Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тела твердые — Деформации

Механические свойства. Основные из них — прочность, пластичность, твердость и ударная вязкость. Внешняя нагрузка вызывает в твердом теле напряжение и деформацию. Напряжение — это нагрузка (сила), отнесенная к площади поперечного сечения, МПа  [c.8]

При исследовании физических основ явления трения различают трение внешнее и внутреннее. Внешнее трение — сопротивление относительному перемещению, возникающее между двумя телами в зонах соприкосновения поверхностей по касательным к ним и сопровождаемое диссипацией энергии. Внутреннее трение — процессы, происходящие в твердых, жидких и газообразных телах при их деформации и приводящие к необратимому рассеянию механической энергии.  [c.225]


Напомним, что здесь, как и всюду в теоретической механике, под твердым телом мы понимаем абсолютно твердое тело. Совершенно ясно, что две такие силы, приложенные к какому-либо реальному физическому телу, могут вызвать деформацию и даже разрушение тела. Лишь на абсолютно твердое тело такие взаимно уравновешенные силы никакого действия оказать не могут. Поэтому рассмотренную аксиому следует называть аксиомой об абсолютно твердом теле.  [c.21]

Так как /2 rot s определяется точкой О и не зависит от выбора точки Л1 и б — вектор, определяющий расположение точки М относительно О, то по теореме Шаля [см. формулу (23.66 )] два первы.х члена равенства (142.13) представляют собой движение частицы как твердого тела — поступательного, характеризуемого точкой О, которая является полюсом, и вращательного вокруг полюса с углом поворота V2 rot S. Тогда равенство (142.13)— первая теорема Гельмгольца движение малой частицы сплошной среды в каждый момент времени представляет собой движение ее как твердого тела и движения деформации.  [c.224]

Абсолютно твердым телом (или неизменяемой механической системой) называют механическую систему, расстояния между точками которой не изменяются при любых взаимодействиях. Все тела в природе в той или иной мере деформируемы, но в некоторых задачах деформациями тел можно пренебречь, считая тела твердыми. При рассмотрении движения Земли вокруг Солнца ее можно считать абсолютно твердым телом и даже материальной точкой, хотя в действительности она не твердая, так как на ней есть океаны, воздушная оболочка и т. д.  [c.6]

Деформация. Деформация — изменение объема или формы твердого тела без изменения его массы под действием внешней силы. Деформация — это процесс, при котором изменяется расстояние между какими-либо точками тела. Простейшие виды деформации растяжение, сжатие, сдвиг, кручение, изгиб.  [c.117]

Закон Гука не учитывает зависимости деформации тел от времени действия сил, вызывающих его деформацию. В реальных твердых телах упругая деформация, соответствующая действующим силам, устанавливается не сразу, а через некоторый промежуток времени, различный для разных материалов. После прекращения действия внешних сил тела также не сразу восстанавливают свои размеры и форму, т. е. деформация тела исчезает не полностью, а часть ее остается и затем медленно спадает со временем. Это явление называется упругим последействием. У некоторых твердых тел эта остаточная деформация практически вообще не исчезает. Такие тела под действием небольшой, но длительно действующей ГИЛЫ ведут себя как тела жидкие, а под действием большой кратковременной силы они оказываются хрупкими. Примером таких тел может служить лед или вар. При обычных условиях они текут под воздействием продолжительно действующих сил и легко ломаются при интенсивных кратковременных воздействиях.  [c.162]


Вопросы физики пластичности и прочности составляют один из фундаментальных разделов физического металловедения и физики твердого тела. Закономерности пластической деформации — одного из самых распространенных технологических способов производства изделий— представляют значительный практический интерес. Пластическая деформация как технологический способ обработки металлов используется для изменения формы изделий, а также структуры и соответственно свойств металла. Эти задачи часто решаются одновременно. Пластическая деформация в реальных условиях часто проявляется как непреднамеренный процесс, приводящий к релаксации напряжений, вызванных градиентом температур или сил трения, разностью коэффициентов термического расширения и удельных объемов фаз и др.  [c.3]

Одной из важнейших характеристик деформированного твердого тела является тензор деформаций. В гидродинамике этот тензор почти не используется. Для жидкостей важна только одна характеристика деформаций — изменение объема. Для твердых тел существенно также и изменение формы, т. е. весь тензор деформаций. Тензор деформаций вводится путем сравнения длины любого элемента тела с его длиной в некотором идеальном состоянии, которое называют начальным .  [c.309]

Твердое тело. Твердым телом называется совокупность материальных точек, неизменно связанных между собой. Если сила приложена к одной из этих точек, то говорят, что она приложена к телу. Определяемое таким образом твердое тело является абстракцией. Все естественные тела изменяют свою форму под действием приложенных к ним сил. Но тела, называемые твердыми, настолько мало деформируются, что этой деформацией в первом приближении можно пренебречь, если только приложенные силы не слишком велики.  [c.126]

Если сталкивающиеся тела абсолютно не упруги, то наибольшая достигнутая при ударе деформация полностью сохраняется и продолжает существовать после удара такие тела оказывают сопротивление деформации, но не проявляют никакого стремления возвращаться к своей первоначальной форме. Два абсолютно неупругих шара после удара не отделяются друг от друга и продолжают двигаться дальше как одно твердое тело. Наоборот, если тела абсолютно упруга, они вновь принимают свою первоначальную форму. К таким телам приложима теорема энергии, и после того как они возвратились к своей первоначальной форме, уже не может быть никакой потери живой силы.  [c.50]

Процесс разрушения твердых тел при пластической деформации — явление сложное и описывается различными моделями разрушения с помощью комбинированных критериев (по деформациям и по напряжениям, по напряжениям и перемещениям).  [c.14]

В главе V рассматривалось только равновесие тела или его элемента, в связи с чем зависимости этой главы имеют статическую природу. В главе VI анализировалась геометрическая или, иначе, кинематическая сторона вопроса деформации тела. Напряжения и деформации оставались между собою не связанными. Вместе с тем установление такой связи необходимо. Без этой связи системы уравнений (5.59) и (6.23) совместно использованы быть не могут и, таким образом, не может быть раскрыта механическая (в частности, статическая) неопределимость напряжений в сплошной среде. Установление зависимостей между напряжениями и деформациями необходимо и при получении формулы для потенциальной энергии деформации, а также при рассмотрении энергетических законов, которым подчиняется твердое деформируемое тело.  [c.493]

При выводе кинетического уравнения можно привлечь и термодинамические соображения. Это позволяет, в отличие от эвристического подхода, или подхода, основанного на тех или иных аналогиях, процесс разрушения твердого тела при необратимой деформации пытаться описать адекватно.  [c.597]

Поверхность и объем — Вычисление 68— 71 — Центр тяжести — Координаты 68—71 Тела твердые — Деформации — см. Деформации  [c.1000]

Известно, что механические воздействия приводят к активации физико-химических процессов в твердых телах [6]. Пластическая деформация, разрушение поверхностных слоев, образование ювенильных поверхностей и деформационный нагрев вызывают ускорение диффузии газовых примесей в металлах и увеличение газообмена с окружающей средой. Напротив, образование защитных поверхностных пленок и упрочненных структур обычно препятствует такому газообмену.  [c.30]


Для построения статической диаграммы напряжений можно пользоваться также и экструзионным профилем, наблюдаемым в динамических условиях, а именно его осевой частью в пределах от г=0 до Гкр, которая ведет себя, как твердое тело, и, испытав деформацию лишь при начальном изменении давления, сохраняет в дальнейшем свой профиль, в то время как в наружных слоях происходит течение при постоянном давлении. При таком способе построения получается полная диаграмма напряжений от т=0 до т=0, т. е. вплоть до предела текучести.  [c.136]

УЧЕТ ИЗМЕНЕНИЯ ОБЪЕМА ТВЕРДОГО ТЕЛА ПРИ ЕГО ДЕФОРМАЦИИ  [c.217]

Внешняя нагрузка вызывает в твердом теле напряжение и деформацию. Напряжение - это сила, отнесенная к площади поперечного сечения, МПа  [c.12]

МОДЕЛЬ ТВЕРДОГО ТЕЛА С МЕСТНЫМИ ДЕФОРМАЦИЯМИ [6]  [c.166]

МОДЕЛЬ ТВЕРДОГО ТЕЛА С МЕСТНЫМИ ДЕФОРМАЦИЯМИ 3. Формулы расчета характерных величин  [c.169]

Деформация тела заключается в изменении расстояний между его точками. При этом в общем случае меняются размеры тела, его форма и объем. Термин деформация имеет двоякое значение. Это и сам процесс изменения расстояний между точками тела, и результат этого процесса. Если при движении тела расстояния между его точками не меняются, то оно не деформируется, а движется как абсолютно твердое тело. В теории деформаций сравниваются два состояния тела — начальное состояние (в начальный момент времени о) и конечное состояние (в конечный момент времени i). Выбор начального и конечного моментов времени зависит от цели исследования.  [c.65]

Весьма полезным в МДТТ является принцип отвердевания, согласно которому на тело после его деформации могут быть наложены дополнительные связи, превращающие его в абсолютно твердое. Это позволяет применить к деформированному твердому телу все выводы статики абсолютно твердого тела, изученные в курсе теоретической механики.  [c.28]

Важнейшими механическими свойствами всех твердых тел являются упругость, пластичность, вязкость. Под упругостью понимают свойство тела восстанавливать свои размеры и форму после снятия действующих на него сил. Математически это выражается однозначной зависимостью между напряжениями и деформациями. Протовоположным свойством является пластичность, которое состоит в том, что после снятия действующих сил тело изменяет свои размеры и форму в зависимости от истории нагружения. Наконец, свойство вязкости проявляется в том, что после нагружения тела напряжения и деформации в нем изменяются с течением времени.  [c.31]

Пластичность — свойство твердых тел сохранять часть деформации при смя1ии нагрузок, когорые их вызвали.  [c.70]

Используя это соотношение, определим, например, скорость распространения продольных волн в упругом твердом теле, продольные размеры которого много больше поперечных (стержень, проволока и т. п.). Согласно формулам (41.1) п (41.4), запишем Ар = еЕ, где Е — модуль Юнга. Для однородного тела при упругой деформации изменение плотности Ар пропорционально относительной деформации е, т. е. Ар = 8р, где р — плотность недеформированного тела. Подставляя выражения для бр и йр в (52.2), иолучим  [c.203]

На элементы конструкции действуют внешние нагрузки активные и реактивные (реакции связей), — под действием которых возникают внутренние силы силы взашлсдейстЕ ия между частицами твердого тела, препятствующие ею деформации. Как всякую системук сил, внутренние силы, распределенные в сечении нагружен)яого бруса, можно привести центру тяжести сеяния, в результате получим главный вектор R и главный момент М (R) внутренних сил в сечении. Метод сечений позволяет определить внутренние силы, возникающие в поперечных сечениях бруса, через внеииние нагрузки.  [c.4]

Основы теории упругости были разработаны почти одновременно Навье (1821), Коши (1822), Пуассоном (1829). Независимо друг от друга они получили по существу все основные уравнения этой теории. Особо выделялись работы Коши. В отличие от Навье и Пуассона, привлекавших гипотезу молекулярных сил, Коши, опираясь на метод, в котором используется статика твердого тела, ввел понятия деформации и нагфяжения, установил дифференциальные уравнения равновесия, граничные условия, зависимости между деформациями и перемещениями, а также соотношения между напряжениями и деформациями для изотропного тела, первоначально содержавшие две упругие постоянные. В эти же годы появились исследования М. В. Остроградского о распространении волн в упругом теле при возмущении в его малой области. На эти исследования ссылается в своих работах Пуассон, впервые (1830) доказавший существование в однородной изотропной среде двух типов волн (волны расширения и искажения).  [c.5]

Электропроводность твердых кристаллических тел изменяется при деформации вследствие увеличения или уменьшения (растяжение, сжатие) межатомных расстояний, приводящих к изменению концентрации и подвижности носителей. Концентрация носителей заряда может стать меньше или больше вследствие изменения ширины зиергетических зон кристалла и смещения примесных уровней, что в свою очередь изменяет энергию активации носителей и изменяет их эффективные массы, входящие в выражения концентрации Г10сителеи заряда. Подвижность носителей заряда меняется из-за уменьшения (увеличения) амплитуды колебания атомов при их сближении (удалении). Для металлов основным является изменение подвижности, а для полупроводников изменение концентрации носителей заряда, определяемое энергией активации. Ширина запрещенной зоны может как увеличиваться, так и уменьшаться при сближении атомов, и у разных полупроводников одна и та же деформация может вызывать как увеличение, так и уменьшение удельной проводимости.  [c.244]


АЭ, или эмиссия волн напряжений, — это явление, заключающееся в генерации упругих волн в твердых телах при их деформации [29, 59]. Главными источниками акустической эмиссии считают процессы скольжения и разрушения в кристаллах (и их скоплениях), трения поверхностей разрыва друг о друга, движения дислокаций и изломов, релаксации упругой матрицы при движении дислокаций. Моменты излучения волн эмиссии распределены статистически во времени возникающие при этом дискретные импульсы — вспышки имеют широкий частотный диапазон (от десятков килогерц до сотеп мегагерц) в зависимости от материала.  [c.444]

При определении коэффициента внешнего трения необходимо исходить из напряженного состояния в зонах фактического касания. В общем случае вследствие распределения вершин микронеровностей по высоте микроиеров-ности в зависимости от глубины внедрения могут деформировать материал поверхности менее жесткого тела упруго, упругоиластнчески или пластически. Границы между каждым из Ердов деформирования определяют, решая соответствующие контактные задачи теорий упругости и пластичности. Однако в ряде случаев (например, при трении резин, а также металлов при небольших контурных давлениях) в зонах касания возникают упругие деформации. Как показывает анализ, при внедрениях, соответствующих пластическим деформациям, в зонах касания поверхностей с наиболее распространенными Б инженерной практике параметрами шероховатостей основные силовые взаимодействия приходятся ia микронеровности, деформирующие материал поверхностного слоя менее жесткого тела пластически. Поэтому в настоящее время принято оценивать взаимодействие твердых тел при упругих и пластических деформациях в зонах касания. Теория взаимодействия твердых тел ири упругопластических деформациях пока ещё не разработана.  [c.192]

ВОСПРИИМЧИВОСТЬ — характеристика (диэлектрика, показывающая его способность поляризоваться в электрическом поле магнетика, показывающая его способность намагничиваться в магнитном поле) ВЯЗКОСТЬ [—свойство жидкостей и газов оказывать сопротивление перемещению одной их части относительно другой динамическая — количественная характеристика сопротивления жидкости или газа смещению одного слоя относительно другого кинематическая— отнощение динамической вязкости к плотности жидкости или газа магнитная — отставание во времени изменения магнитных характеристик ферром нетика от изменения напряженности внешнего магнитного поля объемная — величина, характеризующая процесс перехода внутренней энергии в тепловую при объемных деформациях среды (вторая вязкость) структурная — вязкость, связанная с возникновением структуры в дисперсных системах ударная — поглощение механической энергии твердыми телами в процессе деформации и разрущения под действием ударной нагрузки]  [c.228]

ТЕМПЕРАТУРА критическая соответствует критическому состоянию вещества переходу сверхпроводника из сверхпроводящего состояния в нормальное) Кюри является [общим названием температуры фазового перехода второго рода температурой фазового перехода ферромагнетика в парамагнетик при которой исчезает самопроизвольная поляризация в сегнетоэлектриках) ] насыщения соответствует термодинамическому равновесию между жидкостью и ее паром при данном давлении Нееля фиксирует фазовый переход антиферромагнетика в парамагнетик плавления выявляет фазовый переход из кристаллического состояния в жидкое радиационная — температура абсолютно черного тела, при которой его суммарная по всему спектру энергетическая яркость равна суммарной энергетической яркости данного излучающего тела термодинамическая определяется как отношение изменения энергии тела к соответствующему изменению его энтропии цветовая определяется температурой абсолютно черного тела, при которой относительные распределения спектральной плотности яркости этого тела и рассматриваемого тела максимально близки в видимой области спектра яркостная — температура абсолютно черного тела, нри которой спектральная плотность энергетической яркости совпадает с таковой для данного излучающего тела, испускающего сплошной спектр] ТЕНЗИ-ОМЕТРИЯ — совокупность методов измерения поверхност э-го натяжения ТЕНЗОМЕТРИЯ—совокупность методов измерения механических напряжений в твердых телах по упругим деформациям тел ТЕОРЕМА Вариньона если данная система сил имеет равнодействующую, то момент этой равнодействующей относительно любой оси или точки равен алгебраической сумме моментов слагаемых сил относительно той же оси или точки Вириала устанавливает соотношение, связывающее среднюю кинетическую энергию системы частиц с действующими в ней силами)  [c.281]

ФОСФОРЕСЦЕНЦИЯ — люминесценция, продолжающаяся значительное время после прекращения ее возбуждения ФОТО ДЕЛЕНИЕ — деление атомного ядра гамма-квантами ФОТОДИССОЦИАЦИЯ—разложение под действием света сложных молекул на более простые ФОТОИОНИЗАЦИЯ — процесс ионизации атомов и молекул газов под действием электромагнитного излучения ФОТОКАТОД — холодный катод фотоэлектронных приборов, испускающий в вакуум электроны под действием оптического излучения ФОТОЛИЗ— разложение под действием света твердых, жидких и газообразных веществ ФОТОЛЮМИНЕСЦЕНЦИЯ—люминесценция, возникающая под действием света ФОТОМЕТРИЯ— раздел физической оптики, в котором рассматриваются энергетические характеристики оптического излучения в процессах его испускания, распространения и взаимодействия с веществом ФОТОПРОВОДИМОСТЬ изменение электрической проводимости полупроводника под действием света ФОТОРЕЗИСТОР — полупроводниковый фотоэлемент, изменяющий свою электрическую проводимость под действием электромагнитного излучения ФОТОРОЖ-ДБНИЕ — процесс образования частиц на атомных ядрах и нуклонах под действием гамма-квантов высокой энергии ФОТОУПРУГОСТЬ — возникновение оптической анизотропии и связанного с ней двойного лучепреломления в первоначально оптически изотропных телах при их деформации  [c.293]

Физические свойства граничных пленок жидкости, как показали исследования различных авторов, в значительной степени отличаются от свойств самой жидкости в частности, вязкость минеральных масел вблизи границы твердого тела скачкообразно увеличивается граничные слои способны выдерживать большую нормальную нагрузку, не разрушаясь неограниченно долго при действии тангенциальных внешних сил в граничном слое, как в упругом теле, возникает упругая деформация сдвига и т. д. Эти свойства позволили дать определение граничному слою, как квазитвердому телу. Таким образом, при течении жидкости происходит уменьшение эффективного сечения щели в результате образования на ее поверхности прочно фиксированных адсорбционных слоев полярных молекул.  [c.136]


В зависимости от того, какие тела соударяются и с какой скоростью, приходится пользоваться разными моделями. Машину конструируют всегда так, чтобы удар был прямым и центральным (вектор относительной скорости и нормали к поверхностям тела в точке соударения проходит через центры тяжести соударяющихся тел). Это связано с тем, что при косом ударе приходится решать значительно более сложные задачи. Накопленный опыт по решению таких задач мал, и поэтому конструкторы почти не используют косой удар. Основы такого расчета приведены в гл. II. В случае прямого центрального удара применяют модели 1) абсолютно твердого тела 2) твердого тела с местными деформациями 3) многомассной системы 4) с распределенными массами и заданной формой деформированного состояния 5) с распределенными параметрами.  [c.165]


Смотреть страницы где упоминается термин Тела твердые — Деформации : [c.18]    [c.85]    [c.110]    [c.182]    [c.168]    [c.315]    [c.255]    [c.65]    [c.19]    [c.287]    [c.167]    [c.14]   
Справочник металлиста Том 1 Изд.2 (1965) -- [ c.0 , c.262 , c.293 , c.294 , c.341 , c.343 ]



ПОИСК



235 —неизменяемого твердого тела которое налагается на —, определяемые по деформациям, 62 условия

235 —неизменяемого твердого тела которым удовлетворяет — при конечной деформации

Механика твердого тела —плоские деформации и плоские напряжения

Напряжения и деформации твердого тела

Некоторые современные исследования по нелинейности при инфинитезимальной деформации в кристаллических твердых телах

ПАРАМЕТРЫ СОСТОЯНИЯ В ТВЕРДЫХ ТЕЛАХ ПРИНЦИПЫ МЕХАНИЧЕСКОЙ РАБОТЫ Тепловые явления, связанные с напряжениями и деформациями

Сжатие — Кривые деформаций упруг объемное тело твердых

Сжатие — Кривые деформаций упругопластических объемное тело твердых

Соотношения между напряжениями и деформациями (для упругого твердого тела

Статическая деформация твердого тела

Твердого тела перемещения, наложение их на перемещения от упругой деформации

Твердое тело - Воспроизведение закона движения 432 - Энергия деформации

Тела твердые Деформации см Оси главные

Тела твердые — Гипотеза деформациями и напряжениями

УПРУГИЕ ДЕФОРМАЦИИ В ТВЕРДЫХ ТЕЛАХ

Условия в бесконечности при движении тела как твердого при определении перемещений по деформациям, возможны

Учет изменения объема твердого тела при его деформации



© 2025 Mash-xxl.info Реклама на сайте