Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Колебания гармонического частота

Мы получили уравнение того вида, который был рассмотрен в предыдущем параграфе. Отсюда мы заключаем, что колебания груза М суть колебания гармонические частота к этих колебаний имеет значение  [c.83]

Определить траекторию точки, совершающей одновременно два гармонических колебания равной частоты, но разных амплитуд и фаз, если колебания происходят по двум взаимно перпендикулярным осям х = а sin kt а), у = Ь sin kt - - Р).  [c.93]

Свойства собственных колебаний q и < 2с рассмотрены. Они являются гармоническими колебаниями с частотами А,  [c.483]


Таким образом, задача сводится к сложению двух гармонических колебаний одинаковой частоты и, следовательно, одинакового периода, отличающихся амплитудами и начальными фазами. Раскрывая в правей части (I) косинусы суммы двух углов, находим  [c.358]

Таким образом, при сложении двух гармонических колебаний одинаковой частоты получается гармоническое колебание той же частоты. Амплитуда этого колебания а и начальная фаза р определяются  [c.359]

Этот прием геометрического сложения двух гармонических колебаний одинаковой частоты, направленных по одной прямой, может быть легко распространен на сложение любого числа таких колебаний. Достаточно из некоторого произвольного полюса отложить векторы, пропорциональные амплитудам составляющих колебаний под углами наклона, равными их начальным фазам. Сумма этих векторов определит амплитуду результирующего колебания, а ее угол наклона — начальную  [c.359]

Свободные, или, иначе, собственные колебания системы, определяемые уравнением (12 ), являются гармоническими колебаниями. Их частота и период не зависят от начальных данных — это свойство называется изохронностью малых колебаний.  [c.587]

При этом обеим координатам соответствуют гармонические колебания одинаковой частоты  [c.597]

Колебательный процесс прямолинейного движения материальной точки представляет собой сумму двух гармонических колебаний одинаковой частоты =  [c.82]

Интегрируя, получим уравнение гармонических колебаний. Конечно, частота этих колебаний не может зависеть только от масс, но зависит и от их распределения. Система представляет собой своеобразный физический маятник, и квадрат частоты свободных колебаний пропорционален статическому моменту веса и обратно пропорционален моменту инерции маятника относительно мгновенной оси.  [c.284]

Итак, собственные линейные колебания системы с двумя степенями свободы состоят из суммы двух главных гармонических колебаний с частотами и к , которые содержатся в каждой обобщенной координате 91 и Заглавные координаты  [c.438]

Итак, собственные линейные колебания системы с двумя степенями свободы состоят из суммы двух главных гармонических колебаний с частотами кх и За-  [c.462]

Свойства собственных колебаний и 20 уже рассмотрены. Они являются гармоническими колебаниями с частотами и k . Рассмотрим вынужденные колебания i/ib и Я2в- Возможны следующие характерные случаи.  [c.467]


Амплитудная модуляция. При передаче по радио речи, музыки и других звуковых сигналов применяются различные виды модуляции гармонических колебаний высокой частоты.  [c.252]

Очевидно, что два гармонических колебания одной частоты всегда когерентны. Гармонические колебания порождают монохроматические волны., способные интерферировать. Равенство частот интерферирующих волн ( i = Ы2) и неперпендикулярность векторов El и Е2 служат дополнительными требованиями, превращающими необходимое условие (5. 5) в достаточное. Правда, следует учитывать, что при oj (02 (точнее, при oi — Ш2 = 5<а, где Soi Ш1, и лю Юг) все же может наблюдаться нестационарная интерференционная картина (биения). Вопрос об интерференции неполяризованных колебаний подробно исследован в 5.4.  [c.178]

Как указывалось выше, строго гармонические колебания одинаковой частот.ы всегда вполне когерентны между собой, ибо, поскольку они длятся, не обрываясь, имеющаяся у них разность фаз сохраняется без изменения сколь угодно долгое время. Поэтому при сложении таких гармонических колебаний всегда проявляется интерференция.  [c.64]

Итак, результат сложения двух гармонических колебаний одинаковой частоты зависит от соотношения между их фазами. При сложении большого числа N колебаний одинаковой частоты с произвольными фазами результат будет, конечно, зависеть от закона распределения фаз. Предполагая для простоты, что все колебания имеют одинаковые амплитуды, равные а, найдем, что результирующая интенсивность может заключаться между и нулем. Как показал Рэлей ), при распределении фаз, которые подвергаются вполне случайным изменениям, средняя энергия суммы таких колебаний за время, охватывающее достаточно большое число изменений фаз, равна т. е. в данном общем случае имеет место сложение интенсивностей. Этот вывод имеет самое непосредственное отношение к реальным источникам света. Результирующее колебание от отдельных испускающих центров (атомов), составляющих источник, создает освещенность, величина которой в данный момент и в дайной точке зависит от соотношения фаз между колебаниями отдельных центров. Но наш глаз воспринимает лишь среднюю освещенность за некоторый достаточный для восприятия интервал времени и на некоторой достаточной по величине освещенной площадке. Это обстоятельство приводит к полному усреднению фазовых соотношений, в результате чего воспринимаемая освещенность окажется просто суммой освещенностей, создаваемых каждым светящимся центром нашего источника. Поэтому мы вправе сказать, что две одинаковые свечи дают освещенность вдвое большую, чем одна.  [c.65]

Отметим, прежде всего, что вынужденные колебания электрона описываются набором гармонических функции с частотами /со (/ = = О, 1, 2, 3,. ..), кратными частоте вынуждающей силы, т. е. частоте поля. Оптические явления, обусловленные кратными гармониками в смещении электрона, будут рассмотрены в следующих параграфах. Здесь же следует обратить внимание на изменение поляризуемости молекулы по отношению к колебаниям с частотой со. Из выражения (235.7) можно увидеть, что эта поляризуемость равна  [c.836]

Всякое периодическое движение частоты ш может быть представлено в общем случае бесконечной (а в частных случаях или в допустимом приближении конечной) суммой гармонических колебаний с частотами, кратными основной частоте ш. Такое представление осуществляется с помощью приемов гармонического анализа в рассматриваемом случае можно с вполне удовлетворительной точностью представить уравнение движения ползуна в виде суммы двух гармоник.  [c.153]

Из общего решения (26) следует, что каждая из координат совершает колебательное движение, которое является результатом наложения главных колебаний различных частот к и Аг. Так как ki п k , вообще говоря, несоизмеримы, движение это не будет периодическим. Введение главных колебаний допускает возможность представления движения системы в виде суммы простых гармонических движений — главных колебаний.  [c.553]

Частное решение бо, il o однородной системы (51) можно искать в виде гармонических колебаний одинаковой частоты, отличающихся по фазе на я/2  [c.611]

И частного решения, соответствующего правой части первого уравнения (134). Решение системы (135) для каждой из координат и 00 ищется, как уже указывалось в 194, в виде гармонических колебаний одинаковой частоты, отличающихся по фазе на п/2  [c.634]


Это есть уравнение простого гармонического движения. Следовательно, заряды испытывают около положения равновесия колебания с частотой  [c.158]

Удерживающая сила. Представляя атом гармоническим осциллятором определенной частоты, можно считать, что электрон в атоме удерживается в положении равновесия квазиупругой силой Д/ = —fr, которая пропорциональна смещению электрона г, возникающему под действием поля световой волны. Масса электрона т и коэффициент квазиупругой связи / определяют частоту собственных колебаний гармонического осциллятора  [c.91]

Сила пропорциональна г, т. е. является квазиупругой коэффициент жесткости есть К=е 1г а. Под действием этой силы электрон, выведенный каким-либо внешним воздействием из положения равновесия, совершает гармонические колебания с частотой  [c.62]

Интенсивность технологического процесса определяется, главным образом, амплитудой колебаний (точнее, размахом колебаний) и частотой возбуждаюш,ей силы. Под размахом Д колебаний понимают удвоенную амплитуду колебаний при гармонических и других симметричных колебаниях, или разность между максимальными и минимальными отклонениями при несимметричных колебаниях.  [c.303]

Ответ у = 1,5- - 0,0008 sin 0,8ях. 21.8(21.8). Определить уравнения траектории сложного движения конца двойного маятника, совершающего одновременно два взаимно перпендикулярных гармонических колебания равной частоты, но разных амплитуд и фаз, если равненля колебаний имеют вид х = а sin( u/а), у = b(sin (OI Р).  [c.152]

Равенства (152), содержащие четыре произвольных постоянных А , А , i, г, определяемых по начальным условиям, да10т общее решение уравнений (145) и определяют закон мальа колебаний системы. Эти колебания слагаются из двух главных колебаний с частотами Aj и и не являются гармоническими. В частных случаях, при соответствующих начальных условиях, система может совершать одно из главных колебаний (например, первое, если -42=0) и колебание будет гармоническим.  [c.395]

Части кривых, соответ-ствук) дие устойчивым режимам, представлены жирными линиями. При изменении С от нуля до = 2 система совершает устойчивое гармоническое движение с частотой, близкой к нормальной частоте к . Далее система изменяет частоту скачком, и при дальнейшем увеличении в системе происходят колебания с частотой, близкой к нормальной частоте k . При обратном изменении скачок с частоты ki к частоте произойдет уже при С = Si-Это явление носит название затягивания по частоте. При < < 2 в системе в зависимости от начальных условий  [c.167]

Частота вынужденных колебаний равна частоте р гармонической возмущающей силы (эта сила как бы навязывает системе сйою частоту колебаний).  [c.372]

Свойства собственных колебаний qi и 2с рассмотрены. Oiin являются гармоническими колебаниями с частотами ki и /е,. Рассмотрим вынужденные колебания и Возможны следующие характерные случаи  [c.443]

Определить полную интенсивность излучения звука шаром, соверша о-щим поступательные малые (гармонические) колебания с частотой со, причем длина волны сравнима по величине с радиусом R шара.  [c.400]

Mнoжитeль е в этом выражении является весьма медленно изменяющейся функцией времени — ее период, как указано выше, весьма велик по сравнению с периодом колебаний даже столь длинного маятника, как маятник Фуко. Разделяя в t вещественную и мнимую части, убеждаемся, что траектория точки, движущейся по закону Si(0. представляет собой эллипс (результат слол<ения двух взаимно перпендикулярных гармонических колебаний одинаковой частоты - fglL ). Наличие при множителя указывает, что этот эллипс весьма медленно вращается с угловой скоростью oi = = (О siii ф. Это вращение в северном полушарии происходит по часовой стрелке, а в южном — против часовой стрелки его не следует смешивать с тем вращением оси эллипса, которое имеет место при движении сферического маятника в отсутствие вращения Земли. Как уже было указано в 161 (пример 143), последнее вращение происходит всегда в ту же сторону, что и движение точки по эллипсу, а угловая скорость его зависит от начальных условий движения. Заметим, что принятое при составлении системы уравнений (58) приближение недостаточно для обнаружения этого вращения оси эллипса. Действительно, при со = О последнее из уравнений (58) дает  [c.441]

Если начальные условия выбрать так, чтобы А 4а, то частица совершает гармонические колебания, причем частота колебаний не зависит от амплитуды (в отличие от математического маятника). Эта особенность впервые отмечена X. Гюйгенсом в 1673 г. Для уменьшения трения можно заставить тело двигаться по циклоиде без прямого контакта с ней. Для этого достаточно изготовить шаблон в виде двух одинаковых полуарок циклоиды, имеющих обшую точку возврата (см. рис. 1.1.6). В точке возврата прикрепляется нить длиной 1 = Аа с шариком на конце. Шарик будет двигаться по циклоиде, совершая изохронные колебания с периодом Т= inYalg. Из (2), (3) находим  [c.74]

TaKHivr образом, полный прогиб получаетоя в результате наложения бесконечного числа гармоник, меняющихся с течением времени по закону простых гармонических колебаний с частотами (Отп-  [c.180]

Колебательные уровни энергии — это уровни, связанные с колебательным движением ядер в молекулах около некоторых равновесных положений (с колебаниями молекул, которые можно приближенно считать гармоническими). Частоты этих колебаний отвечают энергиям примерно от 0,025 до 0,5 эВ. Соответствующие переходы между колебательными уровнями молекул непосредственно изучаются методами инфракрасной спектроскопии и методами ко.мбинационного рассеяния света. Электронные переходы в молекулах сопровождаются изменениями колебательной энергии, что приводит к возникновению электронно-колебательных спектров.  [c.227]


Период гармонических колебаний не зависит от начальных условий это свойство называется изохронностью. Как бы далеко мы ни удалили точку от центра колебания, какую бы началт.пую скорость ни сообщили ей, она придет в центр колебания О через один и тот же промежуток времени. Число v = 1/Г колебаний в секунду называется частотой колебаний, единицей частоты будет с (одно колебание в секунду) эта единица носит название герц. Величина ш, называемая круговой частотой, равна числу колебаний за 2я секунд.  [c.258]

Выясним механический смысл найденного решения. Движение точки М будет складываться из двух колебательных движений из вынужденных колебаний с частотой свободных гармонических колебаний — х ш чисто вынужденных колебаний Х2, совершающихся с частотой возмущающей силы. Следует подчеркнуть, что начальные условия, т. е. положение и скорость точки М в начальный момент, влияют на амплитуду а и начальную фазу ф1 вынужденных колебаний Х и никак пе влияют на чисто вынужденные колебания хч. Из формулы (14.27) следует, что амплитуда и начальная фаза вынужденных ] олебаний х, происходящих с частотой свободных колебаний, зависят пе только от начальных условий, но и от параметров h, р тл tjjo, характеризующих возмущающую силу.  [c.268]


Смотреть страницы где упоминается термин Колебания гармонического частота : [c.390]    [c.272]    [c.136]    [c.270]    [c.228]    [c.438]    [c.226]    [c.550]    [c.172]    [c.170]    [c.239]   
Теоретическая механика (1986) -- [ c.125 , c.127 ]



ПОИСК



Волновое движение в бесконечной мембране. Деформация волн Простые гармонические волны. Бесселевы функции. Допустимые частоты. Фундаментальные функции. Соотношение между параллельными и круговыми волнами. Барабан. Допустимые частоты Вынужденные колебания, конденсаторный микрофон

Гармоническое колебание. Амплитуда. Период. Частота

Гармоническое приближение и зависимость частот нормальных колебаний от объема

Звук создается колебаниями. Конечная скорость распространения звука. Скорость звука не зависит от высоты Опыты Реньо. Распространение звука в воде Опыт Уитстона Ослабление звука при увеличении расстояния Ноты и шумы. Музыкальные ноты создаются периодическими колебаниями Сирена Каньяр де ла Тура Высота тона зависит от периода Соотношения между музыкальными нотами. Одно и то же отношение периодов соответствует одинаковым интервалам во всех частях гаммы. Гармонические шкалы Диатоническая гамма. Абсолютная высота. Необходимость темперации. Равномерная темперация. Таблица частот. Анализ Ноты и тоны Качество звука зависит от гармонических обертонов. Ненадежность разложения нот на составляющие только при помощи уха Простые тоны соответствуют колебаниям маятника Гармонические колебания

Колебания гармонические

Модуляция. Модуляция амплитуды. Модуляция частоты и фазы Спектр колебания с гармонической модуляцией частоты Волновые пакеты

Ряд гармонический

Сложение гармонических колебаний различной частоты скалярных величин или векторных, направленных по одной прямой

Сложение колебаний. (Сложение скалярных гармонических колебаний одинаковой частоты. Биения. Сложение взаимно перпендикулярных гармонических колебаний

Суперпозиция гармонических колебаний с близкими частотами

Суперпозиция гармонических колебаний с кратными частотами

Угловая частота гармонических колебани

Частота гармонического колебани

Частота гармонического колебани

Частота колебаний

Частота колебаний (частота)



© 2025 Mash-xxl.info Реклама на сайте