Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Измеряемые величины

Вообще говоря, компоненты тензоров V и U представляют собой иррациональные функции легко измеряемых величин, и предпочтительно ввести следующие два относительных тензора  [c.94]

Таким образом, для отношения смещений на двух пластинах (связанного с измеряемыми величинами бт , б д и Р = г1з — vl o уравнением (5-4.33)) имеем следующее уравнение  [c.199]

Измеряемые величины (длину, ширину, диаметр, радиус) отмечают при помощи размерных и выносных линий. На концах размерных линий наносят стрелки  [c.76]


Выносные линии могут проводиться под углом к размерной для выделения с большей четкостью измеряемой величины (указатель 8). В остальных случаях этот угол должен быть прямым.  [c.77]

Измеряемые величины (длину, ширину, диаметр, радиус) отмечают с помощью размерных и выносных линий. На концах размерных линий наносят стрелки внутри, указатель 9 снаружи, указатель S с одной стороны, указатель 24 стрелки при недостатке места могут заменяться засечками (указатель 34, размер Зи4). Обобщенно эти правила показаны на рис. 55, а.  [c.69]

Металлическая линейка позволяет непосредственно определять значение измеряемой величины. Цена деления линейки составляет 1 мм.  [c.189]

Таким образом, чтобы установить размер измеряемой величины, необходимо определить по линейке штанги целое число миллиметров, а по нониусу число десятых долей миллиметров. Десятых долей миллиметров будет столько, сколько можно отсчитать делений нониуса от его нулевого штриха до его ближайшего штриха, совпадающего с каким-либо штрихом штанги.  [c.191]

Постепенное повышение качества изготовления, сборки и регулировки карбюратора, совершенствование его систем, введение пооперационного 41 выходного контроля позволило за 12 лет существования нормирования токсичности сузить допуски по расходу топлива с 10% до 4. .. 5%, что в основном и привело к снижению выбросов окиси углерода и обеспечило уровень токсичности такого же порядка, как и автомобилей, выпускаемых до 1970 г. с каталитическим нейтрализатором отработавших газов (рис. 16). Стоимость более совершенных карбюраторов возросла в 1,5. .. 2 ра а, но это, как видно из анализа, оправданно. Удорожание определяется не столько усложнением конструкции, сколько увеличением количества операций контроля, повышением точности измерений практически на порядок измеряемой величины, применением высокоточных технологических приемов. Повышение качества изготовления, сужение допусков на расходные характеристики дозирующих элементов карбюраторов современных типов может обеспечить снижение выбросов СО на 30. .. 35%, С Н , -- на 25% и экономию топлива до 5%.  [c.38]

До сих пор не говорилось о том, каким образом может быть измерена скорость звука. Выше мы обращали внимание на отклонение свойств газа от идеального состояния и отмечали, что скорость Со относится к безграничному пространству. На практике, особенно в области низких температур, скорость звука измеряется в относительно небольшой колбе, которая должна иметь постоянную температуру. В настоящее время наиболее точные измерения скорости звука осуществляются при помощи акустического интерферометра с цилиндрическим резонатором. Акустические волны возбуждаются в трубе излучателем, расположенным на ее конце длина волны находится измерением перемещения отражателя между соседними резонансными максимумами. Положение стоячих волн определяется по импедансу излучателя. В этом состоит одна из трудностей акустической термометрии по сравнению с газовой. В газовой термометрии измеряемые величины, объем и давление, являются величинами статическими, хотя и существуют проблемы, связанные с сорбцией, о которой говорилось выше. В акустической термометрии измеряемые величины носят динамический характер — это акустический импеданс излучателя, например, при 5 кГц, вязкость и теплообмен со стенками трубы. Все это оказывается источником специфических трудностей при измерении, и для правильной интерпретации результатов измерения необходимо полное понимание физической сущности процессов распространения акустических волн.  [c.101]


Соотнощение между измеряемой величиной и термодинамической температурой оказывается очень простым, однако шумовая термометрия не используется в качестве основного метода первичной термометрии. Причина заключается в том, что не удается достаточно точно измерить напряжения порядка нескольких микровольт и при этом избежать посторонних источников шума, как теплового, так и нетеплового происхождения, а также сохранить постоянными полосу пропускания и коэффициент усиления измерительных приборов. В шумовой термометрии, несмотря на достигнутые за последние годы успехи, остается еще много нерешенных проблем. Точность измерения термодинамической температуры шумовым методом, кроме области очень низких температур, намного ниже точности других первичных термометров. По этой причине, не вдаваясь в подробности предмета шумовой термометрии, рассмотрим в общих чертах основные принципы тех приемов, которые применялись на практике.  [c.113]

В термометрии излучения в отличие от термометрии, основанной на применении термопары или термометра сопротивления, можно использовать уравнения в явном виде, которые связывают термодинамическую температуру с измеряемой величиной (в данном случае со спектральной яркостью). Это возможно потому, что тепловое излучение, существующее внутри замкнутой полости (излучение черного тела), зависит только от температуры стенок полости и совсем не зависит от ее формы или устройства при условии, что размеры полости намного больше, чем рассматриваемые длины волн. Излучение, выходящее из маленького отверстия в стенке полости, отличается от излучения черного тела лишь в меру того, насколько сильно отверстие нарушает состояние равновесия в полости. В тщательно продуманной конструкции это отличие может быть сделано пренебрежимо малым, так что равновесное излучение черного тела становится доступным для измерений. Таким образом, методы термометрии излучения позволяют в принципе измерить термодинамическую температуру с очень высокой точностью, что будет кратко рассмотрено в разд. 7.7.  [c.309]

Скорость объемного течения жидкости у д,, входящая, в выражение для средней скорости движения пузырьков (3. 2. 18), не может быть определена экспериментальным путем. Непосредственно измеряемой величиной является линейная скорость течения жидкости V, которая определяется при помощи уравнения  [c.100]

В соответствии с [49] выразим входящее в определение Уе, через непосредственно измеряемые величины, используя теорию локально-изотропной турбулентности Колмогорова [47]  [c.131]

Отсюда можно рассчитать / ор и соответствующую скорость коррозии. Стерн [6] показал, что скорости коррозии железа, рассчитанные по уравнению (2) с использованием эмпирических значений Р и / ,, хорошо согласуются с измеряемыми величинами скорости коррозии. Типичные примеры даны в табл. 4.2.  [c.65]

В измерениях пол) ено N (вообще говоря, случайных ) значений измеряемой величины Р Р , р2< , Ошибку каждого измерения можно характеризовать дисперсией  [c.29]

Диапазон показаний — область значений шкалы, ограниченная конечным и начальным значениями шкалы, т. е. наибольшим и наименьшим значениями измеряемой величины. Например, для оптиметра типа ИКВ-3 диапазон показаний составляет 0,1 мм.  [c.112]

Диапазон измерений — область значений измеряемой величины с нормированными допускаемыми погрешностями средства измерений. Для того же оптиметра типа ИКВ-3 диапазон измерений длин составляет О—200 мм.  [c.112]

В ГОСТ 16263—70 выделены следующие общие для средств измерений структурные элементы преобразовательный и чувствительный элементы, измерительная цепь, измерительный механизм, от-счетное устройство со шкалой и указателем и регистрирующее устройство. Кроме того, контактные измерительные приборы обычно снабжены одним или несколькими наконечниками. Измерительный наконечник — элемент в измерительной цепи, находящийся в контакте с объектом контроля (измерения) в контрольной точке под непосредственным воздействием измеряемой величины. Базовый наконечник — элемент измерительной цепи, расположенный в плоскости измерения и служащий для определения длины линии измерения. Опорный наконечник — элемент, определяющий положение линии измерения в плоскости измерения. Координирующий наконечник — элемент, служащий для определения положения плоскости измерения на объекте контроля (измерения).  [c.113]


Здесь использованы обозначения Л — результат измерения в единицах измеряемой величины А, А, Ад, Ас. Дс.и- с. в — соответственно погрешность измерения, нижняя и верхняя ее границы, систематическая составляющая погрешности измерения, нижняя и верхняя ее границы, Р, Ра — вероятность, с которой погрешности измерения и соответственно ее систематическая составляющая находятся в соответствующих границах о (А), а (Ас) — соответственно оценка среднего квадратического отклонения случайной составляю-  [c.133]

Стационарные методы определения коэффициента теплопроводности по характеру измерений делятся на абсолютные и относительные. В абсолютных методах измеряемые в эксперименте величины дают возможность по расчетной формуле (6-6) получить значение коэффициента теплопроводности. В относительных методах измеряемых величин для расчета X оказывается недостаточно. В этом случае большее распространение получил метод сравнения коэффициента теплопроводности исследуемого материала с коэффициентом эталона. При этом в расчетную формулу входит X эталона. Относительные методы имеют определенные преимущества перед абсолютными, так как более просты. Однако отсутствие эталонных . материалов, особенно при высоких температурах, накладывает ограничения на их широкое применение.  [c.125]

Уравнение (2-5.16), известное как уравнение Муни — Рабиновича, служит отправным пунктом для определения кривой т] (S) на основании данных по падению давления в ламинарном потоке. Действительно, как так и являются непосредственно измеряемыми величинами график зависимости Xw от в логарифмических координатах позволяет получить значение п. Конечно, п является, вообще говоря, функцией у , но в большинстве случаев эта зависимость чрезвычайно слаба. Уравнение (2-5.16) можно использовать для вычисления истинной скорости сдвига на стенке. Кажущаяся вискозиметрическая вязкость и соответствующее значение S определяются тогда в виде  [c.71]

Прибор измерительный (в). Для указания назначения вписывают буквенное обозначение единиц измерения или измеряемых величин, например А — амперметр (б), V — вольтметр, Q — омметр и др (ГОСТ2.729— 68)  [c.318]

Основное урав-непне измерения имеет вид Q = рИ, где ( — измеряемая величина д — значение измеряемой величины в принятых единицах 1 — единица измерения,  [c.108]

Метод срависии.ч с мерой — метод из,мерений, при котором измеряемую величину сравнивают с величиной, воспроизводимой мерой. Например (рис, 9.1), для измерения вывозы /. деталей 1 миниметр 2 закрепляют в стойке плиты, Слд. слку миниметра устанав-лквают на нуль по како.му-либо образцу (набору концевых мер) 3, имеющему высоту N, равную номинальной высоте L измеряемых д(Л алей. Затем приступают к измерению партии деталей. О точности размеров L судят по отклонению б стрелки миниметра относительно нулевого поло-Рис. 9.1. Относительное измерение жения,  [c.110]

Ноя точноппню измерений понимаю качество измерений, отражающее близость их результатов к истинному значению измеряемой величины (высокая точность ( змерений соответствует малым погрешностям).  [c.112]

В термометрии по абсолютным изотермам или в методе ГТПО, которые основаны на законе Бойля, необходимо знать в первом случае количество молей газа в газовой колбе, а во втором — значения второго, а возможно, и третьего вириаль-ного коэффициента. Выше отмечалось, что развитие газовой термометрии на основе зависимости температуры от какого-либо интенсивного свойства газа позволяет получить существенные преимущества. Такими свойствами газа могут быть скорость звука, коэффициент преломления и диэлектрическая проницаемость. Метод будет первичным (см. гл. 1), если для измеряемой величины и термодинамической температуры можно написать зависимость, в которую входят только То, R, к п другие постоянные. Эти постоянные не должны зависеть от термодинамической температуры. Из трех методов, которые основаны на измерении перечисленных интенсивных свойств, наиболее развита акустическая термометрия, поэтому рассмотрим ее прежде всего.  [c.98]

Шумовой термометрии присуща еще одна особенность, связанная со статистической природой измеряемой величины. Если сравнить два источника найквистовского шума при различных температурах, то для данной полосы пропускания стандартное отклонение величины К , а именно за время измерения t определяется соотношением  [c.114]

Уравнение (3.92) можно объединить с вириальным разложением уравнения состояния по плотности, однако лучше сначала связать диэлектрическую проницаемость с непосредственно измеряемой величиной, в данном случае емкостью. Диэлектрическая проницаемость может быть найдена из отношения емкостей механически стабильного конденсатора соответственно при наличии и отсутствии газа между электродами. Согласно Гьюгену и Мичелу [30], имеем  [c.130]

При дифференциальном методе измеряемую величину сравнивают с известной величиной, воспроизводимой мерой. Этим методом, например, определяют отклонение контролируемого диаметра детали на оптиметре после его настройки на ноль по блоку концевых мер длины. Нулевой метод — также разновидность метода сравнения с мерой, при котором результирующий эффект воздействия величин на прибор сравнения доводят до нуля. Подобным методом измеряют электрическое сопротивление по схеме моста с полным его уравновешиванием. При методе совпадений разность между измеряемой величиной и величиной, воспроизводимой мерой, определяют используя совпадения отметок шкал или периодических сигналов (например, при измерении штангенциркулем используют совпадение отметок основной и ноннусной шкал). Поэлементный метод характеризуется измерением каждого параметра изделия в отдельности (например, эксцентриситета, овальности, огранки цилиндрического вала). Комплексный метод характеризуется измерением суммарного noi asa-теля качества, на который оказывают влияния отделыгые его составляющие (например, измерение радиального биения цилиндрической детали, на которое влияют эксцентриситет, овальность и др. контроль положения профиля по предельным контурам и т. п.).  [c.111]


Влияюи ая физическая величина — физическая величина, не измеряемая данным средством, но оказывающая влияние на резуль-1аты измеряемой величины (например, температура, оказывающая влияние на результат измерения линейного размера).  [c.112]

Чувствительность измерительного прибора — отношение изменения сигнала на выходе измерител1зН0Г0 прибора к вызывающему его нзм( неиию измеряемой величины. Так, если при измерении диаметра вала с номинальным размером л = 100 мм изменение измеряемой величины Ах = 0,01 мм вызвало перемещение стрелки показывающего устройства на А/ = 10 мм, абсолютная чувствтельность ири-112  [c.112]

Вертикальные и горизонтальные длиномеры имеют устройство с отсчетом измеряемой величины на экране с помощью оптическою микрометра, что облегчает работу контролера. С помощью длиномеров можно выполнять абсолютнее измереиия в пределах 0 — 100 мм с измерительным усилием 2—2,5 Н. Погреииюсть отсчета, зависящая от контролируемой длины детали, не превышает 1 мкм.  [c.123]

Показания гальванометра фиксируются периодически в виде точек при нажатии печатающей дужки Н на перемещающуюся ленту 7, покрытую краской., 1ента и.меет несколько цветных дорожек, что позволяет фиксировать показания нескольких датчиков на одной бумажной ленте 3. Бумажная лента движется при вращении барабана 10, закрепленного на валу 11. Вал И приводится во вращение от электродвигателя 1 через зубчатую передачу в корпусе 2, ыальтийск1Й1. механизм 16 и зубчатую передачу 12. Подъем и опускание печатающей дужки 8 производятся с помощью кулачка 4 па валу 19 при каждом повороте кривощипа мальтийского механизма. В момент опускания дужки 8 стрелка 5 гальванометра прижимает красящую ленту 7 к бумажной ленте 3. Стрелка б связана с подвижной системой 6 гальванометра. Смена цветной дорожки к(5асящей ленты 7 производится с помощью кулачка 15, закрепленного на валу 14, и рычага 9. Перемещение рычага 9 смены ленты согласовано с показаниями гальванометра с помощью переключателя 13 электрических цепей датчиков. Номер измеряемой величины указывается на вращающейся с помощью конической зубчатой передачи 17 шкале 18. Последовательная запись всех измеряемых величин осуществляется за каждый оборот креста мальтийского механизма.  [c.11]


Смотреть страницы где упоминается термин Измеряемые величины : [c.554]    [c.205]    [c.278]    [c.111]    [c.112]    [c.112]    [c.118]    [c.24]    [c.112]    [c.126]    [c.201]    [c.229]    [c.188]    [c.16]    [c.111]    [c.114]    [c.114]   
Смотреть главы в:

Методы и приборы ультразвуковых исследований Т.1 Ч.А  -> Измеряемые величины

Методы и приборы ультразвуковых исследований Т.1 Ч.А  -> Измеряемые величины


Гидродинамические муфты и трансформаторы (1967) -- [ c.51 , c.52 ]



ПОИСК



Важнейшие типы ротационных приборов и непосредственно измеряемые на них величины

Величина физическая измеряемая

Величины, измеряемые при испытаниях

Взаимосвязь сигнала первичного преобразователя и измеряемых величин в стационарных условиях . Варьирование эффективной теплопроводности первичного преобразователя

Г лава четвертая. Определение ошибки измеряемой величины

Датчики деформаций реостатные проволочные наклеиваемые — Показания — Зависимость от измеряемой величины

Действительное значение измеряемой величины

Измерения и измеряемые величины

Измерительная система и измеряемые величины

Интегральные представления измеряемых оптических величин в методе касательного зондирования

Наиболее вероятное значение измеренной величины

Обсуждение общей формулы и сспоставление расчетных и измеренных величин

Операции дискретного интегрирования и усреднения измеряемых величин

Операция восстановления неизвестной функции измеряемых величин (косвенное измерение)

Операция дифференцирования дискретно измеряемых величин

Операция фильтрации измеряемых величин от помех

Операция экстра- и интерполяции дискретно измеряемых величин

Определение доверительных интервалов для истинного значения измеряемой величины при неизвестных параметрах распределения результатов наблюдения

Определение доверительных интервалов для истинного значения измеряемой величины, имеющей нормальное распределение с известным значением среднего квадратического отклонения

Определение статистических характеристик измеряемых величин

Поправки к измеряемой величине

Режимы нагружения измеряемые величины

Систематическая и случайная погрешности косвенно измеряемой величины

Точечная оценка постоянной измеряемой величины

Точечные оценки истинного значения измеряемой величины и среднего квадратического отклонения на основании ограниченного ряда наблюдений

Физические величины и измеряемые величины

Ш а р и н, М. А. Лысаков. Масштабное преобразование измеряемой величины в кодовых датчиках положения



© 2025 Mash-xxl.info Реклама на сайте