Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория перенапряжения

Предложено много теорий перенапряжения водорода, из которых можно было вывести эмпирические зависимости (линейную и логарифмическую) перенапряжения водорода от катодной плотности тока наиболее важными и общепризнанными являются две теории теория замедленного разряда и-теория замедленной рекомбинации.  [c.252]

Эта теория получила название теории катодного действия , или теории перенапряжения .  [c.50]

Взгляды сторонников теории перенапряжения на механизм защитного действия ингибиторов по существу сводятся к следующему ионы, молекулы или коллоидные частицы ингибитора блокируют катодные участки поверхности металла и повышают перенапряжение водорода настолько, что разряд ионов Н+ может протекать только очень замедленно. Естественно, что замедление катодного процесса влечет за собой в равной степени и торможение анодного процесса. Однако это торможение обусловлено лишь замед-. ением разряда ионов водорода, но непосредственного влияния на анодный процесс ингибиторы не оказывают.  [c.51]


Теория перенапряжения, или катодного действия, как следует из работ последних лет, опровергнута экспериментально. После того как было обнаружено, что все без исключения органические ингибиторы действуют как поляризаторы анодного процесса в большей степени, чем катодного, и в течение 30 лет не удалось найти прямой зависимости между эффективностью ингибиторов и ростом перенапряжения водорода, сторонники теории катодного действия ингибиторов постепенно перешли на позиции адсорбционной теории.  [c.58]

Предложено много теорий перенапряжения водорода, из которых можно вывести уравнения (104) и (105) наиболее важными и общепринятыми являются две теория замедленного разряда и теория замедленной рекомбинации.  [c.105]

Предложено много теорий перенапряжения водорода, из которых можно вывести уравнения (154) и (155) наиболее важными и общепризнанными являются две теории.  [c.158]

Таким образом, эта теория тоже дает логарифмическую зависимость перенапряжения водорода от катодной плотности тока, но с численным значением коэффициента = 0,029 В вместо даваемого теорией замедленного разряда и наблюдаемого в опытах (см. рис. 175) Ьа = 0,12 В.  [c.257]

Существенным доводом в пользу рекомбинационной теории является совпадение ряда металлов по возрастающим значениям водородного перенапряжения с расположением металлов по убывающей каталитической активности при рекомбинации водородных атомов  [c.257]

Таким образом, рекомбинационная теория объясняет зависимость перенапряжения водорода от материала катода чем больше склонность металла к взаимодействию с атомами водорода (высокая энергия адсорбции, образование твердых растворов, способность металла катализировать рекомбинацию водородных атомов), тем легче протекает рекомбинация водородных атомов и тем ниже перенапряжение водорода.  [c.258]

Исследования советских электрохимиков за последние годы показали, что эта теория не учитывает ряда серьезных факторов (pH раствора, природы раствора и др.) и что возможны и другие толкования механизмов удаления водорода с поверхности металла. Можно отметить, что теория замедленного разряда достаточно хорошо подтверждается экспериментальными и расчетными данными для металлов с высоким перенапряжением водорода. При ПОМОП.1И этой теории можно объяснить зависимость перенапряжения водорода от плотности тока, концентрации водородных ионов, наличия в растворе посторонних электролитов и поверхностно-активных веществ, часто специально вводимых в электролит.  [c.42]

С другой стороны, согласно адсорбционной теории [16], ионы С1 адсорбируются на поверхности металла, конкурируя с растворенным О2 или 0Н . Достигнув поверхности металла, С1 способствует гидратации ионов металла и облегчает переход их в раствор, в противоположность влиянию адсорбированного кислорода, который снижает скорость растворения металла. Иначе говоря, адсорбированные ионы С1 повышают ток обмена (снижают перенапряжение) для анодного растворения перечисленных металлов по сравнению с наблюдаемым для поверхности, покрытой кислородом. В результате железо и нержавеющие стали часто невозможно анодно запассивировать в растворах, содержащих значительные концентрации С . Напротив, металл продолжает растворяться с высокой скоростью как при активных, так и при пассивных значениях потенциала.  [c.84]


Если стенки сосуда имеют резкий излом (рис. 22,а), то в переходном сечении возникают краевые силы, могущие вызвать значительные перенапряжения, которые не учитываются безмоментной теорией. Чтобы уменьшить влияние этих сил, стыковое сечение часто упрочняют распорным кольцом.  [c.53]

Согласно гипотезе, принятой в современной теории, механизму усталостного разрушения дается следующее толкование. Вследствие концентрации напряжений в отдельных зонах материала происходит пластическая деформация, в то время как во всей детали напряжения не превышают предела упругости. При переменных напряжениях в 3(тих перенапряженных зонах происходит местное упрочнение (явление наклепа) и хрупкое разрушение материала в виде микроскопической трещины, дальнейшее разрастание которой приводит к разрушению детали.  [c.151]

По электрохимической кинетике имеется обширная специальная литература [10]. Для пояснения основных принципов на рис. 2.4 приводится кривая /(т)) для окислительно-восстановительной реакции по уравнению (2,9) с перенапряжениями перехода и диффузии. Согласно теории [2] для этого примера можно записать  [c.54]

В течение двух первых десятилетий XX в. не прекращались поиски иных средств защиты от перенапряжений, в том числе обследовалась эффективность грозозащитных тросов — теория тросовой защиты была выдвинута немецким ученым В. Петерсеном в 1914 г. Проверялись защитные свойства высоковольтных конденсаторов и катушек индуктивности. В целом защита от перенапряжений оставалась нерешенной проблемой. Предохранение от прямых ударов молнии считалось совершенно невозможным. Это объяснялось малой изученностью молнии и процессов распространения волн перенапряжений по проводам, а также быстрым моральным старением защитных средств, развитие которых не поспевало за стремительным ростом напряжений и мощностей электрических установок. Положение усугублялось тем, что в мощных сетях проявлялись коммутационные перенапряжения. Техника защиты пошла по ложному пути совмещения в одном аппарате функций защиты от атмосферных и от внутренних перенапряжений 25, с. 35—49].  [c.80]

Для теории замедленной электрохимической десорбции в области достаточно высоких перенапряжений значения параметров не отличаются от таковых для теории замедленного разряда [12, 17].  [c.13]

Первый вклад в создании учения о прочности твердых тел внесла теория Гриффитса о критическом разрывном напряжении [8]. По мнению Гриффитса, в реальных телах имеются дефекты в виде полых микротрещин эллиптической формы, у вершины которых создаются локальные перенапряжения. Когда величина одного из них достигнет критического значения, трещина начинает расти со скоростью звука, разрушая тело.  [c.101]

Некоторые исследователи [34] придерживаются в вопросе водородного перенапряжения иных взглядов. Они считают, что замедленной стадией является не разряд ионов водорода, а процесс молизации, т. е. образование из двух разрядившихся атомов водорода молекулы. Отсюда эта теория водородного перенапряжения получила название рекомбинационной.  [c.16]

Теория замедленного разряда обосновывается достаточно хорошо экспериментальными и расчетными данными, которые в нашей работе мы не имеем возможности приводить и поэтому отсылаем интересующихся этим вопросом к специальной литературе [24]. При помощи этой теории можно объяснить зависимость перенапряжения от плотности тока, концентрации водородных ионов, наличия в растворе посторонних электролитов и поверхностно-активных веществ, вводимых часто специально в электролит. Для уяснения этих зависимостей, имеющих большое значение для трактовки ряда коррозионных процессов, и в частности, механизма защиты при помощи ингибиторов, необходимо вкратце ознакомиться с основными положениями этой теории.  [c.16]

Значительные эффекты наблюдаются также при введении в раствор по-верхностно-активных анионов. На рис. 12 показано влияние поверхностноактивных анионов (СГ, Вг" и J ) на поведение ртутного электрода. В соответствии с теорией действие этих анионов проявляется в резком снижении перенапряжения водорода. Влияние поверхностно-активных галоидных ионов проявляется также лишь в определенном интервале потенциалов вследствие того, что имеет место десорбция этих ионов.  [c.27]


Теория анодных процессов, часто осложненных явлениями пассивности, еще недостаточно разработана. Еще не вполне выяснен механизм анодного растворения металлов, нет четких и единых представлений о стадиях, определяющих общую скорость анодного процесса. Различные исследователи объясняют по-разному появление анодного перенапряжения.  [c.58]

Теория замедленного разряда оправдывается не для всех металлов. Не всегда ионизацию металла можно рассматривать как процесс, обратный процессу катодного осаждения. Кроме того, при выводе уравнения для перенапряжения ионизации металла мы исходили из того, что скорость ионизации металла остается постоянной. В действительности же при длительной поляризации, а также в реальных условиях коррозии, поверхность анода все время изменяется, что приводит и к изменению абсолютной скорости ионизации.  [c.64]

Аналогичные эффекты наблюдали также для ртути при введении в электролит поверхностно-активных анионов (С1 , Вг- 1 ). В соответствии с теорией эти анионы резко снижают перенапряжения водорода. Их действие проявляется в определенном интервале значений потенциалов, что обусловлено адсорбцией.  [c.116]

Выделившийся на корродирующей поверхности электроположительный металл, если он является, как ато обычно бывает, эффективным катодом с низким перенапряжением основной реакции катодной деполяризации (например, выделению водорода), может значительно сместить общий потенциал коррозионной системы в положительную сторону. При достаточном выделении катодного металла на поверхности потенциал системы сместится положительнее потенциала начала пассивации и система начнет переходить в пассивное состояние. При достижении же потенциала полной пассивации Е а система уже будет находиться в самопроизвольно устойчивом пассивном состоянии (теория этого процесса изложена в гл. II). Были предложены и другие объяснения снижения скорости коррозии металла в присутствии ионов благородных металлов в коррозионном растворе.  [c.170]

Кроме того, следует отметить, что полученные данные могут служить основой для построения новых физических моделей процесса хрупкого разрушения, основанных не на традиционных схемах концентрации напряжений из-за различного рода неоднородностей дислокационной структуры, а за счет различного рода локальных неоднородностей распределения ансамбля кластеров из точечных дефектов различной мошности и природы [368, 691]. Таким образом, при определенных температурно-силовых и временных условиях стадия зарождения первичного очага концентрации напряжений и первичной трещины, а также последующая стадия развития хрупкой трещины должны рассматриваться с позиций изложенной выше модели диффузионно-дислокационной микропластичности. При этом теория должна рассматривать диффузионную стадию зарождения ансамбля кластеров различной мощности (т.е. с различным уровнем концентрации напряжений вблизи единичных кластеров), их рост и эволюцию в процессе вьщержки под нагрузкой (взаимодействие между собой, перераспределен е в размерах и др.). Т.е. взаимодействие между собой локальных источников перенапряжений от единичных кластеров в микрообъемах формирует общее макроскопическое поле внутренних напряжений в кристалле, ответственное за деформационное упрочнение кристалла, а также создает некоторую критическую ситуацию по пиковым напряжениям, превышающим в некоторой точке ансамбля прочность кристалла на разрыв [368, 691].  [c.259]

Недостатками рекомбинационной теории перенапряжения водорода являются 1) несоответствие теоретического и опытного значения коэффициента (Ьопытн = 4Ь.георет) 2) независимость т) от состава раствора [сн+. не входит в уравнение (547) для т)], что противоречит опыту 3) при предельном насыш,ении поверхности катода Над<. должно быть предельное значение тока, чего пока не наблюдалось.  [c.258]

В работе [74] предпринята попытка объяснить влияние механической деформации медного электрода на его анодную и катодную поляризацию в водном растворе USO4 с позиций теории перенапряжения кристаллизации при условии, что лимитирующей стадией реакций является поверхностная диффузия ад-ионов, параметры которой зависят от расстояния между ступеньками роста, т. е. от плотности дислокаций. С учетом того, что плотность дислокаций линейно связана со степенью пластической деформации, получена прямая пропорциональная зависимость скорости реакции от корня квадратного из степени деформации. Эта зависимость приближенно соответствует результатам опытов и несколько нарушается при больших деформациях. К сожалению, в этой работе не измеряли величину механического напряжения, а поскольку в случае меди деформационное упрочнение может подчиняться параболическому закону [41 ], можно объяснить результаты опытов [74 ] без привлечения теории замедленной стадии поверхностной диффузии.  [c.89]

Из изложенных представлений о путях попадания водорода в электролитический металл видно, что чем больще адсорбция водорода на данном металле или способность водорода образовывать гидриды с данным металлом, тем больше должен наводороживаться металл в процессе электроосаждения. Для подтверждения этого заключения можно сопоставить способность металла к наводороживанию в процессе электроосаждения с перенапряжением выделения водорода на металле, поскольку, согласно современным теориям перенапряжения водорода [25], высокая энергия адсорбции ато-  [c.269]

По этой теории ответственной за перенапряжение водорода является стадия б катодного деполяризационного процесса  [c.256]

Изложенные выше две теории перенапрялсения водорода не являются взаимоисключающими. В зависимости от материала катода и от условий процесса механизм перенапряжения водорода может быть тем или иным. Есть основания полагать, что для металлов с высоким перенапряжением водорода (Hg, РЬ, Zn, d, Tl) ответственным за перенапряжение водорода является замедленный разряд, для металлов с низким перенапряжением водорода (Pt, Pd) — замедленная рекомбинация, а для некоторых металлов (например, Fe, Ni, Ti) — замедленность обеих этих стадий.  [c.259]


Некоторые исследователи (И. Тафель, Н. И. Кобозев и др.) придерживаются в вопросе водородного перенапряжения иных взглядов. Они считают, что замедленной стадией является не разряд ионов водорода, а процесс молизации.т. е. пятая стадия процесса. Эта теория водородного перенапряжения, получившая название рекомбинационной, достаточно обоснована для некоторых металлов, в отношении которых наблюдается параллелизм между величиной перенапряжения на них вод,орода и каталитической их активностью по отношению реакции рекомбинации водородных атомов.  [c.41]

Согласно второй точке зрения, металлы, пассивные по определению 1, покрыты хемосорбционной пленкой, например, кислородной. Такой слой вытесняет адсорбированные молекулы HjO и уменьшает скорость анодного растворения, затрудняя гидратацию ионов металла. Другими словами-, адсорбированный кислород снижает плотность тока обмена (повышает анодное перенапряжение), соответствующую суммарной реакции М -f гё. Даже доли монослоя на поверхности обладают пассивирующим действием [16, 17]. Отсюда следует предположение, что на начальных этапах пассивации пленка не является диффузионно-барьерным слоем. Эту вторую точку зрения называют адсорбционной теорией пассивности. Вне всякого сомнения, образованием диффузионно-барьерной пленки объясняется пассивность многих металлов, пассивных по определению 2. Визуально наблюдаемая пленка сульфата свинца на свинце, погруженном в H2SO4, или пленка фторида железа на стали в растворе HF являются примерами защитных пленок, эффективно изолирующих металл от среды. Но на металлах, подчиняющихся определению 1, основанному на анодной поляризации, пленки обычно невидимы, а иногда настолько тонки (например, на хроме или нержавеющей стали), что не обнаруживаются методом дифракции быстрых электронов . Природа пассивности металлов и сплавов этой группы служит предметом споров и дискуссий вот уже 125 лет. Представление, что причиной пассивности всегда является пленка продуктов реакции, основано на результатах опытов по отделению и исследованию тонких оксидных пленок с пассивного железа путем его обработки в водном растворе KI + I2 или в ме-танольных растворах иода [18, 19]. Анализ электроно рамм пле-  [c.80]

Согласно адсорбционной теории, критический потенциал объясняют с точки зрения конкуренции адсорбции С1" и кислорода на пассивной пленке [32, 37]. Металл имеет большее сродство к кислороду, чем к ионам С1 , но если значение потенциала повышается, концентрация С1 возрастает, так что в конце концов ионы С1 могут заместить адсорбированный кислород. Наблюдаемый индукционный период — это время, которое требуется для успешной конкурирующей адсорбции на благоприятных участках поверхности металла, а также время проникновения С1" в пассивную пленку. Как было показано выше, в отличие от кислорода, адсорбция ионов С1" снижает анодное перенапряжение для растворения металла, чем объясняется более высокая скорость коррозии на участках, где произошло замещение. Другие анионы (например, NO3 или SO ), не разрушающие пассивную пленку и не вызывающие питттинг, конкурируют с С1" за места на пассивной поверхности. В связи с этим необходимо сдвигать потенциал до еще более высоких значений, чтобы увеличить концен-  [c.87]

Согласно А. Н. Фрумкину, точная теория водородного перенапряжения должна исходить из реальной структуры двойного слоя на границе электрод—раствор. Учет этой структуры предполагает, прежде всего, установление различия между полным падением потенциала на межфазной границе и той его величиной, какая приходится на гельмгольцев-скую часть двойного слоя. Как это следует из рис. 4, падение потенциала в плотной гельмгольцевской части двойного слоя равно фг=ф— j)i. Поскольку Н-ионы вступают в электрохимическую реакцию, будучи. на расстоянии ионного радиуса от поверхности электрода, изменение энергии активации этого лроцесса определяется не полным падением потенциала, т. е. величиной фр, а значением, равным (ф— l3i) F. В соответствии с этим, для энергии активации разряда справедливым станет выражение  [c.77]

Исходя из представлений кинетической теории прочности, величину у считают показателем того, что на межатомные связи действуют не средние ирилол<енные напряжения а, а существенно (примерно в 100 раз) большие локальные перенапряжения, возникающие на неоднородностях структуры, причем такими неоднородностями могут быть скопления дислокаций на границах блоков (областей, относительно свободных от дислокаций, разделенных границами с высокой илотностью дислокаций).  [c.26]

Это обстоятельство позволяет полагать, что положительное влияние никеля и других легирующих веществ с малым перенапряжением водорода на повышение коррозионной стойкости конструкционных материалов может быть вполне объяснено на основе теории эффективных катодных присадок, разработанной Н. Д. Тома-шовым [111,202]. Поданным К. Видема [111,157] смещение потенциала алюминия от стационарного значения в положительную сторону вызывает увеличение скорости коррозии металла. Это говорит о том, что при температуре 200° С в отличие от комнатных температур, стационарный потенциал алюминия соответствует активной области. При введении в.алюминий легирующих компонентов с малым перенапряжением реакции разряда ионов водорода и ионизации кислорода, скорость катодного процесса увеличивается, что приводит к смещению стационарного потенциала металла в положительную сторону. При этом достигаются значения потенциала, соответствующие области пассивации, а скорость коррозии алюминия значительно снижается. Аналогичного эффекта можно добиться, поляризуя металл анодно. Действительно, анодная поляризация улучшает коррозионную стойкость алюминия в дистиллированной воде при температуре 325° С, а катодная поляризация в этом случае увеличивает скорость коррозии [111,193]. На основании изложенного можно полагать, что те легирующие компоненты с введением которых скорость коррозии алюминия при низких температурах (медь, никель, железо и др.) увеличивалась, при высоких температурах должны способствовать увеличению коррозионной стойкости металла. Приведенные рассуждения подкрепляются следующими экспериментальными данными. Ж- Е. ДрейлииВ. Е. Разер [111,193] измеряли стационарный потенциал алюминиевых сплавов в дистиллированной воде при температуре 200° С. Электродом сравнения служил образец из нержавеющей стали. Стационарный потенциал алюминиевого сплава с концентрацией 5,7% никеля оказался на 0,16 б положительнее, чем стационарный потенциал алюминиевого сплава 1100. При катодной поляризации с плотностью тока Ъмш1см-потенциал сплава 11(Ю смещался в отрицательную сторону на 1,2б, в то время как смещение потенциала сплавов, легированных 11,7% кремния, составляло 0,34 б, а сплавов, легированных 5,7% никеля, 0,12 б, что является косвенным показателем того, что на двух последних сплавах скорость катодного процесса больше, чем на алюминиевом сплаве 1100. С точки зрения теории эффективных катодных присадок, легирование платиной и медью должно оказывать положительное действие на коррозионную стойкость алюминия. В самом деле, с введением в алюминий 2% платины или меди коррозионная стойкость последнего в дистиллированной воде при 315° С значительно увеличивается [111, 193]. С этих же позиций легирование свинцом, оловом, висмутом и кадмием не должно улучшать коррозионной стойкости алюминия, что и подтверждается экспериментальной проверкой [111,193]. Как установлено К. М. Карлсеном [111,173],  [c.198]


Экспериментальные данные показали, что в области потенциалов, в которой возможна адсорбция поверхностно-активных веществ на поверхности ртути, действительно наблюдается изменение перенапряжения выделения водорода. Сопоставление значений изменения перенапряжения в результате введения добавок с величиной адсорбционного потенциала ( 1) показало, что имеет место полуколичественное совпадение теории с результатами измерений.. Это обстоятельство объясняется частичной десорбцией вещества с поверхности электрода при ог ределенных значениях потенциалов. В дальнейшем было показано (55), что наибольший тормозящий эффект вызывают добавки катионного характера (тетрабутиламмоний). Молекулярные же добавки действуют слабее в резуль1ате того, что молекула в этом случае не создает вокруг себя поля, а только экранирует ту часть поверхности катода, которую сама занимает.  [c.39]

Таким образом, общая картина представляется следующей. В случае тонких образцов перенапряжение небольшое, так как происходит релаксация напряжений по толщине образцов. Существуют промежуточные толщины, при которых при общей текучести возникает некоторая трехосность, при этом максимальные напряжения не так велики, как в толстых образцах. Измерение нагрузок, вызывающих общую текучесть, и сравнение их со значениями, предсказанными теорией поля линий скольжения при плоской деформации, показывает, что в толстых образцах как до, так и после наступления общей текучести существует состояние плоской деформации (см. гл. VI, раздел 3). Критические значения разрушающей нагрузки и пластичности при температуре (см. рис. 94) обычно связывают с релаксацией напряжений, вызванной скорее текучестью полного сечения образца, чем текучестью по толщине. Это подтверждается влиянием глубины надреза на характеристики текучести и разрушения.  [c.175]

На рис. 7 показана зависимость перенапряжения водорода на ртутном электродев растворе 0,001 Л/НС1 от концентрации КС1. Из диаграммы видно, что увеличение концентрации посторонней соли с одновалентным катионом в 10 раз приводит к росту перенапряжения на 55—56 мв. Еще больший эффект дают нейтральные соли с поливалентными катионами добавка 10" г-экв л хлористого тантала к 0,001 N раствору НС1 вызывает увеличение перенапряжения на 120 мв. Аналогичный эффект оказывают и органические катионы. Как удалось показать в согласии с теорией, изменение логарифма скорости разряда ионов водорода пропорционально логарифму активности поверхностно-активных ионов (рис. 8).  [c.21]

Для того чтобы понять рассмотренные выше закономерностиЪо влиянию состава электролита на водородное перенапряжение, а также другие экспериментальные наблюденные факты, необходимо учесть и специфическое строение двойного слоя, на которое впервые указал Фрумкин, разработавший теорию замедленного разряда в современном ее понимании (24). Дело в том, что,, используя теорию замедленного разряда в ее первоначальном виде для вывода основных кинетических уравнений реакции разряда ионов водорода, не учитывали специфические особенности электрохимических реакций. На реакцию, протекаюш,ую на границе раздела двух фаз металл — электролит в условиях, когда на электроде имеется определенный заряд,, оказывает большое влияние электростатическое взаимодействие между этим зарядом и ионами. Прямым следствием указанного взаимодействия является изменение концентрации реагирующих частиц на поверхности металла, а следовательно, и изменение скорости самой электрохимической реакции. Силы электростатического взаимодействия между электродом и ионами, в свою очередь, зависят от плотности заряда, т. е. потенциала электрода и строения двойного слоя.  [c.28]

В соответствии с теорией находятся и экспериментальные данные [57]. Органические катионы, способствующие возникновению положительного адсорбционного скачка потенциала, должны по теории уменьшать скорость разряда ионов водорода и повышать перенапряжение, что а самом деле и наблюдается (рис. 4,2). При введении в 1 н. НС1 тетрабутиламмониевой соли потенциал электрода и скорость реакции линейно изменяются с логарифмом колцентрации соли. При этом интересно отметить, что с увеличением числа углеродных атомов в алкильных группах уменьшается концентрация соли, необходимая для достижения эффекта, а сам эффект получается большим  [c.115]

Ингибиторы анионного типа, способствующие возникновению отрицательного адсорбционного скачка потенциала, должны в соответствии с теорией уменьшать перенапряжение водорода и увеличивать коррозию, если только они не изменяют сильно кинети-  [c.115]

Одновременное влияние ингибиторов кислотной коррозии на кинетику обеих электрохимических реакций приводит к тому, что стационарные потенциалы металлов изменяются незначительно. Сместить потенциал металла к значениям, при которых становится возможным формирование пассивирующего окисла, органические ингибиторы в кислотах сами по себе не в состоянии. Преимущественно их действие заключается во влиянии на кинетику катодной реакции разряда ионов гидроксония. Прл этом, как было показано в работе [59], как катионоактивные, так и анионоактивные добавки увеличивают перенапряжение водорода на железе, платине и меди. Это, на первый взгляд, противоречит тем теоретическим воззрениям на природу ф1-нотенциала, которые были выше изложены. Согласно теории, катионоактивные добавки должны повышать перенапряжение водорода, а анионоактивные — его понижать.  [c.118]


Смотреть страницы где упоминается термин Теория перенапряжения : [c.50]    [c.51]    [c.7]    [c.16]    [c.81]    [c.179]   
Смотреть главы в:

Ингибиторы коррозии металлов  -> Теория перенапряжения



ПОИСК



Перенапряжение



© 2025 Mash-xxl.info Реклама на сайте