Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пуассона формы

Так, например, при изгибе упругой балки, у которой ось и нейтральный слой совпадают с осью х и плоскостью z соответственно, смещения ограничиваются формой и= —yv x), v = v x), w = 0, где штрихом обозначено дифференцирование. Следовательно, единственной ненулевой компонентой деформации является — Eyv". Далее предполагаем, что единственной ненулевой компонентой напряжения является = ——Еуи" х). Заметим, что это означает равенство нулю коэффициента Пуассона. Таким образом, удвоенная удельная энер-  [c.79]


Пример 11.8. Резиновый кубик АВСО свободно, но без зазоров вложен в стальную форму так, что две противоположные грани его свободны (рис. 11.31). Свер.ху кубик подвергается давлению р. Определить напряжение а , деформации и е , а также относительное изменение объема. Модуль упругости резины — Е, коэффициент Пуассона — V. Трением между кубиком и стенками пренебречь. Стальную форму принять абсолютно жесткой (недеформируемой).  [c.62]

Уравнение движения ( динамики, упругой кривой, математической физики, параболического типа, эллиптического типа, гиперболического типа, смешанного типа, линии действия, теплопроводности Эйлера, Пуассона...). Уравнения движения в векторной форме ( с одним неизвестным...). Уравнения Гамильтона ( Лагранжа...).  [c.93]

IV. 54). Этот тензор, как видно из предыдущего, описывает механические свойства движущейся материи. Таким образом, классическое уравнение Пуассона в неинвариантной форме устанавливает связь между тензором энергии — импульсов и некоторым тензором второго ранга, содержащим в составе своих компонент вторые производные по координатам (1 = 1, 2, 3, 4) от компонент метрического тензора.  [c.529]

Значение кулоновской энергии ядра, имеющего форму эллипсоида, может быть найдено решением уравнения Пуассона для равномерно заряженного по объему эллипсоида вращения. Эт дает для величину  [c.370]

Закон Гука, записанный в виде формул (4.16) — (4.19), определяет взаимосвязь между напряжением и деформацией в одном и том же направлении, т. е. в направлении приложения внешней силы. Такая запись носит название элементарного закона Гука. Однако деформация может возникать и в направлениях, отличных от направления приложения силы. В этих случаях закон Гука в элементарной форме уже недостаточен и необходимо воспользоваться обобщенным законом Гука. В самом деле, при одноосном растяжении цилиндрического образца происходит не только его удлинение в направлении приложенной силы, но и сжатие образца в поперечных направлениях, т. е. имеет место трехосная деформация. Поперечная деформация при упругом растяжении или сжатии характеризуется коэффициентом Пуассона V, равным отношению изменения размеров в поперечном направлении к их изменению в предельном направлении. Для большинства твердых тел значения v лежат между 0,25 и 0,35. Из рис. 4.10 следует, что  [c.124]

Случай Лагранжа — Пуассона. В этом случае тело, имеющее одну неподвижную точку О, находится под действием только силы тяжести и форма этого тела такова, что для него А=В С, т. е. эллипсоид инерции для неподвижной точки О тела есть эллипсоид вращения, и центр тяжести тела лежит на подвижной оси Oz на некотором расстоянии от неподвижной точки О. При этом ось Oz является осью симметрии эллипсоида инерции и называется оаю динамической симметрии тела. Такое тело, имеющее одну неподвижную точку, часто называют симметричным гироскопом (рис. 391). Его положение определяется тремя Эйлеровыми углами <р, ф и 0.  [c.709]


Случай Эйлера и случай Лагранжа — Пуассона можно демонстрировать на гироскопе колоколообразной формы, вдоль оси динамической симметрии которого передвигается винт, чем можно по произволу привести точку опоры О (острие винта) в совпадение с центром тяжести С или же поместить центр тяжести С выше точки опоры О на оси винта (рис. 392).  [c.711]

Из анализа безразмерной формы уравнения Навье — Стокса (58) из гл. П следует, что при члене с градиентом дав [ения имеется безразмерный множитель, в который входят показатель Пуассона и число Маха  [c.39]

Для положительной определенности квадратичной формы упругой энергии необходимо и достаточно условие X > О, х > 0. Что касается технических постоянных, модуль Е должен быть положителен. Положительны также модули К а G отсюда следует такое ограничение возможных значений коэффициента Пуассона  [c.243]

Физические уравнения теории оболочек можно представить в упрощенной форме, считая коэффициент Пуассона v = 0. Тогда из формул (10.18) находим  [c.235]

Рассматривая задачу Коши— Пуассона о волнах на поверхности тяжёлой несжимаемой жидкости, Н. Е. Кочин ) применил соображения теории размерности и придал решению этой классической задачи новую изящную математическую форму.  [c.104]

Метод стандартизован, но не всегда надежен вследствие следующих причин. Если законы деформирования материала при растяжении и сжатии различны (например, у органопластика), то техническая теория изгиба для обработки результатов неприменима. При определении постоянных упругости и предела прочности обязателен учет касательных напряжений. Как показывают исследования изотропного стержня [78], входящий в формулы для определения прогиба с учетом поперечных сдвигов коэффициент формы поперечного сечения не является постоянной величиной, а зависит от коэффициента Пуассона и относительной ширины образца й/Л. При нагружении образца на изгиб (по любой схеме) напряженное состояние стержня сложное, и особенно у стержней с малым относительным пролетом //Л значительно отличается от описываемого технической теорией изгиба [61, 77].  [c.38]

Когда желают определить центр тяжести произвольного тела заданной формы, например какой-нибудь металлической массы, то нужно применить полученные формулы к телу, образованному очень большим числом материальных точек, расположенных на очень малых взаимных расстояниях. Этой трудности можно избежать, рассматривая тело как непрерывное, что не соответствует действительности, но дает вполне достаточное для приложений приближение. Мы отсылаем читателя, желающего получить более подробное представление о законности такой замены заданного тела сплошным, к главе VI Механики Пуассона, относящейся к теории притяжения тел. Уподобляя таким образом твердое тело некоторому сплошному объему, мы предполагаем его разложенным на бесконечно большое число бесконечно малых частей и помещаем центр тяжести каждой из таких частей в какой-нибудь точке ее массы. Тогда формулы, определяющие координаты центра тяжести тела, разбитого на  [c.133]

Преобразование, начатое Пуассоном и законченное Гамильтоном, позволяет написать уравнение в форме, которая содержит частные производные только от одной функции и которая очень удобна для теоретических исследований.  [c.466]

Преобразование Пуассона и Гамильтона. В конце первого тома, в п. 291 и в следующих, мы видели, как можно преобразовать уравнения движения точки, взятые в форме Лагранжа, к форме, названной канонической.  [c.364]

Если бы этот новый интеграл был всегда отличен от (р и ф и от остальных новых интегралов, уже полученных применением этой теоремы, то достаточно было бы знать только два интеграла, чтобы вывести из них шаг за шагом все остальные интегралы. Это, однако, может иметь место лишь в исключительных случаях. Скобка Пуассона может дать уже найденный интеграл или привести к постоянной. Теорема Пуассона, хотя и не имеет такого значения, которое ей можно было бы приписать с первого взгляда, может тем не. менее оказать большие услуги. Особенно интересную форму получает эта теорема, когда Н не содержит переменной I.  [c.254]


Канонические преобразования классической механики играли всегда важную роль также и в квантовой механике. Это относится и к более старой квантовой теории, принадлежащей Борну, и к современной квантовой механике. Поэтому работы, посвященные той или другой форме квантовой механики, часто содержат подробное изложение нужных разделов классической механики. Одной, из лучших книг такого рода является рекомендуемая книга Борна (1924), написанная им до появления волновой механики. В первой Е лаве этой книги дается сжатое изложение теории канонических преобразований и приводится много интересных физических примеров. Скобки Пуассона в этой книге не рассматриваются, так как в современной физике интерес к ним появился только с возникновением в квантовой механике теории Гейзенберга и Дирака.  [c.299]

Другая явная форма условий полной каноничности. Скобки Пуассона. Из сопоставления двух видов D и D, которые можно придать функциональному определителю какого-нибудь преобразования, в случае полной каноничности вытекают другие важные следствия.  [c.264]

Примечание 1. Уравнения (а) и (Ь) п. 376 можно назвать уравнениями движения в форме Пуассона.  [c.536]

Выше отмечалось, что любое явление описывается замкнутой системой уравнений и что число этих уравнений в системе должно быть равным числу неизвестных. При этом не вникали в характер этих уравнений, хотя и рассматривали некоторые частные примеры. В основном это были дифференциальные уравнения математической физики. Известно, что при выводе этих уравнений, как и при составлении уравнений математической физики, используются самые общие законы природы. Специфические особенности исследуемого явления находят отражение в конкретных формах дифференциальных уравнений. Дифференциальные уравнения являются математической записью фундаментальных законов природы. Вместе с тем эти уравнения еще не дают конкретных данных для описания исследуемых явлений. Все явления, независимо от их индивидуальных признаков, описываются одинаковой системой уравнений. Таким образом, видим, что система дифференциальных уравнений (в частном случае — одно уравнение) является моделью некоторого класса подобных явлений. Эти явления могут иметь одинаковую или разную физическую природу. Главное при этом, что все они описываются совершенно тождественными системами уравнений. С этим мы встречались при моделировании задач, описываемых уравнениями Пуассона, Лапласа, Фурье, Гука.  [c.145]

Предположим, что решается задача теории упругости. Для некоторой детали требуется определить напряжения, деформации и перемещения. Свойства материала в этом случае вводятся в расчет через упругие константы. Для изотропного материала таких констант будет две — модуль упругости Е и коэффициент Пуассона jx. Эти показатели легко определяются из опыта и не зависят ни от формы детали, ни от ее абсолютных размеров. Таким образом, свойства среды и свойства детали разделяются. Удается выделить параметры материала и вести расчет детали в общем виде, независимо от того, из какого материала она изготовлена. Выделение параметров материала в самостоятельную категорию позволяет в данном случае необычайно просто решать задачу подобия.  [c.97]

Высокая те.мпература, резкое или частое ее изменение являются причинами, вызывающими термические напряжения п покрытии, подлож,се или в систе.ме металл — покрытие. В общем случае величина этих напряжений зависит от градиента температуры, формы тела. 1Коэффицнента теплового расширения, модуля упругости, теплопроводности, коэффициента Пуассона и других характеристик конструкции. Способность материала или системы материалов сопротивляться действию тепловых напряжений характеризует его работсоспособносгь и долговечность в условиях воздействия высоких температур.  [c.177]

При переходе в пластическую область в реальных кристаллических телах возникают локальные пластические деформации, поэтому при анализе состояния вещества используют эффективный коэффициент Пуассона который изменяется вследствие как пластической деформации, так и накопления повреждений. Эффект поперечных деформаций отражает основное внутреннее свойство материала - самовоспроизвольно восстанавливать форму в результате ее изменения при внешнем взаимодействии, т.е. сохранять объем при деформации неизменным [19]. При исчерпании этой возможности, в локальном объеме  [c.100]

На рис. 13.4 приведены в качестве примера два конкретных вида Рт, полученные для одномодовых лазерных пучков постоянной интенсивности. Верхнее распределение соответствует пучку, для которого среднее число фотоотсчетов за время наблюдения х равно 5 (<т>=5) для нижнего распределения < т>=10. Оба распределения имеют, как оказалось, форму распределения Пуассона  [c.297]

Таким образом, решение уравнения равновесия (9.3) может быть найдено в форме (9.11), если векторная функция и скалярная функция ф удовлетворяют соответственно уравнениям Пуассона (9.15) и (9.16). Решение Буссинеска — Папковича включает четыре скалярные функции — скалярную функцию ф и три проекции вектора i j. Представление, в котором ф является не гармонической, а бигармонической функцией, было дано Буссинеском и независимо от него Б. Г. Галеркиным.  [c.226]

Коэффициент пропорциональности р в форму ле (2.13) зависит от материала бруса. Он называется коэффициентом поперечной деформации (или коэффи-циенто.м Пуассона) и представляет собой отношезие относительной поперечной деформации к продельной, взятое по абсолютной величине, т. е.  [c.32]


Запись уравнений пластичности в форме уравнений упругости Hie не продвигает дело, так как зпачепия секущего модуля и ко-оффнпнента Пуассона. заранее неизвестны. Решение задачи находят методом последовательных приближений.  [c.128]

Эту величину удельной работы можно представить себе состоя1дей из двух частей одной части, идущей на пзмененне объема кубика,, и другой—идущей на. изменение его формы-. В ТОМ же - 26 была показана, что объем тела не изменяется, если f,i = 0i5i. На основании этого, полагая в выражении (54) коэффициент Пуассона.  [c.103]

Формирование усталостных бороздок начинается с шага около 10 м. Исследованиями образцов из сплава АК6 при двухосном нагружении выявлено (см. раздел 6), что для указанной величины шага эквивалентный КИН составляет около И МПа м / . Близкое значение может быть получено из единой кинетической кривой для указанного шага бороздок. Следует только учесть стеснение пластической деформации для полуэллиптп-ческих, по форме фронта, трещин — 1/8 (вместо 1 /6 для сквозной трещины). Для предела текучести сплава 290 МПа, модуля упругости 7-10 МПа и коэффициента Пуассона 0,3 имеем  [c.759]

Резюме. Заданная производяш,ая функция определяет каноническое преобразование в неявной форме. Хотя и не существует формул, которые бы задавали каноническое преобразование в явном виде, однако относительно любого конкретного преобразования можно выяснить, является ли оно каноническим. Для этой цели могут быть использованы скобки Лагранжа или Пуассона. Эти скобки тесно связаны с каноническими преобразованиями. Каноническими являются те преобразования сопряженных переменных, которые оставляют инвариантными любые скобки Лагранжа или Пуассона.  [c.249]

Если скобку Лагранжа [ut, Uj] обозначить через Хг , а скобку Пуассона ur, Us) — через Ors, то равенство (24.10.1) можно будет очень просто выразить через матрицы и со размером 2п X 2п с элементами Vs и 03rs- В матричной форме равенство (24.10.1) тогда будет иметь вид  [c.498]

Итак, основные этапы развития аналитической динамики таковы первым шагом явилось установление лагранжевой формы уравнений движения, затем лагранжев метод вариации произвольных постоянных и аналогичная теория Пуассона и связанные с нею проблемы интегрирования затем Гамильтон представил интегральные уравнения посредством единственной характеристической функции, определяемой а posteriori посредством интегральных уравнений, предполагаемых известными, или из того условия, что она должна одновременно удовлетворять двум дифференциальным уравнениям в частных производных Гамильтон же нашел новую форму уравнений движения Якоби свел интегрирование дифференциальных уравнений динамики к нахождению полного интеграла единственного дифференциального уравнения в частных производных он же развил теорию последнего множителя системы дифференциальных уравнений движения Остроградский рассмотрел проблему интегрирования уравнений динамики Раус нашел новую форму дифференциальных уравнений движений Пуанкаре развил теорию интегральных инвариантов наконец,  [c.848]

Можно сделать попытку обозреть основные этапы развития аналитической динамики до середины XIX в. Первым шагом явилось установление лагранжевой формы уравнений движения, затем лагранжева теория вариации произвольных постоянных, а также теория Пуассона. Следующим этапом явились во-первых, представление Гамильтоном интегральных уравнений посредством единственной характеристической функции, определяемой а posteriori посредством интегральных уравнений, предполагаемых известными, или посредством условия, что она одновременно удовлетворяет двум дифференциальным уравнениям в частных производных, и, во-вторых, установление канонических уравнений движения. Вслед за тем Якоби свел интегрирование дифференциальных уравнений к проблеме нахождения полного интеграла единственного уравнения в частных производных и дал общую теорию связи интегрирования систем обыкновенных дифференциальных уравнений и уравнения в частных производных первого порядка. Наконец, была разработана теория систем канонических интегралов.  [c.910]

На возможное возражение, что группа сама по себе является априорным понятием, можно указать, что понятие группы является результатом абстрагирования от различных подвижных инструментов циркуль, линейка и т. д., являющихся орудием геометрического исследования ). Напомним, что уже в геометрии Евклида неявно предполагалось, что все геометрические построения следует проводить с помощью только циркуля и линейки. Смысл этого требования становится ясен только с точки зрения программы Клейна. Геометрические свойства тел выражаются, таким образом, в терминах инвариантов группы и допускают изоморфную подстановку элементов пространства, в котором реализуется группа, и, следовательно, совершенно не зависят от самих геометрических объектов. Укажем, например, на реализацию геометрии Лобачевского на плоскости, предложенную А. Пуанкаре. Приведенный пример указывает на большую методологическую ценность программы Клейна. Аналогичный подход возможен также и в физике, где различные законы сохранения интерпретируются как свойства симметрии относительно различных групп. Основными группами современной физики являются группа Лоренца, заданная в пространстве Минковского, и группа непрерывных преобразований, заданная в криволинейном пространстве общей теории относительности, коэффициенты метрической формы которого определяют поле гравитации. В релятивистской квантовой механике мы переходим от группы Лоренца к ее представлениям, определяющим преобразования волновых функций. Как было показано П. Дираком, два числа I и 5, задающих неприводимое представление группы Лоренца, можно интерпретировать как константы движения угловой момент и внутренний момент частицы (спин). Иначе говоря, операторы, соответствующие этим инвариантам, перестановочны с гамильтонианом (квантовые скобки Пуассона от гамильтониана и этих операторов равны нулю). Числа, обладающие этими свойствами, называются квантовыми числами. В работах Э. Нетер дается общий алгоритм, позволяющий найти полную систему инвариантов любой физической теории, формулируемой в терминах лагранжева или гамильтонова формализмов. В основу алгоритма положена указанная выше связь между инвариантами группы Ли и константами движения уравнений Гамильтона или Лагранжа. В качестве простейшего примера рассмотрим вывод закона сохранения углового момента механической системы, заданной лагранжианом Г(х, X, (). Вводим непрерывную группу вращения, заданную системой инфи-  [c.912]

Уравнения такого вида впервые применялись в работах Лагранжа и Пуассона по небесной механике. Трактовка их как общей формы уравнений движения механических систем под действием потенциальных сил была дана позднее Гамильтоном (для систем свободных точек), Якоби (для систем со стационарными связями), Остроградским и Донкином (для систем с нестационарными, вообще говоря, связями). Для нас основой такой трактовки послужит  [c.129]


ПЛЮС ИЛИ МИНУС В литературе по каноническому формализму полностью отсутствует единообразие выбора знаков в определениях основных объектов скобки Пуассона, симплекти-ческой единицы, канонической 2-формы и т. д.  [c.252]


Смотреть страницы где упоминается термин Пуассона формы : [c.6]    [c.179]    [c.88]    [c.222]    [c.312]    [c.52]    [c.460]    [c.505]    [c.367]    [c.102]    [c.181]    [c.293]    [c.78]    [c.646]   
Расчёты и конструирование резиновых изделий Издание 2 (1977) -- [ c.23 ]



ПОИСК



Пуассон



© 2025 Mash-xxl.info Реклама на сайте