим собственным колебаниям в линейных колебательных системах  [c.242]


ЭКВИВАЛЕНТ (биологический рентгена (БЭР) — поглощенная энергия излучения, биологически эквивалентная одному рентгену механический — количество работы, эквивалентное единице количества теплоты химический — отношение атомного веса элемента к его валентности электрохимический численно равен массе вещества, выделяющегося при прохождении через электролит единичного электрического заряда, и зависит от природы химической вещества) ЭЛЕКТРОАКУСТИКА— раздел акустики, связанный с расчетом и конструированием электроакустических преобразователей ЭЛЕ-КТРОГИРАЦИЯ — возникновение или изменение оптической активности в кристаллах под действием электрического поля ЭЛЕКТРОДИФФУЗИЯ — диффузия заряженных частиц под действием внешнего электрического поля ЭЛЕКТРОНОГРАФИЯ— метод исследования структуры вещества, основанный на дифракции электронов ЭЛЕКТРООПТИКА — раздел оптики, посвященный изучению условий и закономерностей  [c.297]


Смотреть страницы где упоминается термин Механическая энергия частицы в поле : [c.100]    [c.2]    [c.36]    [c.982]    [c.236]    [c.66]    [c.14]    [c.85]    [c.7]    [c.14]   
Смотреть главы в:

Основные законы механики  -> Механическая энергия частицы в поле



ПОИСК



Энергия механическая

Энергия частицы



© 2025 Mash-xxl.info Реклама на сайте