Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термодинамика неравновесная

Уравнение баланса энтропии в термодинамике неравновесных процессов занимает одно из центральных мест. Оно предполагает, что энтропия элементарного объема S - функция состояния этого объема и для нее применимы уравнения классической термодинамики [2]. Обычно уравнение баланса энтропии записывают в виде  [c.17]

Основными уравнениями термодинамики неравновесных процессов являются [7]  [c.18]


Локальное равновесие и основное уравнение термодинамики неравновесных процессов  [c.7]

Для определения с помощью основного уравнения (1.3) термодинамики неравновесной системы производства энтропии и изменения во времени всех других ее термодинамических функций к этому уравнению необходимо добавить уравнения баланса ряда величин (массы, внутренней энергии и др.), а также уравнения, связывающие потоки / этих величин с термодинамическими силами X,-. Найдем здесь уравнения баланса и законы сохранения различных величин.  [c.9]

УРАВНЕНИЕ ТЕРМОДИНАМИКИ НЕРАВНОВЕСНЫХ ПРОЦЕССОВ  [c.255]

Изложение неравновесной термодинамики составляет содержание специального курса, в рамках же курса классической термодинамики следует рассмотреть лишь элементы термодинамики неравновесных процессов.  [c.288]

Начало развития термодинамики неравновесных процессов было положено еще Томсоном (1854 г.) в его исследованиях термоэлектрических явлений. Однако основополагающий принцип, сделавший возможным феноменологический анализ неравновесных процессов, был высказан Онзагером (1931 г.).  [c.155]

Согласно общим феноменологическим соотношениям термодинамики неравновесных процессов каждый из потоков == + — / и / является линейной функцией обобщенных сил, т. е.  [c.358]

Среди неравновесных состояний тел могут быть состояния с отрицательной абсолютной температурой. Поскольку системы с отрицательными абсолютными температурами являются всегда неравновесными, рассмотрение этих систем целесообразно проводить в рамках термодинамики неравновесных процессов.  [c.639]

Принцип Онзагера является основополагающим в термодинамике неравновесных процессов (гл. 8). Доказательство соотношений Онзагера (7.207) основано на отмеченном выше предположении о том, что макроскопическим уравнениям вида (7.199),  [c.191]

Переход от термодинамики (правильнее от термостатики) равновесных состояний к термодинамике неравновесных процессов, несомненно, знаменует серьезный прогресс в развитии ряда областей науки. Этот процесс в значительной мере связан с работами голландских и бельгийских ученых, в том числе и с работами автора книги, перевод которой предлагается читателю.  [c.8]

Основное положение термодинамики неравновесных состояний, выраженное в виде системы линейных уравнений Онзагера =  [c.12]

Тогда основное соотношение термодинамики неравновесного состояния будет иметь вид  [c.16]

В отличие от термодинамики неравновесных процессов и электродинамики сплошных сред, К. ф. исходит из представления о молекулярном строении рассматриваемых сред, что позволяет вычислить из первых принципов кинетические коэффициенты, диэлектрич. и магн. проницаемости и др. характеристики сплошных сред.  [c.354]


Лит. см. при ст. Термодинамика неравновесных процессов И Кинетика физическая. Д. Н. Зубарев.  [c.320]

НЕРАВНОВЕСНОЕ СОСТОЯНИЕ — в термодинамике состояние системы, выведенной из состояния равновесия термодинамического, в статистич. физике — из состояния равновесия статистического одно из основных понятий термодинамики неравновесных процессов и статистич. теории неравновесных процессов кинетики физической).  [c.328]

ПЕРЕНОСА ЯВЛЕНИЯ — неравновесные процессы, в результате к-рых в физ. системе происходит пространственный перенос электрич. заряда, вещества, импульса, энергии, энтропии или к.-л. др. физ. величины. Общую феноменологич, теорию П. я., применимую к любой системе (газообразной, жидкой или твёрдой), даёт термодинамика неравновесных процессов. Более детально П. я. изучает кинетика физическая. П. я. в газах рассматриваются на основе кинетической теории газов с помощью кинетического уравнения Больцмана для ф-ции распределения молекул П. я. в мета.т-лах — на основе кинетич. ур-ния для электронов в металле перенос энергии в непроводящих кристаллах — с помощью кинетич. ур-ния для фононов кристаллич. решётки. Общая теория П. я. развивается в неравновесной статистич. механике на основе Лиувилля уравнения для ф-ции распределения всех частиц, из к-рых состоит система (см. Грина — Кубо формулы).  [c.572]

Незамкнутые системы рассматриваются в особом разделе термодинамики — термодинамика неравновесных систем = t onst 2 = = onst.  [c.251]

Кроме этих двух основных законов, важное, хотя и более ограниченное значение, имеют тепловая теорема третье начало термодинамики), определяющая чиатенное значение важнейшей термодинамической функции тела — энтропии — в состоянии равновесия при температуре абсолютного нуля, и условие взаимности, составляющее базу термодинамики неравновесных (необратимых) процессов.  [c.7]

В учебном пособии изложены основы термодинамической теории многокомпонентных гомогенных н гетерогенных систем и ее приложения к растворам неэлектролитов. Рассмотрена термодинамическая теория идеальных, бесконечно разбавленных и неидеальных растворов. Даны основы термодинамической теории фазовых равновесий, коллнгативных свойств растворов, термодинамической теории устойчивости. Описаны теория флуктуаций, влияние флуктуаций на свойства растворов и их взаимосвязь с необратимыми процессами. Рассмотрены элементы термодинамики неравновесных процессов.  [c.2]

Дальнейшее обобщение и развитие энергетических концепций стали возможны на основе фундаментальных законов термодинамики. Трибосистема с позиций термодинамики необратимых процессов, как отмечалось выше, при определенных условиях является открытой термодинамической системой, обменивающейся энергией и веществом с окружающей средой. Известно, что в термодинамике неравновесных систем в отличие от равновесной термодинамики изучают изменения состояний, протекаюи ,ие с конечными, отличными от нуля скоростями. Предмет исследования - переносы массы, энергии, вызванные различными факторами, называемыми силами. Причиной возникновения потока всегда являются различия в значениях термодинамических сил температуры, давления и концентрации или их функции, т.е. перепады, или градиенты. Поэтому поток теплоты в трибосистеме появляется, если возникает градиент температуры, а поток вещества есть следствие наличия градиента концентрации и т.д. Следовательно, термодинамические силы представляют собой градиенты, характеризующие удаленность трибосистемы от термодинамического равновесия. Суть применения законов классической термодинамики к неравновесным системам заключается в предположении о локальном равновесии внутри малых элементов областей системы. Представление о локальном равновесии позволяет изучать больп1ое число практически важных неравновесных систем, к которым с полным основанием можно отнести и трибосистемы. При этом все уравнения сохраняют свою ценность по отношению к малым областям, а значит, и общность описываемых ими закономерностей. Так, уравнение Гиббса, показываюилее зависимость внутренней энергии U от энтропии S, объема и химических потен-  [c.107]


Результаты исследований позволяют объяснить эффект безызнос-ности на основе законов неравновесной термодинамики и теории образования структур при неравновесных процессах. Согласно термодинамике неравновесных процессов новые структуры могут появляться в природе в тех случаях, ко1 да выполняются следующие четыре необходимых условия I) система является термодинамически открытой, т.е. может обмениваться веществом и (или) энергией со средой 2) динамические уравнения системы нелинейны 3) отклонение от равновесия превышает критическое значение 4) микроскопические процессы происходят коопе-рированно (согласованно) (59, 71] Названные условия могут быть реализованы в некоторых трибосистемах, которые при определенных условиях обладают свойствами открытых термодинамических систем, а микроскопические физико-химические процессы при трении происходят коопериропанно и ведут к возникновению и самоорганизации структур, связанных с производством отрицательной энтропии и увеличением упорядоченности системы. Установлено, что свойства открытой термодинамической системы и самоорганизация структур присуп и трибо-системам в условиях избирательного переноса при трении,  [c.142]

Предлагаемая вниманию читателей мшопрафия посвящена аналитической теории тепло- и массопереноса в неподвижных средах и дисперсных системах. Для того чтобы решения системы дифференциальных уравнений тепло- и массопереноса могли быть использованы в других процессах переноса, все они даны в критериальных соотношениях с использованием методов теории подобия (теория обобщенных переменных). Таким образом, монография по сути дела является аналитической теорией термодинамики неравновесных состояний. Поскольку Л итера1тура по термодинамике необратимых процессов крайне бедна, то пер1вая глава монографии посвящена основным сведениям из термодинамики явлений тепло- и массопереноса.  [c.4]

Эта функция может трактоваться как характеристика скорости дисси1паци свободной энергии юистемы В современной термодинамике неравновесных процессов величина и скорость ее изменения находят широкое применение.  [c.20]

ЛОКАЛЬНОЕ ТЕРМОДИНАМИЧЕСКОЕ РАВНОВЕСИЕ — одно из осн. понятий термодинамики неравновесных процессов и механики сплошных сред, равновесие в очень малых (элементарных) объёмах среды, содержащих всё же столь большое число частиц (молекул, атомов, ионов и др.), что состояние среды в этих физически бесконечно малых объёмах можно характеризовать темп-poii Т х), хим. потенциалами [Xf (x) и др. термоди-намич. параметрами, но не постоянными, как при пол-ном равновесии, а зависящими от пространств, координат X и времени. Ещё один параметр Л. т. р.— гидро-дипамич. скорость и(х) — характеризует скорость движения центра масс элемента среды. При Л. т. р. элементов среды состояние среды в целом неравновесно. Если малые элементы среды рассматривать приближённо как термодинамически равновесные подсистемы и учитывать обмен энергией, импульсом и веществом между ними на основе ур-ний баланса, то задачи термодинамики неравновесных процессов решаются методами термодинамики и механики. В состоянии Л. т. р. плотность энтропии на единицу массы является  [c.606]

НЕОБРАТИМЫЙ ПРОЦЕСС — физ. процесс, к-рый может самовроизвольно протекать только в одном определённом направлении. К Н. п. относятся диффузия, теплопроводность, вязкое течение, электропроводность и др. процессы, при к-рых происходит направленный пространственный перенос вещества, энергии, импульса или заряда. Релаксац, процессы и хим. реакции также являются Н. п. Все Н. п. неравновесные. Они изучаются с макроскопич. точки зрения в термодинамике неравновесных процессов, Классич. термодинамика устанавливает для них лишь неравенства, к-рые указывают их возможное направление. С микроскопия, точки зрения Н. п. изучаются в кинетике физической методами неравновесной статистик, механики. Систему, в к-рой произошли Н. П-, нельзя вернуть в исходное состояние без того, чтобы в окружающей среде не осталось к,-л. изменений. В замкнутых системах Н. п. всегда сопровождаются возрастанием энтропии, что является критерием Н. п. Согласно второму началу термодинамики, изменение энтропии б5 связано с переданным системе кол-вом теплоты 6Q при Н. п. неравенством 6Q < T6S, где Т — абс. темп-ра. Возрастание энтропии системы в результате Н. п. в единицу времени в единице объёма описывается локальным производством энтропии а. Для Н. и. всегда <т > 0. В открытых системах, к-рые могут обмениваться энергией или веществом с окружающей средой, при Н. п. энтропия системы, складывающаяся из полного производства её в системе и изменения из-за вытекания (или втекания) через поверхность системы, может оставаться постоянной или даже убывать. Однако во всех случаях производство энтропии в системе остаётся положительным.  [c.319]

В термодинамике Н. с. определяется зависящими от времени и пространств, координат термодинамич. параметрами [тел1п-рой Tiz,t), хим. потенциалами 1 [х,1) компонент, гидродинамич. скоростью о(х,1)], соответствующими состоянию квазиравновесия в малых объёмах системы. Для этих величин термодинамика неравновесных процессов позволяет получить ур-ния, определяющие перенос вещества, энергии, импульса, т. е. ур-ния диффузии, теплопроводности и ур-ния Навье — Стокса для вязкого течения жидкости.  [c.328]

НСАГЕРА ГИПОТЕЗА — состоит в том, что временная эволюция флуктуации данной физ, величины в равновесной термодинамич. системе происходит в среднем по тому же закону, что и макроскопич. изменение соответствующей переменной. Высказана Л. Онсагерои (L. Onsager) в 1931 и послужила ему основой для разработки термодинамики неравновесных процессов. Вывод Онсагера теоремы, о симметрии кинетич. коэффициентов опирается на эту гипотезу и симметрию ур-ний движения частиц относительно обращения времени.  [c.409]

НСАГЕРА TEOPEMA (принцип Онсагера) — одна из оси. теорем термодинамики неравновесных процессов, устанавливающая свойства симметрии кинетических коаффициентов. Доказана Л. Онсагерои в 1931. Кинетич. коэф. определяют как коэф, в линейных соотношениях между термодинамич. силами Ак и потоками  [c.409]


ОТКРЫТАЯ СИСТЕМА — тер.модинамич, система, к рая обменивается с окружающей средой веществом, энергией и импульсом. К наиб, важному типу О. с. относятся хим. системы, в к-ры.х непрерывно протекают хим. реакции (извне поступают реагирующие вещества и отводятся продукты реакций). Виол, системы (живые организмы) можно также рассматривать как открытые хим. системы. Такой подход позволяет исследовать процессы их жизнедеятельности и развития на основе термодинамики неравновесных процессов, физ. И хим. кинетики.  [c.488]

Возможность возрастания энтропии может быть обоснована методами статистич. механики, к-рая приводит к выражению для положительного локального производства энтропии, связанного с внутр. неравновесно-стью системы, что соответствует термодинамике неравновесных процессов. При этом для кинетических коэффициен пов получаются выражения, пропорц. пространственно-временным корреляц. ф-циям потоков энергии, импульса и вещества (Грина — Кубо формулы). Энтропия системы в неравновесном случае определяется через локально-равновесное распределение /лон ф-лой S = — Jfe <1п/лов)- Она соответствует максимуму информац. энтропии при условии, что средние локально-равновесные значения плотности энергии, импульса и числа частиц равны их средним значениям, причём эти средние вычислены с помощью ф-ции распределения, удовлетворяющей ур-нию Лиувилля (хотя /лок не удовлетворяет). Возрастание энтропии связано с отбором запаздывающих решений ур-ния Лиувилля. Опережающие решения должны быть отброшены, т. к. приводили бы к убыванию энтропии [6]. Отбор запаздывающего решения ур-ния Лиувилля осуществляется введением в него бесконечно малого члена, нарушающего его симметрию относительно обращения времени.  [c.530]

ПЕРЕКРЕСТНЫЕ ПРОЦЕССЫ — неравновесные тер-модинамич. процессы переноса, в к-рых потоки /ц Гк вызваны термодинамич. сипами Ац, соответственно, при I 7 к. В линейных соотношениях между термодинамич. силами и потоками (см. Термодинамика неравновесных процессов)  [c.559]


Смотреть страницы где упоминается термин Термодинамика неравновесная : [c.336]    [c.19]    [c.19]    [c.6]    [c.6]    [c.51]    [c.3]    [c.13]    [c.653]    [c.196]    [c.386]    [c.572]    [c.137]    [c.175]    [c.665]   
Современная термодинамика (2002) -- [ c.15 ]



ПОИСК



Введение в неравновесную термодинамику Глава тринадцатая Исходные положения неравновесной термодинамики Локальное равновесие и основное уравнение термодинамики неравновесных процессов

Второе начало термодинамики для неравновесных процессов. Основное уравнение и основное неравенство термодинамики

Глава пятнадцатая Основы нелинейной неравновесной термодинамики Универсальный критерий эволюции Гленсдорфа—ПригожиПространственные диссипативные структуры. Ячейки Бенара

Гроот. Термодинамика неравновесных процессов (Перевод В. Т. Хозяинова)

Исходные положения неравновесной термодинамики

К вопросу о статистическом обосновании неравновесной термодинамики (Перевод Е. Е. Тареевой)

Кинетическая теория и неравновесная термодинамика

Линейная неравновесная термодинамика Неравновесная термодинамика. Основные положения

Локальное равновесие и основное уравнение термодинамики неравновесных процессов

Молекулярно-кинетическая теория диффузии и теплопроводности Основные положения термодинамики неравновесных систем

Неравновесная термодинамика. Линейный режим

Неравновесная термодинамика. Принцип Онзагера

ОСНОВЫ НЕРАВНОВЕСНОЙ ТЕРМОДИНАМИКИ

Основные положения термодинамики неравновесных процессов

Особенности неравновесных процессов передачи энерВторой закон термодинамики

Принципы мозаичной неравновесной термодинамики

Пути развития термодинамики от равновесной к неравновесной нелинейной

Термодинамика

Термодинамика линейная неравновесная

Термодинамика неравновесная (необратимых процессов)

Флуктуации и симметрия кинетических коэффициентов неравновесной термодинамики

ЭЛЕМЕНТЫ КИНЕТИКИ И ТЕРМОДИНАМИКИ НЕРАВНОВЕСНЫХ ПРОЦЕССОВ

ЭЛЕМЕНТЫ НЕРАВНОВЕСНОЙ ТЕРМОДИНАМИКИ



© 2025 Mash-xxl.info Реклама на сайте