Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Приближенные уравнения движения Стокса

Приближенные уравнения движения Стокса  [c.240]

К сожалению, из-за сложности уравнения Навье-Стокса для движения вязкой жидкости даже в случае постоянных р, V и х расчет теплообмена сопряжен со значительными математическими трудностями. Поэтому часто прибегают к приближению пограничного слоя, заключающемуся, как это уже отмечалось ранее, в том, что в качестве исходных уравнений берут уравнения движения жидкости и переноса теплоты в пограничном слое, которые в стационарном случае имеют вид  [c.439]


Рассмотренные выше задачи о ламинарных установившихся течениях решались точными или приближенными аналитическими методами. Путем надлежащего использования граничных условий Б этих задачах удавалось упростить уравнения движения и привести их к интегрируемому виду. Существует немало других задач, решения которых получены тем же путем и находят важные технические приложения. Однако современное развитие инженерной практики требует решения и более сложных задач, в которых приходится учитывать все члены уравнений Навье—Стокса, что не позволяет их решить в квадратурах. Широкие возможности открывает использование ЭВМ и применение численных методов решения. Последние основаны на замене (аппроксимации) дифференциальных уравнений уравнениями в конечных разностях, которые решаются на ЭВМ как система алгебраических уравнений. Разработаны и успешно применены к различным гидродинамическим задачам несколько численных методов, причем в некоторых из них используются не только эйлеровы, но и лагранжевы переменные.  [c.318]

Рассматриваемый тип движения газовых пузырьков в жидкости соответствует области 2 рис. 5.6. В этой области строгий анализ требует, вообще говоря, решения полного уравнения Навье—Стокса (1.4г) или (1.4д). Однако интерпретация границы сферического пузырька как свободной поверхности жидкости с нулевым касательным напряжением на ней позволяет использовать следующий приближенный подход. При обтекании газового пузырька чистой (без поверхностно-активных веществ) жидкостью, как уже отмечалось, практически отсутствует зона отрыва потока от поверхности раздела фаз (в отличие от обтекания твердой сферы, которое при Re > 1 сопровождается отрывом потока практически сразу за ее миделе-вым сечением). В силу этого вихревое движение локализуется в весьма тонком пограничном слое на поверхности обтекаемого пузырька и в следе за пузырьком. Во всей остальной области течение может рассматриваться как потенциальное. Толщина пограничного слоя 5 на границе пузырька радиуса а по порядку величины должна  [c.216]

Известны приближенные решения уравнений Навье —Стокса для так называемого ползущего движения [83J, первого предельного случая очень малой скорости (в более общей - постановке малых чисел Re), когда силами инерции пренебрегают и учитывают только силы трения, так как силы инерции пропорциональны квадрату скорости, а силы трения — первой степени. В уравнениях Навье — Стокса отбрасывают члены, учитывающие силы инерции, при этом они значительно упрощаются, например уравнение (2.29)  [c.103]


Рассмотрим обтекание плоской бесконечно тонкой пластинки несжимаемой вязкой жидкостью. Пусть вдали перед пластинкой жидкость движется поступательно с постоянной скоростью Ид. Пластинка имеет бесконечную длину и расположена вдоль по потоку параллельно скорости Задача плоская движение установившееся жидкость занимает всю плоскость вне пластинки. Эта задача о движении вязкой жидкости является самой простой, но, несмотря на это, она не поддаётся точному решению с помощью уравнений Навье —Стокса ввиду больших математических трудностей. Мы разберём эту задачу с помощью уравнений Прандтля, которые получаются из общих уравнений движений вязкой жидкости с помощью некоторых приближений ).  [c.122]

В отличие от уравнений Навье — Стокса система уравнений (22.8) и (22.3) поддается решению в ряде важных случаев. При приближенных расчетах эта система применяется не только для исследования движения в пограничном слое на плоской пластинке, но и для исследования движения в пограничном слое на криволинейных профилях. В общем случае принимается, что координата х представляет собой длину дуги вдоль профиля, а координата у измеряется по нормали к профилю. Зависимость и х, I), задающая скорость на внешней границе пограничного слоя, определяется из решения соответствующей задачи теории идеальной жидкости. Предложены уточнения уравнений (22.8) для учета криволинейности обтекаемых профилей и для  [c.256]

Приближение Стокса уравнений движения вязкой жидкости 229  [c.565]

Задачи вязкого многофазного течения (жидкости, газы, твердые частицы). Этот класс содержит задачи движения запыленных потоков, а также движения потоков ири наличии кипения и конденсации. Для решения задач данного класса используются уравнения в приближении пограничного слоя или полные уравнения Навье — Стокса. Введение большого числа поверхностей разрыва фаз требует добавления к численным методам, разработанным для сплошной среды, статистических методов определения параметров потоков [35]. Численные решения задач движения вязкой многофазной жидкости получены только на основе уравнений пограничного слоя с введением влияния второй фазы на  [c.187]

Если в первом приближении пренебречь изменением физических характеристик потока в зависимости от температуры, то в систему дифференциальных уравнений, которая определяет задачу для области за сечением 2—2, войдут уравнения движения Навье—Стокса, уравнение неразрывности и уравнение теплопроводности.  [c.274]

В предельных случаях малых чисел Re уравнение Навье — Стокса для несжимаемой жидкости (1.23) упрощается, ибо в нем можно опустить инерционный член d U /dT. В таком приближении решение задачи о движении сферической капли в вязкой жидкости дает для силы сопротивления  [c.90]

Введение в уравнение (15.21) величины модуля скорости позволяет рассматривать возможность изменения направления потока во времени без изменения индексов величин давления. Применение для расчета неустановившегося движения жидкости уравнения (15.21) является первым приближением, так как значения коэффициентов а, (3 и для неустановившегося движения неизвестны. По существу, надо ставить задачу на базе уравнений Навье-Стокса для ламинарного режима течения и уравнений Рейнольдса для турбулентного режима течения.  [c.146]

Понятия ползущего движения и течения в пограничном слое, данные выше, позволяют преобразовать уравнения движения таким образом, чтобы, приняв во внимание физические особенности этих видов течения, приближенно описать каждый из них. Такие упрощения облегчают получение аналитических решений важных задач в обоих случаях. Ограничиваясь рассмотрением изотермических движений несжимаемой жидкости, мы будем исходить из уравнений Навье — Стокса (6-28) и введем в них упрощения, -которые будут описаны ниже.  [c.177]


В двух статьях, опубликованных в 1845 и 1851 гг., Стокс впервые дал известное решение задачи о ползущем движении. В последней из них [Л. 1] он использовал приближенное уравнение (8-2), чтобы решить задачу об очень медленном обтекании неподвижного шара потоком жидкости И обращенную задачу о падении твердого шара в безграничной очень вязкой жидкости. Наряду с уравнением (8-2) полученное решение удовлетворяет уравнению неразрывности и обычному граничному условию относительная скорость на поверхности сферы обращается в нуль. Математические детали этой теории выходят за рамки настоящей книги (Л. 2, 5 ], однако основные ее результаты мы приведем. Они заключаются в следующем.  [c.187]

Уравнение (9.4.11) для ноля скоростей совместно с уравнением (9.4.8) для давления и выражением (9.4.15) для корреляций случайных сил лежат в основе статистической теории турбулентного движения в несжимаемой жидкости. Хотя уравнение (9.4.11) на первый взгляд кажется не сложнее, чем гидродинамическое уравнение Навье-Стокса, тот факт, что теперь v(r, ) — случайная переменная сильно усложняет задачу. Дело в том, что для поля скоростей v, усредненного по некоторому промежутку времени или по реализациям, не удается получить замкнутого уравнения. Действительно, после усреднения (9.4.11) (скажем, по реализациям) в уравнение для v войдут корреляционные функции пульсаций Jv = v —v типа ( 6v 6vp). В уравнения для этих функций войдут корреляционные функции более высоких порядков и т. д. Мы получим так называемую цепочку уравнений Рейнольдса проблему замыкания которой до сих пор не удается решить. Дело также осложняется тем, что в задаче фактически нет малого параметра, поэтому не удается воспользоваться теорией возмущений. Как известно, в таких случаях необходим метод, позволяющий сравнительно просто получать общие соотношения и строить самосогласованные приближения, не опирающиеся на теорию возмущений. С этой точки зрения формулировка теории турбулентности на основе стохастического уравнения (9.4.11), при всей ее внешней простоте, мало что дает. Гораздо удобнее перейти к описанию турбулентного движения с помощью функционала распределения для поля скоростей и вывести для него уравнение Фоккера-Планка, которое в компактной форме содержит информацию о всей цепочке уравнений Рейнольдса.  [c.258]

Известны приближенные решения уравнений Навье—Стокса для так называемого ползущего движения [88], первого предельного случая очень малой скорости (в более общей постановке малых чисел Re), когда силами инерции пренебрегают и учитывают только силы трения, так как силы инерции пропорциональны квадрату скорости,  [c.117]

Ввиду трудностей, описанных в 20, основное внимание математиков было сосредоточено на уравнениях Навье — Стокса для несжимаемых вязких жидкостей в предположении, что величины и р можно считать примерно постоянными. Большинство специалистов считает, что теоретическая гидродинамика, основывающаяся на уравнениях Навье — Стокса, дает довольно точное приближение динамики реальных жидкостей, если число Маха М настолько мало, что можно пренебречь эффектами сжимаемости. Они уверены в том, что (перефразируя Лагранжа) если бы уравнения Навье — Стокса были интегрируемы, то при малых числах Маха можно было бы полностью определить все движения жидкости (ср. 1). Для того чтобы исследовать, насколько обоснована такая уверенность, мы преобразуем сначала эти уравнения к более удобному виду.  [c.50]

Очень медленное движение — решение Стокса для падающего шара. Приближенные решения уравнений Навье— Стокса могут быть грубо разделены на четыре категории. К первой относятся те случаи, когда геометрия границ позволяет использовать существующие точные решения для конкретных случаев. Во второй категории движение жидкости происходит так медленно, что в уравнении движения можно пренебречь инерционными слагаемыми. Если движение не настолько медленно, чтобы это было справедливо, то иногда удается линеаризировать уравнения Навье—Стикса и таким образом получить решение. Такие решения образуют третью категорию. В некоторых задачах инерционными слагаемыми пренебречь нельзя, не внеся значительной ошибки, но одно из слагаемых, включающих вязкость, мало по сравнению с другими решения, полученные пренебрежением этим слагаемым, относятся к четвертой категории.  [c.221]

Для решения задачи о распределении параметров в поперечных сечениях струйного пограничного слоя используются уравнения Навье-Стокса (для ламинарной струи) или уравнения Рейнольдса (для турбулентной струи) совместно с уравнением неразрывности. Вследствие того, что течение в свободной струе является направленным, изменение скоростей поперек струйного пограничного слоя значительно более интенсивно, чем в направлении струи. Поперечные составляющие скорости во много раз меньше продольных. Кроме того, свободная струя, как уже отмечалось, приближенно считается изобарической. С учетом указанных условий уравнения движения могут быть существенно упрощены и приведены к уравнениям пограничного слоя (см. п. 13). 6 Зак. 935 81  [c.81]

Для перехода от уравнений Навье — Стокса к уравнениям движения идеальной жидкости строго необходимо равенство нулю не только поперечного градиента скорости, но и вторых частных производных от проекций скорости по одноименным координатам. Последнее условие выполняется при постоянном значении продольного градиента давления. При слабом изменении продольного градиента давления можно считать, что это условие выполняется приближенно.  [c.34]


Подставляя (30.6) в уравнение Навье — Стокса, линеаризуя по конвективным добавкам и считая, что неоднородность плотности существенна лишь в подъемной силе (приближение Буссинеска, см. 1), получим уравнение движения  [c.219]

В приближении Стокса уравнения движения жидкости имеют следующий вид  [c.332]

Приведённый в этом параграфе вывод показывает вполне чётко, что уравнения Прандтля являются предельной формой уравнений Навье — Стокса при Р о-э. Необходимо, однако, отметить следующее обстоятельство. При очень больших числах Рейнольдса движение вязкой жидкости имеет обычно турбулентный характер. С этой точки зрения может показаться, что предельный переход Р—>оо не может иметь физического смысла. На самом деле это не так, а именно пусть число Рейнольдса Р/,, характеризующее переход ламинарной формы течения в турбулентную, очень велико, тогда для больших чисел Рейнольдса Р, не превосходящих мы с очень большим приближением можем считать верными уравнения Прандтля, так как эти уравнения отличаются от точных уравнений членами порядка малыми при больших Р.  [c.553]

Уравнение импульса показывает тогда, что переменная часть давления Ар О ). При этом граница О В области О в первом приближении должна оставаться прямой. Теория малых возмуш ений, применяемая к сверхзвуковому потоку 1, показывает, что отклонение наклона О В от прямой О (е ). Для получения стационарного решения температура газа То в области О в первом приближении равна температуре стенки Т . Плотность ро тогда в первом приближении постоянна и соответствует значениям р = Ро, Т = То. Подстановка приведенных оценок в уравнения Навье-Стокса и совершение предельного перехода е О показывает, что течение в области О описывается полными уравнениями Эйлера для невязкой несжимаемой жидкости. Движение остается безвихревым, так как все струйки тока начинаются при хд +оо из состояния покоя (втекая затем в зону смешения). Для функции тока можно написать уравнение Лапласа  [c.39]

Были исследования течения в каналах и трубах с проницаемыми стенками. В гидравлической постановке движение жидкости в трубопроводах с изменением расхода вдоль пути изучалось рядом авторов. Сводное изложение основных результатов этих исследований содержится в монографии Г. А. Петрова (1951), В последнее время появились работы, где эта же задача решается на основе уравнений Навье — Стокса или же в приближении пограничного слоя (С. А, Регирер, 1960 П, Н, Романенко, 1964  [c.799]

Перейдем к рассмотрению второго предельного случая, случая очень малой вязкости или, в более общем виде, случая очень большого числа Рейнольдса. Знаменательный успех в исследовании движений жидкости при больших числах Рейнольдса был достигнут в 1904 г. Л. Прандтлем [ ], показавшим, каким образом проявляет себя вязкость при больших числах Рейнольдса и каким путем можно упростить дифференциальные уравнения Навье — Стокса для того, чтобы получить их приближенные решения в предельном случае очень малой вязкости.  [c.124]

В общем случае при любых 2 (101(11=1= 0, но является малой второго порядка по сравнению с малыми величинами ско ррстей жидкости. Ниже мы выбираем поверхность 2 так, чтобы (101(11 = о, и поэтому соотношение (19.22) можно рассматрива,ть как точное уравнение количества движения для решений о движении жидкости и о внутренних напряжениях, определяемых из приближенных уравнений Стокса.  [c.233]

Известно, что решение уравнения Больцмана в первом приближении приводит уравнение (1-5-9) к форме уравнения Навье—Стокса. Второе приближение, найденное Барнеттом по методу Чепмена—Энскога, вводит в систему уравнений движения новые члены, которые уже в какой-то степени учитывают изменения градиентов скоростей и температур на средней длине свободного пути молекул. Существует решение уравнения Больцмана и в третьем приближении. Оно известно под названием супербарнеттовского решения.  [c.37]

Как известно, уравнения переноса количества движения и энергии в современной молекулярно-кинетической теории выводят, исходя из решений так называемого интегро-дифференциального уравнения Больцмана. Решение уравнения Больцмана в первом приближении, т. е. когда можно пренебречь градиентами скоростей и температур по средней длине свободного пути молекул, приводит к уравнениям движения газа в форме Навье — Стокса. Второе приближение, найденное Барнетом по методу Энского—Чепмена, вводит в систему уравнений движения и теплового потока принципиально новые члены, которые существенным образом меняют законы дисперсии акустических волн. В этом случае в какой-то степени уже учитывается изменение градиентов скоростей и темпёратур на средней длине свободного пути молекул. Существует решение уравнения Больцмана и в третьем приближении. Оно 54  [c.54]

В.В. Струминским [80, 81]. В нулевом приближении решение этой системы уравнений аппроксимируется одномерным уравнением Бюргерса. Турбулентная модель Бюргерса изучалась аналитическими методами в [82]. Линеаризованные уравнения Навье-Стокса с аппроксимацией пульсационного движения у стенки моногармоническим колебанием решены в [83]. Турбулентные решения линеаризованных уравнений Павье-Стокса найдены в [84]. Уравнения пульсаций скорости и давления применялись в расчете турбулентных течений в областях с крупными локальными вихрями [85].  [c.37]

В интересующих нас сейчас асимптотических теориях, наряду с подобластями типа классического пограничного слоя, появляются еще другие подобласти, порядки которых по продольным и поперечным размерам, скоростям, перепадам давления и др. отличаются от ilYРе. Оценка порядков по рейнольдсову числу масштабов протяженности этих подобластей и механических и термодинамических характеристик движений среды в них представляет основной этап построения асимптотических решений. Вторым этапом служит составление рядов по параметрам, малость которых обеспечивается стремлением внешнего рейнольдсова числа к бесконечности, и определения коэффициентов этих рядов в том или другом простейшем приближении. При этом выполняется сшивание асимптотических решений в смежных подобластях. Заметим, что такой метод необходим и при численном решении уравнений Навье — Стокса при больших значениях рейнольдсова числа, так как позволяет заранее оценить характерный для каждой подобласти масштаб размеров ячеек применяемой сетки.  [c.701]

Сомнения вызывали не столько сами уравнения, сколько условия прилипания на твердых стенках. Эти условия являются чисто опытными, до сих пор не имеющими твердого теоретического обоснования. Между тем не исключено, что малое скольжение, допускаемое кинетической теорией, в некоторых случаях способно вызвать, как и малая вязкость, немалые эффекты. Самое повышение порядка уравнений, учитывающих вязкое трение, могло явиться источником теоретической неудовлетворенности. Так, если исходить при выводе уравнений движения из кинетической теории газов, где уравнения Навье — Стокса получаются в качестве второго приближения, то возникает вопрос о постановке граничных условий, папри-мор для третьего приближения — уравнений Барнета. Что же, кроме скорости, надо еще задавать и трение на стейке Сама постановка подобного вопроса говорит о неблагополучии ситуации.  [c.6]


Таким образом, гипотеза ностоянной турбулентной вязкости приводит к безразмерным уравнениям Навье — Стокса, в которых число Рейнольдса зафиксировано для всех режимов. Следовательно, течение, описываемое решением этой задачи, будет обладать свойством автомодельности, т. е. при изменении расхода и размеров системы (нри сохранении геометрического подобия) относительные поля скоростей и давления не изменяются. Таким важным свойством действительно обладают практически все развитые турбулентные потоки, резко отличаясь в этом отношении от потоков ламинарных и приближаясь к потокам невязким. Сюда относятся пе только свободиотурбулентные течения, но и гораздо более широкий класс турбулентных движений, характеризующшгся иаличие.м макроскопических вихрей, например отрывные течеиия, а также закрученные потоки. Правда, присутствие твердых стенок делает отмеченную автомодельность лишь приближенной, по тем более точной, чем выше скорость течения, так как тем меньшую роль играют пристенные пограничные слои, связанные с действием молекулярной вязкости.  [c.215]

Теория ламинарных движений вязкой жидкости уже в первой четверти двадцатого века достигла значительного совершенства. Были найдены разнообразные точные решения уравнений Навье — Стокса, разработаны методы приближенного интегрирования этих уравнений путем линеаризации при малых значениях числа Рейнольдса и разыскания асимптотических решений при больших значениях этого числа. К решениям наиболее трудных, атносящихся к средним значениям рейнольдсовых чисел задач исследователи приближались как со стороны малых, так и со стороны больших рейнольдсовых чисел. В первом случае шли по пути увеличения числа членов в разложениях по положительны у1 степеням рейнольдсова числа, являющегося в задачах этого рода характерным малым параметром, а в последнее время стали непосредственно пользоваться численными (машинными) методами интегрирования точных,, иногда несколько зшрощенных уравнений Навье — Стокса. Во втором случае, исходя из известного факта, что прандтлевы уравнения пограничного слоя являются лишь первым приближением в методе разложения решений уравнений Навье — Стокса по степеням величины, обратной корню квадратному из рейнольдсова числа, начали учитывать следующие члены разложения. Современному состоянию этой области динамики вязкой жидкости посвящены 2 и 3.  [c.508]

Точные решения уравнений Навье — Стокса имеют в этой проблеме значительное преимущество перед соответствующими решениями в приближении пограничного слоя, так как они описывают движение во всей безграничной области течения и позволяют тем самым рассмотреть движение вязкой жидкости вокруг и вдали от струи (явление эжекции), в та время как решение пограничного слоя дает картину движения только в самой струе. В этом отношении особый интерес представляет полученное Л. М. Симуни (1966) точное решение уравнений Навье — Стокса дла бесконечного ряда плоских струй, бьющих из отверстий, равномерно рас-, положенных вдоль бесконечной прямой линии. Проведенное им для этого случая численное решение уравнений Навье — Стокса позволило получить полную картину движения вязкой жидкости во всей полуплоскости  [c.515]

Закон сопротивления Стокса. Общее диференциальное уравнение движения плзкой жидкости (уравнение Навье-Стокса) может быть приближенно проинтегрировано в том случае, когда силами инерции [0жн0 пренебречь по сравнению с силами вязкости, т. е. в случае очень малых чпсел Ройнольлса (ползущее движение). (Следовательно, i этом сл и1с член ч  [c.130]

Заключительное замечание. На этом мы закончим рассмотрение точных решений уравнений Навье — Стокса и перейдем к приближенным решениям. Под точными решениями мы понимали такие решения, которые получались из уравнений Навье — Стокса при сохранении всех членов, тож дественно не равных нулю для изучавшихся течений. В противополож-ность этому под приближенными решениями мы будем понимать такие решения, которые получаются из уравнений Навье — Стокса путем отбрасывания в них членов, по своей величине малых в условиях рассматриваемой задачи. Как уже было отмечено в главе IV, при приближенных решениях особую роль играют два предельных случая в первом из них силы трения значительно больше, чем силы инерции (ползущее движение), во втором же они значительно меньше, чем силы инерции (течение в пограничном слое). В то время как в первом случае допустимо полностью отбросить инерционные члены, во втором случае, т. е. в теории пограничного слоя, отнюдь нельзя одновременно отбросить все члены, зависящие от вязкости, так как это привело бы к невозможности выполнения физически существенного граничного условия — условия прилипания жидкости к стенкам.  [c.108]

В этой главе мы рассмотрим некоторые приближенные решения урав- нений Навье — Стокса для предельного случая, в котором силы трения значительно больше, чем силы инерции. Так как силы инерции пропорциональны квадрату скорости, силы же трения пропорциональны первой степени скорости, то очевидно, что движения с преобладающей ролью сил трения возникают при очень малых скоростях или, в более общем случае, при очень малых числах Рейнольдса. Решения уравнений Навье — Стокса, получаемые путем отбрасывания в последних инерционных членов, пригодны для Re< l т. е. для чисел Рейнольдса, меньших единицы. В этом можно сразу убедиться из безразмерной записи (4.2) уравнений Навье — Стокса. В самом деле, инерционные члены отличаются от членов, зависящих от вязкости, присутствием множителя Re = pVll i. Правда, в каждом отдельном случае следует тщательно выяснить, из каких величин должно быть составлено это число Рейнольдса. Такого рода течения, для которых число Рейнольдса весьма мало, называются ползущими движениями. Необходимо отметить, что в практических приложениях ползущие движения встречаются, если не считать некоторых особых случаев, довольно редко ).  [c.111]

Поясним этот метод на примере двумерного основного несжимаемого течения и двумерного же возмущающего движения. В таком случае результирующее движение, определяемое величинами (16.2) и 16.3), должно удовлетворять двумерным уравнениям Навье — Стокса (4.4). Ограничимся рассмотрением особенно простого основного течения, когда составляющая скорости и зависит только от координаты у, т, е. U = U (г/), а остальные две составляющие равны нулю, т. е. F = = О ). Такое слоистое течение точно осуществляется в канале или трубе с постоянным поперечным сечением на достаточно большом расстоянии от входного сечения. Течение в пограничном слое можно рассматривать приближенно как такое же слоистое течение, так как зависимость основного течения U от продольной координаты х значительно слабее, чем от поперечной координаты у. Однако давление основного течения следует считать зависящим также от х, т. е. считать Р = Р х, у), так как движущей силой течения является градиент давления дР1дх, Следовательно, рассматриваемое основное течение определяется величинами  [c.423]


Смотреть страницы где упоминается термин Приближенные уравнения движения Стокса : [c.203]    [c.6]    [c.305]    [c.177]    [c.225]    [c.183]    [c.77]    [c.154]    [c.77]   
Смотреть главы в:

Курс механики сплошных сред  -> Приближенные уравнения движения Стокса



ПОИСК



Движение Стокса

На вье — Стокса уравнения движения

Стокс

Стокса уравнение



© 2025 Mash-xxl.info Реклама на сайте