Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряжения Закон степенной при деформациях

В результате интенсивного скольжения по границам зерен наблюдается смещение зерен, которое проходит в тесной взаимосвязи с деформацией соседних зерен. Скольжение по границам зерен вызывает резкую локализацию деформации в соседних зернах, что может явиться причиной развития микротрещин (рис. 15). Процесс локализации деформации при повышении ее степени приводит, как правило, к лавинному скольжению. При растяжений направление лавинного скольжения совпадает с направлением действия максимальных касательных напряжений. Поэтому в общей картине распределения деформаций по микроучасткам с увеличением степени деформации не обязательно получают развитие максимальные пики деформации. С ростом деформации может происходить перераспределение интенсивности деформации в различных участках, приводящее к тому, что деформация на участках с малой высотой пиков начинает опережать деформацию на участках с большой высотой пиков (закон постоянства очагов деформации сохраняется). При небла-  [c.25]


Из большого числа вариантов теорий неупругости наилучшее совпадение с наблюдаемыми в экспериментах вибрационными явлениями обнаруживает теория пластических деформаций. На основе проведенных экспериментальных работ [73] была выдвинута гипотеза, в соответствии с которой внутреннее трение при значительных напряжениях представляет эффект микропластических деформаций. Имеется указание о том, что внутреннее трение должно изучаться с использованием уравнений теории пластичности Мизеса — Генки. Однако эта рациональная идея была реализована только для случая циклического деформирования в условиях одноосного напряженною состояния и при частном виде кривой нагружения материала. В результате была предложена формула гистерезисной петли, по которой потери энергии в материале за цикл колебаний зависят по степенному закону от амплитуды деформации или напряжения.  [c.151]

Степень концентрации напряжений при деформациях в пределах закона Гука определяется теоретическим коэффициентом концентрации а. Для нормальных и касательных напряжений он равен соответственно  [c.476]

Использование полимеров, высокопрочных сплавов и резины потребовало развития нелинейной теории упругости. Так называемая физически нелинейная теория упругости, т. е. такая теория, где нелинеен лишь закон, связывающий напряжения и деформации, практически тождественна теории упруго-пластических деформаций при нагружении. Поэтому мы не будем рассматривать ее отдельно от последней и обратимся к развитию так называемой нелинейной теории упругости, в которой учитываются нелинейные эффекты, связанные с большими перемещениями и деформациями. Интерес к этой теории, возникший в связи с работами Ламе и Кирхгофа, потом надолго угас и возродился лишь в 20-х годах. В работах Н. В. Зволинского и П. М. Риза развивается квадратичная теория упругости, в которой во всех соотношениях удерживались члены второй степени относительно деформаций. При решении задач нелинейной теории упругости наиболее эффективен метод последовательных приближений, который позволяет свести их к решению линейных задач. В развитии этого метода большую роль сыграли  [c.260]

Рассмотрим в общем виде решение задачи о контакте двух тел, ограниченных плавными поверхностями и находящихся в условиях нелинейной ползучести, при степенном законе связи между деформациями и напряжениями (1.6).  [c.231]


Далее было выяснено, что сдвиговая гармоника возникает вследствие появления асимметрии упругих свойств в направлениях смещений в поперечной волне ( запрет на генерацию второй сдвиговой гармоники при этом снимается). В случае однородного изотропного твердого тела члены с четными степенями сдвиговых деформаций в обобщенном законе Гука отсутствуют, тогда как при наличии остаточных деформаций и напряжений в таких телах (которые уже не могут считаться однородными и изотропными) такие члены появляются. В кристаллах же, как об этом говорилось в 4, генерация сдвиговых гармоник может происходить из-за анизотропии упругих свойств по различным направлениям.  [c.299]

В самом деле, пусть при t— ъ теле будут напряжения а г, и деформации г ц. Эти величины, следовательно, удовлетворяют дифференциальным уравнениям равновесия (4.2) при /у=0, Шу=0, граничным условиям (1.22), условиям совместности Сен-Венана (2.16) и уравнениям деформационной теории (14.24) при степенном законе (15.15).  [c.68]

Третья часть, написанная В.Е. Роком, состоит из четырех глав и посвящена изложению феноменологического подхода к описанию переходных (нестационарных) волн в средах, обладающих в своей структуре фрактальными элементами. На основании основных свойств таких элементов, прежде всего самоподобия при масштабных преобразованиях (скейлинге) в некотором диапазоне масштабов, построен класс моделей распространения возмущений состояния таких сред, основным свойством которых является нелокальный запаздывающий отклик эффективного макроскопического состояния среды на внешнее возмущение, характеризуемое специальными законами дисперсии волн. Макроскопические наследственные свойства среды при этом оказываются определяемыми интегральными соотношениями с ядрами слабо-сингулярного степенного типа. Рассмотрены методы построения решений уравнений такого типа и физические следствия, вытекающие из их основных свойств, включающие влияние дисперсии на наблюдаемые скорости распространения импульсов. Рассмотрены также качественные подходы к рассмотрению взаимосвязи сейсмоакустических свойств таких сред с изменением геометрической и топологической структуры включений при деформациях, вызванных, например, напряжениями в среде.  [c.4]

Для многих материалов зависимость между напряжениями и деформациями при растяжении и сжатии может быть с достаточной точностью представлена степенным законом  [c.327]

В этом отношении значительно большими возможностями обладает метод конечного элемента [88]. В основу этого метода положено расчленение рассматриваемой области на отдельные элементы простой геометрической конфигурации, причем достаточно широкие возможности открываются уже при введении в расчет элементов прямоугольной и треугольной формы. Сочленение элементов осуществляется в узлах, в которых полностью удовлетворяются условия равновесия и неразрывности перемещений. Разрезание рассматриваемой области приводит к кажущемуся нарушению условий неразрывности перемещений на участках между узлами, в значительной степени компенсируемому предположением о линейном законе изменения напряжений в любом сечении элементарного элемента. Это обусловливает наложение на деформации элемента сильно ограничивающих их связей, которые, с одной стороны, имеют тенденцию улучшить условия соблюдения неразрывности деформации, а с другой,— не вызывает концентрации напряжений в узловых точках.  [c.115]

Закон Гука представляет собой простейшую и очевидную аппроксимацию наблюдаемой в опытах зависимости удлинения от напряжения. Естественно, что точность этой аппроксимации определяется в первую очередь тем, сколь широкий диапазон изменения напряжения имеется в виду. Всегда можно подобрать достаточно малый интервал напряжений, чтобы в его пределах функцию е = f(a) можно было бы с заданной точностью рассматривать как линейную. И конечно, для разных материалов это выглядит по-разному. Для некоторых материалов, таких как, например, сталь, закон Гука соблюдается с высокой степенью точности в широких пределах изменения напряжений. Для отожженной меди, для чугуна этот интервал изменения напряжений существенно меньше. В тех случаях, когда закон Гука явно не соблюдается, деформацию задают в виде некоторой нелинейной функции от напряжения = /(o ) С таким расчетом, чтобы эта функция отвечала кривой, полученной при испытании материала.  [c.43]


Показатель степени в уравнении (4.38) представляет собой последовательность чисел, каждое из которых соответствует определенному напряженному состоянию материала. Это означает, что перед вершиной усталостной трещины напряженное состояние меняется не непрерывно от цикла к циклу нагружения, а в соответствии с определенным законом упорядоченного перехода от одного уровня стеснения пластической деформации к другому. Соотношение (4.37) следует из экспериментов Белла по анализу упругого поведения материала при растяжении в области малых деформаций [81]. Напряжения и деформации сдвига в области малых деформаций претерпевают ряд дискретных переходов через критические точки, которые указывают на квантование величины модуля упругости. Последовательность его величин при малых деформациях представляет собой упорядоченный ряд дискретных значений. Поэтому перед распространяющейся усталостной трещиной вне зоны пластической деформации и внутри зоны в пределах объема, где исчерпана пластическая деформация, реализуется ряд дискретных переходов от одной величины степени стеснения пласти-  [c.205]

Кроме описанных выше двух основных разновидностей анализа при помощи простых моделей, подробно обсуждаемых в последующих разделах, имеются другие подходы к проблеме предсказания механических свойств композита по свойствам его компонентов. Это в основном полуэмпирические методы. Для обработки известных экспериментальных результатов с целью получения эмпирических зависимостей применялись различные функциональные зависимости с неопределенными параметрами, в частности степенные законы. Подобные формулы обычно выражают связь между напряжениями и деформациями через физические параметры, такие, как объемная доля включений и характеристики компонентов композита. Сами напряжения и деформации могут быть локальными, но чаще они берутся средними по объему композита. В обоих случаях такой анализ не является истинно микромеханическим, потому что он не дает локальных градиентов напряжений и деформаций внутри композита. Преимущество такого подхода состоит прежде всего в том, что он позволяет получить простые инженерные оценки зависимости напряжений от деформаций в композите— информацию, являющуюся исходной для большинства макромеханических исследований или анализа структур как слоистых.  [c.208]

Видно, что уравнение (5.48), основанное на использовании степенного закона для скорости трещины вплоть до достижения критического значения К/о, дает время до разрушения, несколько большее при высоких уровнях напряжений, чем уравнение (5.43). С другой стороны, результаты экспериментов на полиуретановой резине лучше соответствуют расчету по уравнению (5.48), а не (5.50) [25, ч. III]. Можно полагать, что превышение величины экспериментально определенного времени до разрушения по сравнению с рассчитанной по уравнению (5.50) объясняется скорее эффектами конечных деформаций, чем использованным частным способом представления податливости при ползучести. Поэтому  [c.204]

Из опыта эксплуатации кулачковых и торсионных пластометров и задач, которые стоят в области изучения реологических свойств металлов и сплавов для процессов ОМД, можно определить требования, которым должны удовлетворять современные установки подобного типа - 1) широкий регулируемый скоростной диапазон испытаний в пределах 0,01—500 с 2) возможность получения больших степеней деформации (испытания на плоскую осадку, кручение) 3) возможность воспроизведения самых различных, заранее программируемых и управляемых с помощью ЭВМ законов нагружения как за один цикл испытаний, так и при дробном деформировании 4) возможность записи кривых релаксаций в паузах между нагружениями с длительностью пауз от 0,05 до 10 с 5) фиксация структуры металла с помощью резкой закалки образца в любой точке кривой течения 6) оснащение установок высокотемпературными печами для нагрева образцов до 1250 °С в обычной среде и в вакууме или среде инертного газа до 2000—2200 °С 7) возможность воспроизведения при испытаниях, особенно дробных, различных законов изменения температуры металла, фиксация температуры образца с помощью быстродействующих пирометров 8) возможность проведения испытаний не только при одноосных схемах напряженного состояния, но и в условиях сложнонапряженного состояния, особенно при исследовании предельной пластичности 9) обеспечение высоких требований по жесткости машин, по техническим характеристикам измерительной и регистрирующей аппаратуры, возможность стыковки с ЭВМ (УВМ) для автоматизированной обработки данных и управления экспериментом.  [c.49]

Гистерезис. Вследствие внутреннего трения в материале при его циклическом деформировании наблюдаются некоторые отклонения от закона Гука (даже при малых амплитудах) и связь между напряжениями и деформациями описывается не линейной зависимостью, а двумя криволинейными ветвями, образующими петлю гистерезиса. То же относится и к связи между нагрузкой на механическую систему с внутренним трением и соответствующим перемещением х. На рис. 11.18 показано, что в системе с одной степенью свободы полная сила сопротивления Р состоит из линейной составляющей, которая соответствует закону Гука, и неупругой составляющей Я, знак которой зависит от направления деформирования (плюс — при нагружении, минус — при разгрузке).  [c.49]

Вид функциональной зависимости между интенсивностью напряжений и интенсивностью деформаций (П.И) определяется характером диаграммы испытания материала чаще всего при простом растяжении. Рассмотрим диаграмму (см. рис. 100,, состоящую из двух участков прямолинейного Оа и криволинейного аЬ (упругопластический материал со степенным законом упрочнения). Напряжение в произвольной точке с криволинейного участка диаграммы изображается отрезком d. Из чертежа следует, что напряжение в произвольной точке  [c.225]


Если зависимость ё = /(ст) более сложная (отличная от степенной), то точное решение задачи в аналитической форме затруднительно. В этом случае используют методы последовательных приближений, которые совпадают с различными модификациями метода упругих решений в теории пластичности при замене в ее соотношениях деформации е ее скоростью ё (см. п. 8.7.3). Тогда при установившейся ползучести распределение напряжений в поперечном сечении балки совпадает с распределением Напряжений в упругопластической балке при законе деформирования е=/(а).  [c.67]

На рис. 10.15, 10.16 приведены зависимости напряжений и деформаций от поперечной координаты г в закрепленном сечении оболочки при угле армирования 7 = 45. В процессе численных расчетов было выявлено несколько общих закономерностей. Во-первых, вариант граничных условий 2 при отсутствии на торцах диафрагмы бесконечной жесткости приводит в случае использования кинематической гипотезы типа Тимошенко к значительно большим погрешностям при определении напряженно-деформированного состояния перекрестно армированной оболочки, нежели вариант 1. В первую очередь это относится к касательным напряжениям и деформациям поперечного сдвига. Так, эпюр напряжений ajs, пик которого смещен к внутренней поверхности оболочки, свидетельствует о неоднородном распределении напряжений по толщине пакета (рис. 10.15, в). В меньшей степени влияние неоднородности прослеживается на эпюре напряжений агз (рис. 10.15, г). Отметим, что уточненная теория предсказывает существование на торцах шарнирно опертой цилиндрической оболочки (вариант граничных условий 1) поперечных касательных напряжений 023. распределенных по толщине пакета согласно синусоидальному закону, в то время как теория типа Тимошенко качественно неверно описывает закон их распределения.  [c.220]

Рассмотрим ползучесть толстостенной цилиндрической трубы, нагружённой внутренним давлением р, при больших деформациях. Распределение напряжений при степенном законе ползучести дается формулами (2.13)  [c.66]

Судя по публикациям, нет единого мнения в оценках области применения линейного закона Гука в зависимости от деформаций. В работах Г. М. Бартенева [9, 10] установлены пределы пропорциональности для мягких рези11 200-300%, для наполненных резин до 50%. По данным Е. Т. Григорьева [50] линейный закон для истинных напряжений остается справедлив до деформаций 25%. В. Н. Потураев [147] утверждает, что допустимо использование закона Гука при деформациях, не превышающих 5-10%, причем область применения несколько расширяется — до 20-30%, если формулировать закон для истинных напряжений. Авторы [149] полагают, что предел пропорциональности в зависимости от степени наполнения резины изменяется от 1-10 до 50% и более для слабонаполненных резин.  [c.12]

В работе [74] предпринята попытка объяснить влияние механической деформации медного электрода на его анодную и катодную поляризацию в водном растворе USO4 с позиций теории перенапряжения кристаллизации при условии, что лимитирующей стадией реакций является поверхностная диффузия ад-ионов, параметры которой зависят от расстояния между ступеньками роста, т. е. от плотности дислокаций. С учетом того, что плотность дислокаций линейно связана со степенью пластической деформации, получена прямая пропорциональная зависимость скорости реакции от корня квадратного из степени деформации. Эта зависимость приближенно соответствует результатам опытов и несколько нарушается при больших деформациях. К сожалению, в этой работе не измеряли величину механического напряжения, а поскольку в случае меди деформационное упрочнение может подчиняться параболическому закону [41 ], можно объяснить результаты опытов [74 ] без привлечения теории замедленной стадии поверхностной диффузии.  [c.89]

В первой серии экспериментов Грюнайзена с железом в 1906 г. образцы были предоставлены Бахом и были теми же самыми ), на которых Бах определял зависимость между напряжением п деформацией при деформациях в пределах примерно в 200 раз более широких, чем изучавшиеся Грюнайзеном. Главной целью Грюнайзена было сравнение предсказаний степенного закона Баха (2.36) при малых деформациях вблизи нулевого напряжения с формулой Хартига (2.26), которая, несомненно, была предпочтительнее, поскольку она давала угол наклона касательной к графику зависимости между напряжением и деформацией при нулевом значении напряжения < я/2.  [c.166]

Поглощение ультразвука вследствие внутреннего трения можно легко рассчитать, вводя коэффициент вязкости среды г и учитывая, что вязкие напряжения являются функциями градиента скорости Ieщeния ее частиц. При этом в первом приближении вязкие напряжения можно считать пропорциональными первой степени скорости деформации (закон Ньютона для сил внутреннего трения). Мы ограничимся по-прежнему рассмотрением плоских волн, распространяющихся вдоль оси х. Прибавляя к упругому напряжению о для одномерной деформации д /дх (с учетом сдвиговой упругости) вязкое напряжение, пропорциональное скорости этой деформации r д%/дxдt — г ди/дх, получим одномерное реологическое уравнение состояния в виде  [c.54]

При анализе деформационного упрочнения металлов участок Оа обычно не рассматривается и первой стадии деформационного упрочнения соответствует линейный участок ab, на котором коэффициент упрочнения относительно мал (dtldg порядка 10 G). Второй участок Ьс также лрямолянеен, но его наклон значительно больше— здесь коэффициент упрочнения dt/dg — порядка 10 G. Наконец, последний, третий участок k характеризуется параболическим законом изменения напряжения в зависимости от деформации — с увеличением деформации степень упрочнения уменьшается.  [c.113]

Е. Пластическая деформация вращающихся цилиндров, изготовленных из упрочняющегося материала. Учитывая аналогию, отмеченную в 16.6, А, едва ли нужно указывать, что напряженное состояние, найденное выше для случая степенного закона установившейся ползучести цилиндров и дисков, будет иметь место также в соответствующих случаях пластической деформации упрочняющегося металла, течение которого полностью описывается монотонным степенным законом деформирования. При этом подразумевается, что упругими составляющими деформации можно пренебречь, а остаточные составляюшие деформации остаются малыми.  [c.708]

ШИ относительных перемещений точек при деформации можно пренебречь. Остальные гипотезы, к-рыми пользуется С. м., здесь устранены первоначально в развитии теории упругости они или подтверждаются вполне, или частью, с известным приближением, или отвергаются в связи с анализом отдельных деформаций. Элементарные теории растяжения, кручения круглых брусков, чистого изгиба вполне согласуются с теорией упругости. Изгиб в присутствии срезывающих сил, как оказывается, подчиняется закону прямой линии гипотеза Навье), но не закону плоскости (гипотеза Бернулли). Касательные напряжения при изгибе распределяются по закону параболы, но только в тех сечениях, которые имеют незначительную толщину при большой высоте (узкие прямоугольники). В других сечениях закон распределения касательных напряжений совершенно иной. Для балок переменного сечения, к к-рым в элементарной теории прилагают закон прямой линии и параболы, теория -упругости дает другие решения в этих решениях значения напряжений и деформаций гораздо выше, чем по элементарной теории следует. Общепринятый способ расчета пластин по Баху как обыкновенных балок не оправдывается теорией упругости. Ф-лы С. м. для кручения некруглых стержней не соответствуют таковым в теории упругости. Теория изгиба кривых стержней решительно не совпадает с элементарной теорией Баха-Баумана, но результаты расчета по строгой теории и на основании гипотезы плоских сечений достаточно близки. Поставлена и разрешена для ряда случаев задача о распределении местных напряжений (в местах приложения нагрузки или изменения сечения), к-рая совершенно недоступна теории С. м. Вопрос об устойчивости деформированного состояния, элементарную форму которого представляет в С.м. продольный изгиб, получил в теории упругости общее решение Бриана (Bryan), Тимошенко и Динника. Помимо многочисленных форм устойчивости стержня, сжатого сосредоточенной силой, изучены также явления устойчивости стержней переменного сечения под действием равномерно распределенных сил и другие явления устойчивости балок при изгибе, равномерно сжатой трубы, кольца, оболочек, длинного стержня при скручивании и пр. Теория упругого удара— долевого, поперечного—занимает большое место в теории упругости и включает все большее и большее чис-чо технически важных случаев. Теория колебаний получила настолько прочное положение в теории упругости и в практи-тсе, что методы расчета на ко.чебания проникают область С. м., конечно в элементарном виде. Изучены распространение волны в неограниченной упругой среде (решение Пуассона и Кирхгофа), движение волны по поверхности изотропной среды (решение Релея), волны в всесторонне ограниченных упругих системах с одной, конечно многими и бесконечно многими степенями свободы. В связи с этим находятся решения, относящиеся к колебаниям струн, мембран и оболочек, различной формы стержней, пружин и пластин.  [c.208]


Таким образом, упругий потенциал представляет собой однородную функцию второй степени относительно компонент деформации. Заметим, что закон Гука можно было бы а рг1ог1 определить как такое соотношение между напряжениями и деформациями, при котором упругий потенциал представляет собой однородную квадратичную функцию.  [c.220]

Установление закона циклической релаксации необходимо для расчета на прочность при термоциклическом нагружении с выдержками при максимальной температуре цикла. Развивающаяся в течение выдержки в цикле деформация ползучести ее и действующее в этот период напряжение являются основными факторами, определяющими степень накопленного за N циклов статического повреждения. Для случая жесткого нагружения материала с выдержкой при максимальной температуре Эд" мундс предлагает накопленное повреждение оценивать по вели-  [c.111]

Закон независимости потенциальной энергии. Количество мдель-ной (т. е. отнесённой к единице объёма) потенциальной энергии изменения формы, имеющееся в пластичном теле при его необратимой деформации, зависит от природы тела и условий деформации и не зависит от схемы главных напряжений. Условиями деформации являются температура, скорость и степень деформации.  [c.272]

Эксплуатационные режимы нагружения элементов конструкций имеют, как правило, более сложный характер, чем распространенные в практике экспериментов синусоидальные или треугольные формы циклов нагружения, хотя именно они являются наиболее часто используемыми при получении основных характеристик циклических свойств материалов и закономерностей их изменения в процессе деформирования. Синусоидальный или треугольный законы изменения напряжений и деформаций использовались в качестве основных и при экспериментальном изучении кинетики циклической и односторонне накапливаемой пласти ческих деформаций и их описании соответствующими зависимостями, рассмотренными в предыдущих главах. В ряде случаев условия эксплуатационного нагружения представляется возможным схематизировать такими упрощенными режимами. Однако в большинстве случаев для исследования поведения материала с учетом реальных условий оказывается необходимым рассмотрение и воспроизведение на экспериментальном оборудовании таких более сложных режимов, как двух-и многоступенчатое циклическое нагружение с различным чередованием уровней амплитуд напряжений и деформаций, нагружение трапецеидальными циклами с выдержками различной длительности на экстремумах нагрузки в полуциклах растяжения и (или) сжатия, а также в точках полного снятия нагрузки, двухчастотное и полигармо-ническое нагружение, нагружение со случайным чередованием амплитуд напряжений, соответствующим зарегистрированными в эксплуатации условиями. Особенно необходимым воспроизведение и исследование таких режимов становится в области повышенных и высоких температур, когда на характер и степень проявления температурно-временных эффектов, а следовательно, и на кинетику деформаций, существенное влияние оказывают факторы длительности, формы цикла и уровней напряжений или деформаций в процессе нагружения. Ниже приведены исследования закономерностей развития деформаций для ряда упомянутых режимов нагружения, позволяющие проанализировать применимость тех или иных уравнений кривых малоциклового деформирования и применение параметров этих уравнений при изменении режимов.  [c.64]

ЗАКОН [Гей-Люссака объемы вступающих в реакцию газов относятся друг к другу и к объемам образующихся газообразных продуктов реакции как небольшие целые числа Генри масса газа, растворяющегося при постоянной температуре в данном объеме жидкости, прямо пропорциональна парциальному давлению газа Гука механическое напряжение при упругой деформации тела пропорционально относительной деформации Дальтона (кратных отношений если два элемента образуют друг с другом несколько химических соединений, то весовые количества одного из элементов, приходящиеся в этих соединениях на одно и то же количество другого, относятся между собой как небольшие целые числа общее давление газовой смеси равно сумме парциальных давлений, т. е. сумме давлений газовых компонентов ) Гульденберга и Вааге при постоянной температуре скорость химической реакции пропорциональна произведению концентраций реагирующих веществ, причем каждая концентрация входит в произведение в степени, равной коэффициенту, стоящему перед формулой данного вещества в уравнении реакции Дебая теплоемкость кристалла при низких температурах пропорциональна третьей степени абсолютной температуры его движения точки положение материальной точки в пространстве при действии на нее внешних сил определяется зависимостью расстояния точки  [c.232]

В неравновесной термодинамике существенную роль играют оценки "расстояния" от условно выбранного равновесного состояния. Зеегер [176] ввел в качестве меры "удаленности" от состояния термодинамического равновесия при ПД отношение X = WfW . Действительно, согласно первому закону термодинамики, величина X связана с диссипируемой в виде тепла энергией Q соотношением вида -Q = W(1 - 1/Х) > О [177]. В случае деформации в упругой области <2 = 0 (не учитывается эффект понижения температуры, связанный с энгармонизмом колебаний кристаллической решетки) =1 при больших степенях ПД, т.е. в условиях сильной нерав-новесности, -QJW = 1, следовательно, Х— оо. Параметр X связан с характеристиками микро- и субмикроструктуры материала, а также с условиями нагружения (А- увеличивается с напряжением и температурой) [177].  [c.102]

Обсуждаемые в данной книге приложения будут относиться к случаю упругого материала, для которого зависимости напряжения от деформаций выражаются хорошо известным и относительно. простым законом Гука, который будет формально выписан в 3.1 при обсуждении задач, теории упругости. Реальные материалы не следуют этому закону в точности. Некоторые, подобно чугуну, обладают слабо, нелинейной зависимостью напряжения от деформаций. Но даже те, у которых на первый взгляд эта зависимость линейна вплоть до предела упругости, демонстрируют едва заметное различие в поведении при нагружении и разгрузке (упругий гистерезис, который имеет, по-видимому, существенное значение в связи с усталостью материалов) при этом обнаруживаются и температурные эффекты, проявляющиеся в различии температурных постоянных при изотермическом (при очень медленном изменении деформаций) и адиабатическом (при очень быстром изменении деформаций) нагружении, они до некоторой степени аналогичны электростатическим эффектам. Подобные отклйнения от закона Гука, как правило, не важны для практических задач и не будут рассматриваться здесь.  [c.28]

Определяющие соотношения упругопластического материала при геометрически линейном деформировании задаются в виде однородной функции первой степени скоростей компонент тензора напряжений Коши от компонент тензора деформаций Коши. Основная цель проводимого здесь анализа поведения компонент тензора напряжений Коши в задаче о простом сдвиге для различных формулировок определяющих соотношений гипоупругого материала состоит в ответе на вопрос какую из сравниваемых формулировок следует предпочесть при введении упругого закона деформирования в определяющие соотношения упругопластического материала при произвольных деформациях тела В свете  [c.75]

РЕЛАКСАЦИЯ — в широком понимании процесс приближения физич. пли физико-химич. системы к статическому равновесию. При этом макро-характеристики системы (наир., степень упорядочения структуры и др.) приближаются к своим равновесным значениям. Р. в более узком смысле — Р. напряжений — постепенное убывание напряжения при сохранении постоянной величины суммарной, т. е. упругой и пластич. деформации тела, напр, ослабление со временем затянутых болтов или пружин. Р. напряжений тесно связана и взаимоиересчитываема в ползучесть, т. к. Р. происходит вследствие постепенного уменьшения доли упругой деформации и воз])астания доли остаточной деформации, но не при постоянном напряжении, как при ползучести, а при убывающем но определетгаому закону. Этим объясняются различия между Р. и ползучестью  [c.136]


Смотреть страницы где упоминается термин Напряжения Закон степенной при деформациях : [c.127]    [c.24]    [c.12]    [c.79]    [c.44]    [c.18]    [c.140]    [c.172]    [c.172]    [c.145]    [c.207]    [c.244]    [c.249]   
Прочность, устойчивость, колебания Том 1 (1968) -- [ c.0 ]



ПОИСК



597 — Деформации и напряжения

Закон степени

Степенный закон

Степень деформации



© 2025 Mash-xxl.info Реклама на сайте