Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Температурная постоянна

Температурная постоянная — величина, основанная на неизменности температур перехода тел из одного состояния в другое (например, из жидкого в твердое).  [c.342]

Таблица 61 Температурные постоянные некоторых процессов Таблица 61 Температурные постоянные некоторых процессов

Твердость 340 Текстолит 340 Текстура 341 Температура 341 Температура накала 341 Температурная постоянная 342  [c.413]

Если снять ограничение о постоянной плотности, то термодинамическое уравнение состояния примет вид соотношения между плотностью, давлением и температурой. Появление температурной переменной требует, чтобы одновременно решалось и уравнение баланса энергии (первый закон термодинамики), которое в свою очередь вводит две новые переменные — тепловой поток и внутреннюю энергию. Закон Фурье (связывающий тепловой поток с распределением температуры) и энергетическое уравнение состояния замыкают систему уравнений, приведенную в табл. 1-2.  [c.14]

Горячая штамповка является циклическим процессом. Продолжительность термического цикла штамповки (ТЦШ) не постоянна и меняется как в зависимости от типоразмера днищ, так и в пределах партии штампуемых днищ одного типоразмера. Операции ТЦШ приведены на рис. 3.10. Температурное поле (абсолютная величина температуры и ее градиент) влияет также на характер, особенности ТЦШ и качество отштампованных днищ. Оно в произвольной точке системы в определенный момент времени характеризует зна-  [c.38]

Шаровая стенка. При постоянных температурах i и 2 на внутренней (радиусом Г ) и наружной (радиусом rt) поверхностях шаровой стенки температурное поле одномерно в сферических координатах, т. е. температура изменяется только по радиусу. Следовательно,  [c.75]

В псевдоожиженном слое крупных частиц практически обоснованно предполагать, что температурный перепад между поверхностью теплообмена и ядром слоя сосредоточен в основном на первом от поверхности ряде частиц. Можно также считать, что от поверхности к частице тепло передается теплопроводностью через газовую линзу, образованную поверхностями, теплообмена и частицы и условно ограниченную цилиндрической поверхностью диаметром, равным с1ц (для упрощения расчетов, как и ранее, частицу принимаем в виде цилиндра диаметром йц, а газовую прослойку — в виде диска того же диаметра и по объему, равному линзе), т. е. рассматривается задача по прогреву пакета из двух пластин (газ и частица) толщиной б и R = d соответственно с одинаковой начальной температурой to поверхность одной стороны пакета мгновенно приобретает температуру /ст, которая поддерживается постоянной, температура поверхности противоположной стороны также постоянна в про-  [c.95]


Пусть В дисперсную среду погружена поверхность достаточно больших размеров и малой кривизны (по сравнению с d), температура которой постоянна и отличается от температуры слоя. Вследствие перемешивания частиц вблизи теплообменной поверхности сформируется стационарный температурный профиль. Будем считать, что температура теплообменника меньше, чем ядра слоя (удаленной от поверхности и в среднем изо-  [c.175]

Классическое представление о внутренней энергии частично подтверждено эмпирическими данными по теплоемкости. Термин теплоемкость первоначально использовали для определения количества теплоты, необходимой для изменения температуры единицы массы какого-либо материала на один градус. Однако было найдено, что теплоемкость является функцией условий, при которых происходит нагревание. Например было найдено, что количество теплоты, необходимое для нагревания единицы массы газа на один градус, значительно больше, если газ расширяется при постоянном давлении в процессе нагревания, чем то количество теплоты, которое потребовалось бы для нагревания газа при постоянном объеме. Кроме того, имеет значение температурный интервал, в котором происходит нагревание. Поэтому существует несколько различных видов теплоемкости, каждый из которых характерен для какого-либо процесса нагревания.  [c.32]

Данные по теплоемкости ряда газов представлены в приложении 1 для достаточно низких давлений, так что газы могут рассматриваться как идеальные. Эмпирические постоянные для уравнения теплоемкости в форме уравнения (1-58) приведены в приложении 2. Эти постоянные согласуются с данными теплоемкости приложения 1 для температурного интервала 300—1500 °К с указанным максимальным отклонением.  [c.50]

Для подтверждения диффузионно-кинетического происхождения сложно-параболического закона нужно исследовать температурную зависимость скорости окисления металла, а следовательно, и постоянных и и определить значения соответствующих энергий активации (Зд и Q , которые должны быть порядка  [c.64]

Систематическими называются погрешности, постоянные по величине и направлению или изменяющиеся по определенному закону. Они могут быть вызваны упрощениями кинематических схем передаточных механизмов (например, в результате замены зубчатых механизмов поводковыми механизмами), ошибками настройки станков или приборов, температурными де( рмациями и пр. Влияние этих ошибок на результаты обработки и измерения можно учесть и даже устранить.  [c.32]

При расчете принять коэффициент теплоотдачи от поверхности оболочки к теплоносителю постоянным по длине, н его значение определить приближенно по формуле для теплоотдачи в круглых трубах и без поправки на температурный фактор.  [c.251]

Плавление и затвердевание идеально чистых металлов происходят при постоянной температуре вследствие поглощ,ения или выделения теплоты перехода. Если используется достаточно большое количество металла (150 см — типичный объем плавящегося слитка), скрытой теплоты плавления достаточно, чтобы поддержать слиток и погруженный в него термометр при постоянной температуре в течение нескольких часов, пока происходит плавление или затвердевание металлов. Присутствие небольшого количества примесей в виде растворенного металла приводит к изменению температуры плавления или затвердевания металла, кроме того, эти процессы проходят в некотором температурном интервале. Применяемые для реализации реперных точек металлов галлий, индий, кадмий, свинец, олово, цинк, сурьма, алюминий, серебро и золото имеют достаточную чистоту для термометрии, которую, однако, непросто сохранить  [c.169]

Существуют многочисленные методы сравнения интервалов плавления в одном из наиболее полезных применяется обратная кривая плавления и строится гистограмма, аппроксимирующая температурную производную кривой плавления. Часть полного времени плавления, в течение которого слиток остается В данном интервале температур, строится в зависимости от средней температуры интервала. При медленных нагревах температура печи остается практически постоянной за время плавления всего слитка, так что скорость подвода тепла к слитку также практически постоянна. В этих условиях часть полного времени плавления, проведенного в данном температурном интервале, близка к доле металла, плавящегося в этом интервале. Другой метод состоит в сравнении доли общего времени плавления, проведенного в данном интервале температур плавления, после быстрого и медленного затвердеваний,..  [c.173]


Для практической термометрии интерес представляют переходные металлы, имеющие частично заполненные -уровни, а также з-уровни (символы з и соответствуют значениям орбитального квантового числа О и 2 см. [6]). Поскольку -электроны более локализованы, чем з-электроны, проводимость обусловлена главным образом последними. Однако вероятность рассеяния 3-электронов в -зону велика, поскольку плотность -состояний вблизи уровня Ферми высока (рис. 5.5), поэтому удельное сопротивление переходных металлов выще, чем у непереходных. Наличие -зоны влияет также на характер температурной зависимости. При высоких температурах величина кТ может быть уже не пренебрежимо мала по сравнению с расстоянием от уровня Ферми до верхней или нижней границы -зоны. Предположение, что поверхность Ферми четко разделяет занятые и незанятые состояния, перестает быть верным, и для параболической -зоны в формулу удельного сопротивления вводится поправочный коэффициент (1—5Р), где В — постоянная. Однако плотность состояний в -зоне вовсе не является гладкой функцией энергии (рис. 5.5), поэтому эффект будет осложнен изменением плотности состояний в пределах кТ от уровня Ферми. Отклонение температурной зависимости от линейной может быть как положительным, так и отрицательным.  [c.194]

На диаграмме рис. 6.1 показано распределение потенциала Е(Т) для пары проводников из разных материалов А и В, спаи которых имеет температуру Гг, а оба свободных конца — одинаковую температуру Го. Рабочий спай и свободные концы находятся в области с постоянной температурой, а оба проводника проходят через одинаковое температурное поле. Для измерения термоэлектрической разности потенциалов между свобод-  [c.268]

Рис. 6.1. Распределение потенциала вдоль проволоки термопары, изготовленной из электродов А и В п имеющей горячий спай в области постоянной температуры Т . Электроды присоединены к одинаковым проводам С в области холодного спая при постоянной температуре То. Проводники С присоединены к детектору в области постоянной температуры Г]. Полагая, что величина Ес(То—>Т ]) одинакова для обоих проводников С, получаем измеренную э. д. с. [ а—Яв](7 о—>Т г)- Электроды Л и В проходят через одно и то же температурное поле. Рис. 6.1. Распределение потенциала вдоль проволоки термопары, изготовленной из электродов А и В п имеющей <a href="/info/276530">горячий спай</a> в области постоянной температуры Т . Электроды присоединены к одинаковым проводам С в области <a href="/info/118197">холодного спая</a> при постоянной температуре То. Проводники С присоединены к детектору в области постоянной температуры Г]. Полагая, что величина Ес(То—>Т ]) одинакова для обоих проводников С, получаем измеренную э. д. с. [ а—Яв](7 о—>Т г)- Электроды Л и В проходят через одно и то же температурное поле.
Дальнейшее обсуждение механизмов термоэлектричества выходит за рамки настоящей книги, основная цель которой — показать, каким образом можно измерять температуру термопарами. Основная цель краткого знакомства с теорией — выяснить, почему термо-э.д.с. сильно зависит от состава, однородности и отжига материала. Отметим, что во всяком хорошем устройстве для измерения температуры термопарой, где соединение двух электродов находится в области постоянной температуры, роль спая состоит лишь в создании электрического контакта. Каким образом он выполнен и имеется ли диффузия одного сплава в другой в области спая, не имеет значения для величины термо-э. д. с., развивающейся в области температурного градиента.  [c.273]

Нйя й поэтому МОЖНО ввести поправку [43]. Долговременный дрейф яркостных температур ниже 1500 °С незначителен, но он возрастает примерно до 0,02 °С за 100 ч при 1600 °С, 0,08 °С при 1700 °С и 0,15°С при 1770 °С. Эти величины типичны для вольфрамовых ленточных ламп, так что температура выражается как функция только величины постоянного тока. Это вполне адекватный метод. Он устраняет трудности проведения точных измерений напряжения на вводах при наличии температурных градиентов. Для конструкции лампы, показанной на рис. 7.19, соотношение ток/температура может быть выражено полиномом четвертой степени для вакуумных ламп в области от 1064 до 1700 °С, а для газонаполненных ламп — в области от 1300 до 2200 °С. Для ламп конкретной конструкции коэффициенты полиномов варьируются слабо, что обеспечивает удобный контроль в процессе градуировки [1,26].  [c.359]

Известны три состояния, в которых могут находиться все вещества твердое, жидкое н газообразное. При определенных температурах происходит изменение агрегатного состояния чистых металлов при нагреве выше температуры плавления (Тпл) твердое состояние сменяется жидким, а при нагреве выше температуры кипения жидкое состояние сменяется газообразным. Эти температуры существенно зависят от давления, при котором осуществляется переход одного состояния в другое в условиях неизменного давления температурные параметры постоянны. Главным признаком твердого состояния является кристаллическое строение, а жидкое состояние характеризуется расплавом с хаотическим тепловым движением атомов и молекул металла.  [c.21]

Внешняя и внутренняя поверхности прямой цилиндрической трубы поддерживаются при постоянных температурах 4т и / т-Изотермические поверхности будут цилиндрическими поверхностями, имеющими общую ось с трубой. Температура будет меняться только в направлении радиуса, благодаря этому и поток тепла будет тоже радиальным. Труба имеет бесконечную длину. Температурное поле в этом случае будет одномерным  [c.363]

Для упрощения формул не будем учитывать температурные эффекты, полагая, что процессы происходят при постоянной температуре.  [c.243]

Обсуждаемые в данной книге приложения будут относиться к случаю упругого материала, для которого зависимости напряжения от деформаций выражаются хорошо известным и относительно. простым законом Гука, который будет формально выписан в 3.1 при обсуждении задач, теории упругости. Реальные материалы не следуют этому закону в точности. Некоторые, подобно чугуну, обладают слабо, нелинейной зависимостью напряжения от деформаций. Но даже те, у которых на первый взгляд эта зависимость линейна вплоть до предела упругости, демонстрируют едва заметное различие в поведении при нагружении и разгрузке (упругий гистерезис, который имеет, по-видимому, существенное значение в связи с усталостью материалов) при этом обнаруживаются и температурные эффекты, проявляющиеся в различии температурных постоянных при изотермическом (при очень медленном изменении деформаций) и адиабатическом (при очень быстром изменении деформаций) нагружении, они до некоторой степени аналогичны электростатическим эффектам. Подобные отклйнения от закона Гука, как правило, не важны для практических задач и не будут рассматриваться здесь.  [c.28]


Температурная постоянная времени изделия зависит от свойств и подвижности окружающей (феды. При этом для некоторых конструкций изделий температурные постоянные времени наружных и внутренних деталей будут различивши. В связи с этим следует определять температурную постоянную времени деталей, расположенных на большом расстоянии от поверхности изделия, на нагрев которых требуется затрачивать больше щ>еме-ни, а также деталей, наиболее 1фитичных к изменению температуры.  [c.212]

Значение температурной постоянной времени т определяется точкой пересечений касательной к экспериментально определенной хфактеристике, проведенной из точки начального значения температуры нО> ниями, ограничивающими диапазон температур испыгания и. При этом будут получены два значения постоянной времени Т] и Т2 соответственно для повышенной и пониженной температур (рис. 2.5.6).  [c.212]

Температурное расширение характеризуется коэффициентом (5т об1>емного расширения, который иредстаиляет собой относительное измеионие объема при изменении температуры Т на 1 "С и постоянном давлении, т. е.  [c.10]

Если частицы, образующие дисперсную систему, неподвижны, характеризуются низкой теплопроводностью, а процессы переноса интенсивны, температурное ноле может оказаться сильно изменяющимся в пределах элементарного слоя. При этом частицы нельзя характеризовать одной, постоянной по всей поверхности, средней температурой. Более точным приближением будет в этом случае следующая схема поверхности частиц а, i,. с, d имеют одну среднюю температуру, поверхности а, i, с, d —другую. При таком задании температуры частиц, учитывающем их неизотермич-ность, излучательная способность элементарного слоя должна зависеть также от градиента температуры в его пределах и может быть определена лишь по формулам (4.26) — (4.28).  [c.157]

Для большинства технических применений в земных условиях отношение местного ускорения силы тяжести к постоянной перевода размерности должно быть взято равным единице. Кромь того, чтобы изменение потенциальной энергии было более 1 брит. тепл. ед./фунт-моль (0,55кауг/л оль), необходимо изменение в высоте более 778 футов (237 м), так что обычно изменение вел11-чины потенциальной энергии сравнительно невелико в пр( -цессах, сопровождающихся значительным количеством перенесенной теплоты или большим температурным изменением. При тех же самых условиях величина кинетической энергии также часто незначительна, поскольку необходимо изменение в линейной скорости от нуля до 100 фут/сек (30,5 м/сек), чтобы обусловить изменение кинетической энергии приблизительно на 0,2 брит, тепл, ед /фунт-моль (0,11 кал моль).  [c.56]

Для подтверждения внутренне-внешнедиффузионного происхождения сложно-параболического закона следует исследовать температурную зависимость скорости окисления металла, а следовательно, и постоянных k l и и определить значения соответствующих энергий активации Qi и Qa. которые должны быть более низкими (порядка нескольких килокалорий на моль) для внешней и более высокими (порядка десятков и сотен килокалорий на грамм-атом) для внутренней диффузии и могут быть сопоставлены с соответствующими литературными данными.  [c.66]

Таким образом, можно считать, что при различных условиях деформирования материала микротрещины, способные инициировать хрупкое разрушение, будут зарождаться с постоянной длиной Р, которую можно вычислить по формуле (2.2). Следовательно, So(7 o) = onst, т. е. So — температурно-независимая характеристика, отвечающая критическому напряжению страгивания микротрещины.  [c.63]

Следовательно, если нам известны значения давлений диссоциации окислов металлов для разных температур, то, полагая парциальное давление кислорода равным постоянной величине (для воздуха при атмосферном давлении Яо, = 0,02 А1н1м ), можно легко определить температурные границы термодннами-ческо вероятности процесса окисления.  [c.133]

Таким образом, к середине 17 в. уже имелись чувствительные термометры, но еще не предпринималось серьезных попыток создания универсальной температурной шкалы. В 1661 г. сэр Роберт Саутвелл, который позднее стал президентом Королевского общества, привез из путешествия флорентийский спиртовой термометр. Роберт Гук, тогдашний секретарь Королевского общества, усовершенствовал итальянский прибор, введя в спирт для удобства красный краситель и сделав устоойство для нанесения шкалы. Гук опубликовал предложенный им метод в 1664 г. в книге Микрография . В ней он показал, как, исходя из первых принципов, можно изготавливать сравнимые термометры, не сохраняя строго постоянными их размеры, что пытались делать флорентийцы. Его метод был основан на равных приращениях объема с ростом температуры, начиная от точки замерзания воды. С какими трудностями достаются знания о фиксированных точках температуры при почти полном отсутствии информации, свидетельствует то, что Гук одно время пытался использовать две фиксированные точки в качестве точки замерзания воды. Он полагал, что температура, при которой начинает замерзать поверхность ванны с водой, отлична от температуры, при которой затвердевает вся ванна. Вероятно, его ввело в заблуждение то, что плотность воды максимальна вблизи 4 °С, вследствие чего в начале замерзания нижняя область ванны с неподвижной водой теплее, чем поверхность воды. Тем цр менее он создал шкалу, каждый градус которой соответствовал изменению объема рабочей жидкости его термометра примерно на 1/500 (что эквивалентно около 2,4 °С). Его шкала простиралась от —7 градусов (наибольший зимний холод) до +13 градусов (наибольшее летнее тепло). Эта шкала была нанесена на разнообразные термометры, которые градуировались по оригиналу, принятому Королевским обществом и калиброванному по методу Гука. Этот термометр, описанный Гуком на заседании Королевского общества в январе 1665 г., получил известность как эталон Грешем Колледжа и использовался Королевским обществом вплоть до 1709 г. Введенная таким образом шкала эталона  [c.30]

В последние два десятилетия 19 в. было выполнено много измерений с газовым термометром, в том числе при температурах выше 600 °С. Были найдены значения ряда точек кипения и затвердевания в основном по показаниям азотного газового термометра постоянного давления. Подробный обзор этих достижений дал в 1899 г. Каллендар на сессии БАРН, где он выступил с предложениями о практической температурной шкале [12]. Каллендар предложил принять платиновый термометр сопротивления, калиброванный в точке замерзания воды и точках кипения воды и серы в качестве основы шкалы. Он предложил также отобрать конкретную партию платиновой проволоки для изготовления термометров, несущих шкалу. Он предложил приблизить эту шкалу к шкале идеального газа, приняв для точки кипения серы результаты измерений с газовым термометром, и назвать ее температурной шкалой Британской ассоциации. Свои предложения Каллендар обосновал проверкой квадратичной формулы разностей между так называемой платиновой температурой и температурами, определяемыми по газовому термометру, которые были ранее найдены в МБМВ Шаппюи и Харкером [15, 35]. Каллендар представил также перечень значений вторичных реперных точек, основанный на его анализе измерений с газовым термометром. Эти числа приведены в табл. 2.1 вместе с принятыми в МПТШ-68.  [c.41]

Коэффициент диффузии D, m V , т, е. количество вещества, диффундирующего ч(рез единицу площади (1 см ), в единицу времени (I с) при перепаде концентрации, равном единице, зависит от природы сплава, размеров зерна и особенно сильно от температуры. Температурная зависимость коэффициента диффузии подчиняется экспоненциальному закону D = Do ехр 1—Q/RT], где О,, — предэкспоненциалЬ ный множитель, величина которого определяется типом кристаллической решетки R — газовая постоянная, 8,31 Дж-К МОЛь" Т — температура, К Q — энергия активации, Дж/г-атом.  [c.28]


Эта температура не является постоянной физической величиной, как, например, температура плавления. Для данного металла (сплава) она зависит от длительности нагреиа, степени предварительной деформации, величины зерна до деформации и т. д. Температурный порог рекристаллизации тем ниже, чем выше степень деформации, больше длительность нагрева или меньше величина зерна до деформации.  [c.56]

Температура в каждом слое стенки при постоянном коэффициенте теплопроводности изменяется по линейному закону, а для многослойной плоской стенки температурный график представляет собой ломаную ЛИ1И1Ю.  [c.363]

Для того чтобы модель стала подобна образцу, необходимо выполнить следующие условия. Моделировать можно процессы, имеющие одинаковую физическую природу и описываемые одинаковыми дифференциальными уравнениями. Условия однозначности должны быть одинаковы во всем, кроме численных значений постоянных, содержащихся в этих условиях. Условия однозначности требуют геометрического подобия образца и модели, подобия условий движения жидкост1[ во входных сечениях образца и модели, подобия физических параметров в сходственных точках образца и модели, подобия температурных полей на границах жидкой среды. Кроме того, одноименные определяющие критерии подобия в сходственных сечениях образца и модели должны быть численно одинаковы.  [c.425]


Смотреть страницы где упоминается термин Температурная постоянна : [c.556]    [c.588]    [c.342]    [c.37]    [c.212]    [c.215]    [c.62]    [c.124]    [c.39]    [c.61]    [c.147]    [c.389]    [c.397]   
Краткий справочник прокатчика (1955) -- [ c.342 ]



ПОИСК



Зависимость температурная постоянных упругости

Задачи термоупругости тел с кусочно-постоянными температурными коэффициентами линейного расширения Полупространство с приповерхностным призматическим включением

Значения постоянного коэффициента В в выражении для температурного множителя

Об исследованиях температурной зависимости постоянных упругости и декремента колебаний, выполненных после

Расчет методом линейной аппроксимации Расчет постоянной толщины — Определение температурных напряжений

Расчет температурных напряжений в диске постоянной толщины

Температурная стабильность постоянных магнитов

Температурное поле и коэффициент эффективности прямых ребер постоянной толщины

Температурное поле постоянного сечения — Определение напряжений

Температурные напряжения в тонкостенных элементах с кусочно-постоянными коэффициентами теплоотдачи с боковых поверхностей Изотропная пластинка нагреваемая цилиндрическим источником тепла

Температурный коэффициент давления. Определение постоянных уравнения ван-дер-Ваальса

Точки постоянные международной температурной шкалы

Точки постоянные температурной шкалы

Точки постоянные температурной шкалы вспомогательные

Точки постоянные температурной шкалы употребительные

Точки — Удар о поверхность постоянные международной температурной шкалы

Цилиндр постоянный температурные напряжения

Шкала Реомюра температурная международная 2 Точки постоянные

Шкалы лабораторных термометров температурные—Постоянные точки 3, 4 — Формулы перехода



© 2025 Mash-xxl.info Реклама на сайте