Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вариационный вывод основных уравнений

Изложены основы теории упругости после ознакомления с основополагающими понятиями приводятся анализ напряженного и деформированного состояния, вывод основных уравнений, плоская и температурная задачи, элементы теории пластин и оболочек. Особое внимание уделено численным методам решения прикладных задач теории упругости помимо достаточно распространенных вариационных и разностных методов подробно освещается сравнительно новый структурный метод, хорошо зарекомендовавший себя при исследовав НИИ объектов сложной формы. Для понимания затронутых вопросов достаточно знаний обычного курса математики технического вуза.  [c.40]


Вывод основного уравнения вариационным методом из энергетического соотношения  [c.598]

Это первая в мировой литературе монография по теории связанной термоупругости. Термоупругость — новая область механики, обобщающая в единое целое две независимые ранее дисциплины — теорию упругости и теорию теплопроводности. В книге дан вывод основных уравнений термоупругости, изложены методы их решения, а также сформулированы основные энергетические и вариационные теоремы. Приведен подробный анализ распространения гармонических и апериодических волн. В конце книги в качестве приложения помещен обзор новейших результатов, полученных в термоупругости после выхода в свет польского издания.  [c.4]

Вариационная теорема Рейсснера может найти применение при выводе дифференциальных уравнений теории мембран, плит и оболочек. Применение этой теоремы к выводу основных уравнений и условий для плит средней толщины читатель найдет в цитированных на стр. 132 работах Рейсснера.  [c.134]

Так как принцип возможной работы может быть принят в качестве основного для вариационного вывода исходных уравнений, из него можно получить важные экстремальные и соответственно минимальные принципы, из которых следуют другие  [c.89]

Этот метод вывода основного дифференциального уравнения вариационного исчисления, предложенный Эйлером, не совсем строг, так как он использует двойной предельный переход в не вполне допустимой форме. Прямой вывод Лагранжа, который мы изложим ниже, свободен от этого недостатка.  [c.76]

Вариационное исчисление и граничные условия. Задача об упругом стержне Во всех наших предыдущих рассуждениях мы интересовались в основном дифференциальными уравнениями, которые получались как решение задачи о стационарном значении заданного определенного интеграла. Вывод этих уравнений при помощи интегрирования по частям показывает, что вариация определенного интеграла состоит из двух частей из интеграла,распространенного на данный интервал, и граничного члена. Мы не рассматривали до сих пор этот член, так как задача решалась при граничных условиях, обращавших его в нуль. Однако имеются случаи, когда граничный член играет более активную роль. Ниже, при изучении работ Гамильтона по решению дифференциальных уравнений динамики при помощи уравнения в частных производных, мы увидим, что в математически более сложных вопросах механики этот ранее отброшенный член окажется существенным. Здесь, однако, мы хотим обсудить другой аспект вопроса о граничном члене, имеющий более непосредственный физический смысл.  [c.92]


Вопрос об определении места вариационных принципов механики в системе физических знаний заключается, конечно, в первую очередь в форме выражения этого принципа. Однако указанный вопрос не исчерпывается этой формой. Обычное толкование принципа наименьшего действия состоит в том, что его широкое применение в физике основано на удобной форме. Ряд авторов стоит на той точке зрения, что содержание принципа Гамильтона тождественно с содержанием основных уравнений динамики. Так, например, Кирхгоф говорит Принцип Гамильтона, д алам-беровы и лагранжевы дифференциальные уравнения поэтому совершенно равнозначны ). Такая точка зрения господствует в научной литературе XIX в. Тем не менее, отождествление содержания принципа Гамильтона и уравнений динамики представляет собой положение недостаточно обоснованное., Методологической основой этой концепции является непонимание соотношения между формой и содержанием вообще. Тот факт, что как в механике, так и вне ее принцип Гамильтона применяется в одной и той же форме, еще недостаточен для того, чтобы сделать вывод о том, что содержание этого принципа в том и другом случае одно и то же. Принцип Гамильтона выражает некоторое свойство неорганической природы, общее ряду форм движения, и постольку он применим к механическому движению как частному случаю.  [c.864]

В первой главе излагаются термодинамические основы термоупругости и выводятся основные соотношения и дифференциальные уравнения этой теории. Даны общие энергетические и вариационные теоремы, а также теорема взаимности с вытекающими из нее методами интегрирования уравнений.  [c.8]

Вариационными принципами теории упругости называются некоторые основные теоремы, выраженные в форме интегральных равенств, связывающих напряжения, деформации и перемещения во всем объеме тела, и основанные на свойствах работы упругих сил. Вариационные принципы представляют практический интерес в том смысле, что на них основаны методы, позволяющие находить эффективное решение задач во многих случаях, когда классический путь интегрирования основных уравнений теории упругости представляет не преодолимые пока затруднения. В этом параграфе мы займемся одним интегральным преобразованием, которое позволит упростить дальнейшие выводы.  [c.324]

В зависимости от того, какая именно функция (г ) или Ф) принимается за основную, можно использовать методы, вытекающие из вариационной формулы Кастилиано или из вариационного уравнения Лагранжа (см. гл. 1, И). Укажем без вывода основные общие результаты ).  [c.328]

Дифференциальные уравнения, записанные относительно двух компонент перемещений, заменяются разностными уравнениями, которые выводятся при помощи вариационного метода, основанного на минимизации полной потенциальной энергии. При этом граничные условия в напряжениях, обычно затрудняющие решение задачи, становятся естественными, они входят в выражение для энергии и автоматически удовлетворяются при ее минимизации. Полная потенциальная энергия тела равна сумме энергий для всех ячеек сеточной области. При этом можно считать, что все функции и их производные остаются постоянными в каждой ячейке. Сетка может быть как равномерной (регулярной), так и неравномерной. Конечно-разностные функции для ячеек имеют, кроме того, весовые коэффициенты для учета неполных ячеек, примыкающих к наклонной границе. Получающаяся система алгебраических уравнений относительно узловых значений перемещений оказывается симметричной и положительно определенной и имеет ленточную структуру. В работе [8] дополнительно к основной, сетке строится вспомогательная и перемещения определяются в точках пересечения этих сеток. В результате этого нормальные деформации и напряжения вычисляются в центре ячеек основной сетки только через центральные разности.  [c.55]

Условия (15.9) отражают тот факт, что начальные условия (15.7) не играют главной роли в семействе вариационных принципов Гамильтона. Можно сказать, что основное значение имеет вывод уравнений движения и граничных условий в момент t, начальные условии имеют второстепенное значение.  [c.373]


Примечание 2. Далее в работе [25] выполняется деление последнего равенства на dfl = dt/ г (в обозначениях [25]), в результате которого в подынтегральное выражение вводится множитель 7т q,t,p). Затем делается вывод о том, что выражение, стоящее под знаком интеграла, должно быть полным дифференциалом при произвольном множителе тг . Однако функция, которую мы ввели и обозначили через ф (вместо тг), в каждом определённом преобразовании не может быть произвольной (в первую очередь знакопеременной), как этого требует основная лемма вариационного исчисления (в частности, ф должна обеспечивать монотонное изменение независимой переменной). Далее в работе [25] вариации 5qi,5pi,5t рассматриваются как независимые, т. е. игнорируется существование условного уравнения dt — тd l = О, налагающего ограничение на вариации переменных. Доказательство заканчивается утверждением о том, что функции Qi, выражаются через функцию Н в интегральном инварианте (4) согласно равенствам  [c.228]

Выше мы показали возможность вывода основных уравнени й теории пластин исходя из вариационного принципа Лагранжа. Однако главное значение вариационных принципов в расчете пластин состоит в том, что с их помощью можно получить приближенные решения сложных задач, не прибегая к составлению и решению дифференциальных уравнений в частных производных. Некоторые примеры расчетов с использованием прямых методов вариационного исчисления рассмотрены в 8. Точное аналитическое решение общих уравнений изгиба пластины может быть выполнено лишь в частных случаях — для прямоугольных и круглых пластин постоянной толщины, а также для пластин,  [c.67]

Производных Фреше, теорему о неявной функции и другие теоремы из функционального анализа, многие из которых приведены с полными доказательствами. Во второй главе дан вывод основных уравнений и граничных условий статической теории упругости. В последующих главах этой части обсуждается структура системы уравнений теории упругости, её зависимость от свойств упругого материала. Часть В под названием Математические методы трёхмерной теории упругости посвящена в основном доказательству теорем существования решений краевых задач нелинейной системы теории упругости. В этой части две главы. В первой даны доказательства теорем существования, основанные на применении теоремы о неявной функции, получены оценки отклонения решения от соответствующего решения линейной задачи, доказана сходимость метода приращений. Во второй главе теоремы существования установлены вариационным методом, на основе минимизации энергии, приведены доказательства замечательных теорем Болла о существовании решений.  [c.6]

Теорема 22.1 дает строгое обоснование смешанпого вариационного принципа Алумяэ, который нами использовался при выводе основных уравнений (7.65), (7.77).  [c.192]

Первые 6 лекций Якоби посвящает изложению основных принципов механики принципу сохранения движения центра тяжести системы, принципу живой силы, принципу площадей и принципу наименьшего действия. С 10-ой лекции Якоби развивает теорию множителя" систем обыкновенных дифференциальных уравнений, являющуюся обобщением теории эйлеров-ского интегрирующего множителя. Якоби показывает каким образом можно в целом ряде случаев построить с помощью последнего множителя" всю систему п независимых интегралов. Изложив подробно теорию этого множителя, Якоби затем применяет ее к решению ряда механических задач. С 19-ой лекции Якоби, исходя из вариационного принципа Гамильтона, излагает тот метод интегрирования уравнения с частными производными первого порядка, который известен под названием метода Якоби-Гамильтона". В следующих лекциях этот метод примендется к ряду задач, взятых главным образом из области небесной механики. В 26 лекции Якоби излагает теорию эллиптических координат и показывает их приложение к разысканию геодезических линий эллипсоида, к задаче построения карт, к выводу основной теоремы Абеля и проч. Наконец, последние лекции Якоби посвящены изложению его классических методов интегрирования нелинейных уравнений в частных производных первого порядка.  [c.4]

Теперь продолжим вывод вариационного принципа. Предположим, что температурное поле Т должно удовлетворять граничному условию на стенке Г = (гк), но не будет удовлетворять входному граничному условию и основному уравнению. Сначала определим функционал от температуры, удовлетворяющпй граничному условию на стенке  [c.328]

Виртуальное варьирование предполагает использование виртуальных перемещений, определяющих свойства реакций связей. Таким путём применение операций вариационного исчисления при варьировании функционала действие увязывается с физическим смыслом учитываемых ограничений. Вспомогательный характер имеет заметка 7 о дифференцировании функции при неявной зависимости от переменных и о вариационной производной. Способы синхронного, асинхронного варьирования и способ, применённый Гельмгольцем (и его расширение), а также варьирование в скользящих режимах реализации связей рассматриваются в заметке 8. В заметке 9 обсуждается составление уравнений для виртуальных вариаций неголономной связи связи, представляющей огибающую связи, зависящей от двух независимых параметров неравенства для виртуальных перемещений при неудерживающих связях. В одном из пунктов заметки 10 полностью содержится (с нашим примечанием) двухстраничная работа М. В. Остроградского Заметка о равновесии упругой нити , написанная им по поводу одной известной классической ошибки Лагранжа в других пунктах рассматривается использование неопределённых множителей при представлении реакций связей. Некоторое ограничение множества виртуальных перемещений позволило сформулировать обобщение принципа наименьшей кривизны Герца для систем с нестационарными связями (заметка 11). Несвободное движение систем с параметрическими связями (заметка 12) изучается на основе принципа освобождаемости по Четаеву, сформулированному им в задаче о вынужденных движениях составлено общее уравнение несвободных динамических систем, основные уравнения немеханической части которых имеют первый порядок (в отличие от механической части, основные уравнения которой второго порядка), предложено общее уравнение динамики систем со случайными параметрами. Центральное вириальное равенство (заметка 13) выводится с помощью центрального уравнения Лагранжа.  [c.13]


Термоупругость является новой областью науки. Она начала зазвиваться в последнем десятилетии, хотя уместно отметить, что сопряжение поля деформации и поля температуры постулировал еще Дюамель, а обобщенное уравнение теплопроводности было дано Фойгтом и Джеффрисом Интенсивные исследования в области термоупругости связаны с выходом работы Био в которой был дан обоснованный с использованием термодинамики необратимых процессов вывод основных соотношений и уравнений, а также сформулированы вариационные теоремы термоупругости.  [c.10]

Во второй части излагаются кинематика и теория деформаций сплошной среды в эйлеровом и лагранжевом описаниях, формулируются основные законы динамики и термодинамики, выводятся дифференциальные уравнения движения среды, обсуждаются возможные типы начальных и граничных условий. Рассмотрены вариационные принципы в механике жидкости и газа и в теории упругости, методы теории размерностей и подобия. Теоретический материал сопровождается под-боркой задач с решениями в конце каждого параграфа. Приведены также сведения об ученых, создававших механику сплошной среды.  [c.3]

Рещение лагранжевых уравнений движения требует знакомства с некоторыми основными выводами вариационного исчисления поэтому сейчас мц не будем эаиимагься этим вопросом.  [c.155]

В мемуаре О дифференциальных уравнениях, относящихся к задаче изопериметров , а затем в письме к Лиосковскому профессору Н. Д. Брашману, напечатанном ь 1866 г., Остроградский высказал сомнение в справедливости принципа наименьшего действия Лагранжа. Основные возражения Остроградского сводятся к следующему. Для Эйлера и Лагранжа принцип наименьшего действия и простейшая задача вариационного исчисления представляли собой одну и ту же математическую проблему. Остроградский же замечает, что в принципе наименьшего действия переменные связаны законом живых сил и не являются поэтому независимыми, в отличие от переменных обыкновенной вариационной задачи. Отсюда следует также, что вариации переменных подчинены некоторому условию и не могут быть совершенно произвольными. Поэтому Остроградский считает формулировку принципа у Лагранжа и его выводы ошибочными и дает собственную формулировку в случае консервативной системы действительная траектория движения между двумя точками обладает тем свойством, что преобразование уравнений движения приводит к условию  [c.218]

При выводе уравнения (XIV.50) использованы дифференциальные уравнения движения, уравнение неразрывности, связи между скоростями деформаций и скоростями перемещений, начальные условия, кинематические и динамические граничные условия, включая условия трения, а также уравнения состояния. Методами вариационного исчисления можно показать, что из уравнения (XIV.50) следует краевая задача теории пластичности. Действительно, осуществим варьирование в уравнении (XIV.50), учитывая все ограничения, накладываемые на вариации, и приведем его к независимым вариациям. После этого на основании основной леммы вариационного исчисления можно получить все уравнения и условия, перечисленные выше. Таким образом, решение краевой задачи в дифференциальной форме эквивалентно исследованию на стационарное состояние функционала I, заклю ченногов фигурные скобки в (XIV.50).  [c.315]

Статья начинается по существу с гл. 2. где выводятся уравнения движения. Мы старались дать строгое и полное исследование исходных предположений, основываясь на концепции движения как непрерывного точечного преобразования пространства в себя. В заключительной части этой главы рассматриваются вопросы, связанные с преобразованием координат и вариационными принципами механики жидкости. Содержание гл. 3 не выходит в основном за рамки общепринятых учебников, однако, выпустив ее, мы нарущили бы единство изложения. Кроме того, в этой главе мы впервые знакомимся со многими идеями, играющими важную роль в дальнейщем, при изучении более сложных вопросов. В гл. 4 мы вновь возвращаемся к исследованию исходных предположений и кратко излагаем термодинамику движения жидкости, включая систему постулатов соответствующих разделов классической термодинамики. Представления, развитые в этом разделе, могут служить моделью при изучении многокомпонентных гидродинамических систем.  [c.6]

Математическая теория упругости как наука сложилась в первой половине XIX века в основном благодаря трудам французских инженеров и ученых. Впервые уравнения равновесия и колебаний упругих твердых тел в предположепии дискретного молекулярного строения тела были получены Навье. Пользуясь вариационным исчислением, он выводит не только дифферен-  [c.10]

В настоящей главе основные формы разрещающих уравнений получаются с помощью вариационных принципов. Выводятся формулы, позволяющие по известным узловым усилиям находить узловые перемещения. Эта формулы являются аналогом известных в строительной механике стержневых систем формул Максвелла—Мора.  [c.95]


Смотреть страницы где упоминается термин Вариационный вывод основных уравнений : [c.600]    [c.9]    [c.669]    [c.359]   
Смотреть главы в:

Статика упругих тонкостенных стержней  -> Вариационный вывод основных уравнений



ПОИСК



Вывод

Вывод основных уравнений

Вывод уравнений

Вывод-вывод

Основные выводы

Ряд вариационный

Уравнение основное

Уравнения основные



© 2025 Mash-xxl.info Реклама на сайте