Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Давление радиационное

Первичный пар, вышедший из радиационной ступени перегревателя и поступающий в паропаровой теплообменник, в данной схеме играет роль промежуточного теплоносителя. Он передает пару низкого давления радиационное тепло котельного агрегата, тем самым улучшая характеристику  [c.182]

В прямоточных котлах комбинированные пароперегреватели применяются, начиная со среднего давления. Радиационная часть пароперегревателя выполняется так же, как и испарительная, а часто является ее продолжением 1и занимает верхнюю радиационную часть топки, экранирует потолок и горизонтальный газоход. Выходная часть пароперегревателя обычно является конвективной.  [c.44]


Оценка эффективности использования интенсивных ультразвуковых колебаний в технологических процессах невозможна без измерения параметров ультразвукового поля. Иногда для оценки эффективности достаточно измерить только интенсивность ультразвуковых волн. В других слз чаях необходимо измерять звуковое давление, радиационное давление, форму волны или какой-нибудь другой параметр поля. Однако во всех случаях невозможно обойтись без измерительной аппаратуры, градуированной должным образом.  [c.329]

В современных прямоточных котлах на сверхкритическое давление радиационная часть выполнена в виде прямых вертикальных или изогнутых труб, образующих вертикальные панели (рис. 6-3,6).  [c.52]

В определенных условиях для градуировки можно использовать эффект второго порядка, называемый радиационным давлением. Радиационное давление — это небольшое статическое давление, присутствующее в любой акустической волне. Радиационное. давление рт в плоской бегущей волне с интенсивностью /, средней плотностью энергии В, среднеквадратичным значе-  [c.80]

Рассмотрим прежде всего силу радиационного давления. Радиационное давление связано с изменением среднего по времени импульса, переносимого волной. При взаимодействии волны с препятствием изменение импульса происходит вследствие рассеяния и поглощения звуковой энергии препятствием. Таким образом, определение радиационной силы сводится к задаче о дифракции звуковой волны на препятствии.  [c.647]

Использование в качестве охладителя инертного газа гелия. Уже при давлении 4—5 МПа гелиевый теплоноситель обеспечивает хорошие условия теплоотвода и позволяет достичь объемной плотности теплового потока на уровне 6—8 кВт/л при сравнительно умеренной потере энергии на прокачку теплоносителя. Гелий как теплоноситель имеет по сравнению с другими газами ряд преимуществ высокую теплоемкость и теплопроводность, термическую и радиационную стойкость, химическую стабильность и инертность к конструкционным материалам, минимальное сечение поглощения нейтронов.  [c.3]

Для снижения топливных потерь необходимо избегать возможного радиационного нагрева баков элементами выпускной системы автомобиля и солнечными лучами. Наиболее рациональная конструкция топливных баков — с минимальным отношением площади поверхности испарения к объему бака. Целесообразно применять в баке перегородки, предотвращающие чрезмерное перемешивание топлива, по возможности увеличивать давление в баке, что повышает температуру активного испарения топлива.  [c.80]


Радиационные и ультразвуковые методы являются регламентируемыми методами контроля качества металла и сварных соединений при изготов/гении и эксплуатации сварных сосудов, аппаратов и трубопроводов, работающих под внутренним давлением в соответствии с действующими НТД. Остальные методы контроля могут применяться часто как дополнительные.  [c.184]

В зависимости от технических требований, предъявляемых к объектам контроля, формируется и выбор методов контроля качества. При вероятном развитии усталостных трещин в конструкции от поверхностных дефектов методы обнаружения внутренних дефектов (радиационный или УЗК), не обладающие достаточной чувствительностью к мелким поверхностным трещинам дублируют методами для поиска и обнаружения мельчайших поверхностных дефектов. Методы контроля герметичности при производстве сосудов высокого давления дублируют методами поиска и обнаружения внутренних дефектов и т. д.  [c.220]

От переменного звукового давления, описываемого формулой (60.3)., следует отличать иостоянное по значению и по знаку радиационное давление .  [c.228]

Теплоэлектрические вакуумметры. Применяются для измерения давления в диапазоне от 70 до 0,13 Па. Действие их основано на зависимости теплопроводности ограниченного слоя разреженного газа от давления. Чувствительным элементом прибора является тонкая металлическая нить накала, размещаемая в стеклянном баллоне, куда подводится измеряемое давление. Нить нагревается электрическим током и охлаждается разреженной средой. Выделяемая нитью джоулева теплота (/ / ) частично отводится в результате теплопроводности материала через концы нити (Ql), частично рассеивается ее поверхностью в результате радиационного теплообмена (Q2), частично отводится газом (<3з)-  [c.164]

Тепловое излучение воздействует на поле потока высокотемпературного газа через давление излучения (которое порождает тензор радиационных напряжений), плотность энергии излучения и поток излучения. Учет первых двух факторов в уравнениях осуществляется добавлением составляющих тензора радиационных напряжений к составляющим обычного тензора напряжений  [c.22]

Имеется обширный диапазон режимов, когда, несмотря на малую вязкость (то<С1), значение вибрационной сипы F, обусловленной вязкостью, может намного превосходить силу радиационного давления F rp,.  [c.373]

В качестве примера неорганической реакции приведем несколько фактов, касающихся радиолиза воды — процесса, играющего фундаментальную роль для понимания любых реакций, проходящих в водных растворах. Главной трудностью опытного изучения механизма радиационно-химических процессов является то, что промежуточные ионы и свободные радикалы живут очень короткое время из-за высокой химической активности. Несколько дольше эти промежуточные продукты живут в парах низкого давления (10 — 10 мм рт. ст.), где столкновения более редки. Поэтому главным источником информации о природе ионов, образуемых излучениями, является масс-спектрографическое исследование облучаемых паров. Так, при облучении водяного пара электронами с энергией 50 эВ установлено, что различные положительные ионы образуются в следующих относительных количествах  [c.661]

Сопла. Значительный интерес представляют процессы теплообмена в камерах горения и соплах ракетных двигателей. Тепловые потоки от продуктов горения к стенкам достигают значений порядка 1,2-10 2,4-10" Вт/м Теплота переносится к стенкам конвекцией и радиацией. Доля радиационного переноса достигает 20—30%, так как температура газов очень высока и часто превосходит 3000 К. В связи с резким изменением параметров газа по длине двигателя (например, давление меняется по длине камеры горения и сопла в десятки раз, при этом температура падает на несколько сот кельвинов) меняется химический состав продуктов горения, их физические константы, степень диссоциации. В этих условиях теоретическое определение теплоотдачи в ракетном двигателе затруднено, и поэтому в настоящее время решающее значение имеют экспериментальные исследования. При огромном многообразии размеров и формы двигателей, а также сортов топлива и окислителя невозможно, даже экспериментально, составить одну обобщенную формулу для определения коэффициента теплоотдачи.  [c.247]


Определить поправку на радиационное давление толстослойной (т. е. непрозрачной) плазмы при температуре 10 К.  [c.169]

В теплогенераторах, работающих на высокотемпературных теплоносителях, циркуляция теплоносителя принудительная, а температура нагрева ниже температуры насыщения при данном давлении. Теплоносители в процессе эксплуатации подвергаются термическому разложению, которое происходит на границе теплоносителя с греющей стенкой, т. е. в пограничном слое. По этой причине у термостойких ВОТ (ДФС, ДТМ и КТ-2) на греющей стенке образуется кокс, у термически малостойких (масла АМТ-200 и ИС-40А) образуются пузырьки газообразных продуктов разложения, которые с увеличением плотности теплового потока сливаются между собой, образуя сплошную пленку. Образование на поверхности нагрева кокса или газовой пленки резко ухудшает теплообмен между ВОТ и поверхностью нагрева. Во избежание этого для всех ВОТ при турбулентном течении их в трубах максимальная температура стенки не может превышать более чем на 20 °С предельную температуру применения данного теплоносителя, так как при температуре на 30...40°С выше наступает период интенсивного разложения теплоносителя с образованием на греющей поверхности слоя кокса либо газовой пленки. В современных теплогенераторах ВОТ, радиационная поверхность нагрева которых выполнена в виде змеевика с плотной навивкой, теплопередача осуществляется через поверхность, обращенную внутрь, к вертикальной оси змеевика. Во всех гидродинамических режимах течения ВОТ наименьшие значения коэффициента теплоотдачи наблюдаются на поверхности, обращенной внутрь змеевика, а следовательно, эта область является наиболее теплонапряженной. В связи с этим предельную плотность теплового потока для теплогенератора ВОТ змеевикового типа подсчитываю по формуле  [c.292]

Повышение тепловосприятия радиационной части перегревателя при уменьшении нагрузки наблюдается и на котлах СКД-Ряд мер обеспечивает надежность ширм снижение температуры питательной воды при уменьшении паропроизводительности, передача избыточного количества теплоты пара высокого давления в промежуточный перегреватель и др.  [c.98]

В прямоточных котлах высокого давления число ступеней перегревателя высокого давления равно трем-четырем. Обычно это ВРЧ, потолочная, две конвективные или конвективная и полу-радиационная ступени.  [c.102]

Радиационный экономайзер высокого давления......... 1000—1200  [c.165]

В тепловом расчете отдельных поверхностей учитываются сочетание радиационной и конвективной теплоотдачи от продуктов сгорания, характер омывания ими труб, наличие на трубах внутренних и внешних отложений, теплофизические свойства и характеристики рабочего тела (теплопроводность, температуропроводность, вязкость, температура, давление), конструктивные особенности поверхностей нагрева (шахматное, коридорное расположение труб, их диаметр, оребрение и т. д.), наличие очистки от загрязнений.  [c.198]

Органические антинакипины пригодны лишь для котлоагрегатов с большим удельным содержанием воды на единицу поверхности нагрева, при низких давлениях и тепловых напряжениях поверхностей. Коррекционные способы обработки воды получили широкое распространение IB силу того, что во всех современных конструкциях котлоагрегатов имеются радиационные поверхности нагрева с высокими тепловыми нагрузками.  [c.372]

К нелинейным эффектам в известном смысле можно причислить и так называемое радиационное давление или давление ультразвукового излучения, которое, в частности, проявляется в виде постоянных пондеромоторных сил, действующих на препятствия, расположенные на пути распространения ультразвуковой волны. Давление ультразвуковою излучения существует и в свободном ультразвуковом поле в виде постоянной составляющей давления. Радиационное давление присуще любому волновому процессу независимо от его природы отю связано с изменением у препятствия величины переносимого волной импульса. Возникающие прп этом пондеромотор-ные силы малы известно, что для регистрации, например, давления света требуются весьма чувствительные приспособления. Давление ультразвукового излучения также является малой величиной по сравнению с амплитудой переменного давления в ультразвуковой волне. Тем не менее радиационный эффект следует непосредственно из линейных уравнений электродинамики и линеаризованных уравнений гидродинамики. Нелиней1юсть же точных уравнении гидродинамики приводит при расчете давления ультразвукового излучения к поправкам , соизмеримым с величиной эффекта, вычисленной в первом ириблпженни, в отличие от нелинейных поправок к другим акустическим параметрам, таким, например, как скорость звука, плотность энергии и т. д., в которые они входят в качестве величин второго и более высоких порядков малости. Эти сравнительно большие поправки к давлению ультразвукового излучения и представляют собой собственно нелинейный эффект. Отличие акустических  [c.104]

Таким образом, в отличие от скалярного гидростатического или переуеииого звукового давления, радиационное давление согласно формуле (V. 2) есть векторная величина она зависит от ориентации площадки (18 относительно направления расиростргнения ультразвуковой волны. Поскольку же термин радиационное давление широко распространен в литературе, мы сохраним его, хотя во избежание недоразумений лучше было бы говорить о радиационно-м напряжении или натяжении.  [c.105]

Радиационные исследования микротвэлов показали, что вег роятность разрушения защитного покрытия увеличивается с повышением температуры, увеличением интегрального потока быстрых нейтронов и глубины выгорания ядерного топлива. Разрушение плотного пироуглеродного двухслойного покрытия происходит в результате образования трещин, либо из-за увеличения давления газообразных продуктов деления и распухания сердечника, причем в этом случае трещина начинает образовываться на внутренней поверхности защитного слоя, либо из-за упадки наружного слоя плотного пироуглерода в результате воздействия значительного интегрального потока быстрых нейтронов, и тогда трещина образуется на наружной поверхности микротвэла. Анализ более 100 радиационных исследований микротвэлов в США и ФРГ подтвердил справедливость предложенной расчетной модели [16].  [c.16]


Рис. 3.20. Схема криостата Сетаса и Свенсона для магнитной термометрии [10]. А—вывод электрических проводов В — промежуточный экран С — термодатчик О — экран блока Е — вакуумная рубашка из латуни f—измерительные провода (3 — тепловые ключи Я — экран / — стержень из кварцевого стекла / — медные провода К — катушка L — нейлоновая ячейка М — экран из проволочной фольги N — радиационный экран из черной бумаги О — вакуумная рубашка из пи-рекса Р — переход медь—пирекс Q — высоковакуумная откачка / — вакуумная рубашка трубки, передающей давление 5 — образец с солью Т — германиевый термометр сопротивления и — медный блок V—платиновый термометр сопротивления — жидкий Не Z — откачка паров Не. Рис. 3.20. Схема криостата Сетаса и Свенсона для <a href="/info/4002">магнитной термометрии</a> [10]. А—вывод <a href="/info/94293">электрических проводов</a> В — промежуточный экран С — термодатчик О — <a href="/info/73889">экран блока</a> Е — вакуумная рубашка из латуни f—измерительные провода (3 — тепловые ключи Я — экран / — стержень из <a href="/info/63118">кварцевого стекла</a> / — <a href="/info/63788">медные провода</a> К — катушка L — нейлоновая ячейка М — экран из проволочной фольги N — <a href="/info/251815">радиационный экран</a> из черной бумаги О — вакуумная рубашка из пи-рекса Р — переход медь—пирекс Q — высоковакуумная откачка / — вакуумная рубашка трубки, передающей давление 5 — образец с солью Т — <a href="/info/425226">германиевый термометр сопротивления</a> и — медный блок V—<a href="/info/251578">платиновый термометр сопротивления</a> — жидкий Не Z — откачка паров Не.
Акустическое радиационное давление — постоянное давле]ше, испытываемое те1юм, наход пцимся в стационарном звуковом поле. Это давление пропорционально плотности звуковой энергии. Оно мало по сравнению с звуковым давлением.  [c.159]

Следует подчеркнуть, что вибрационная сила F = FF , действующая на одну частицу в плоской бегущей волне, существенно отличается от так называемой силы радиационного давления F(rp), реализующейся в бегущей волне в идеальной жидкости. Формула для этой силы, отнесенной к Fo (см. L. King, 1934 В. А. Красильников, В. В. Крылов, 1984), имеет вид  [c.373]

Дозвуковая радиационная волна возникает в случае, если ударная волна прозрачна для лазерного излучения, поглощаемого в плазме. Перемещение плазменного фронта в газе, движущемся за фронтом ударной волны, происходит благодаря радиационному механизму со скоростью, меньшей местной скорости звука. В результате этого волна поглощения лазерного излучения отстает от уходящей вперед ударной волны, а давление выравнивается по всему нагретому объему газа. Сверхзвуковая радиационная волна обычно приходит на смену светодетонационной при высоких значениях интенсивности лазерного излучения, когда радиационный механизм перемещения зоны поглощения лазерного излучения становится более эффективным по сравнению с гидродинамическим. В этом случае скорость радиационной волны превышает местную скорость звука в плазМе, вследствие чего фронт радиационной волны опережает ударную волну.  [c.106]

Ортоферриты. Наиболее успешно монокристаллы ортоферритов различного состава выращивают на установках бестигельной зонной плавки с радиационным нагревом (рис. 15). Установка состоит из эллиптических отражателей / и 12, высокочастотного индуктора 6, кристаллизационной камеры 3 и контротражателя 9. В качестве источника света 11 используется галогеновая или ксеноновая лампа мощностью 1,5—3 кВт, которая находится в фокусе эллиптического отражателя I. Особенностями установки являются равномерность температуры нагрева слитка, возможность работы под давлением в кристаллизационной камере до 10 Н/м, высокотемпературный отжиг выращиваемого кристалла непосредственно в кристаллизационной камере, что способствз ет снятию термических напряжений.  [c.32]

Основными элементами установки являются мощные концентраторы света /, состоящие из эллиптических отражателей и ксеноновых ламп сверхвысокого давления мощностью до 10 кВт, нижний шток 2, передающий. 1 вращение от внешнего электропривода, и холодный тигль 3, выполняемый чаще всего в виде рещетки из водоохлаждаемых медных трубок. Для получения расплава используется радиационный нагрев поликристал-  [c.33]

Высокий уровень развития измерительной техники является необходимым условием научно-технического прогресса. Разработка и изготовление различных изделий, в том числе и аппаратуры связи, требуют проведения большого числа измерений, выполняемых, как правило, с высокой точностью. Для современной науки и техники характерны процессы, протекающие при очень высоких или очень низких температурах, в условиях вибраций и других видов механических нагрузок и перегрузок, высоких давлениях или глубоком вакууме, в самых разнообразных частотных диапазонах, при наличии электромагнитных и радиационных полей. Все это предъявляет к измерительной технике требования no tOHHHOro совершенствования, создания новых методов измерений, повышения точности измерений, их автоматизации. Развитие средств и методов измерений неразрывно связано с их стандартизацией.  [c.79]

Кроме того, может наблюдаться противоположный эффект, т.е. массоперенос титана в материал подложки. Процесс массопереноса элементов покрытия при ионно-плазменном осаждении нитрида титана осуществляется радиационно-стимулированной диффузией и диффузией по границам зерен. При этом скорость диффузии зависит от размеров зерна массоперенос по фаницам более крупных рекристаллизованных зерен протекает в несколько раз медленнее, чем по границам мелких зерен. <1 азовый состав покрытия в зависимости от давления азота изменяется от трехфазного o.-Ti + TiiN + TiN [96] при давлении азота 6,6- 10 Па к двухфазному a-Ti + TiN при давлении азота 6,6 10 -Па и к однофазному при давлении азота 0,2 Па и выше. Количество металлического титана в структуре покрытия падает до нуля с увеличением давления азота при sa 0,5 Па [96]. По данным  [c.184]

Формирование покрытий и особенности структуры переходных слоев в значительной степени зависят от технологических параметров процесса нанесения покрытий, в частности от плотности потока и энергии ионов в процессах бомбардировки и конденсации покрытия, а также от давления реакционного газа. В сочетании со временем воздействия энергия ионов определяет поверхностную температуру, с которой связано протекание плазмохимических реакций. Перед нанесением покрытия проводят очистку поверхности мишени ионной бомбардировкой. Кроме очистки зафязненной поверхности, происходит образование различных дефектов поверхностного слоя основы за счет радиационных повреждений, что создает благоприятные условия для процесса конденсации и роста покрытия. Это сопровождается ионным легированием и насыщением приповерхностных слоев компонентами [юкрытия, что способствует повышению адгезии с материалом основы.  [c.247]

Постепенный переход пузырькового режима в пленочный, осу ществляемый на участке КВ, практически реализуется при омы вании другой стороны теплопередающей поверхности, на которой происходит кипение, более горячим конденсирующимся паром В этом случае температура поверхности а следовательно, пере грев жидкости определяется давлением конденсирующегося пара и от процесса кипения не зависит. Если при подводе теплоты неза висимой величиной является плотность теплового потока, то рез кий скачок температурного напора происходит по штриховой линии СО. Такой случай практически возможен на радиационных поверх ностях нагрева паровых котлов или при электрическом обогреве Переход пузырькового кипения в пленочное может сопровождаться перегревом и разрушением поверхности нагрева.  [c.218]

В прямоточных котлах докритического давления испарительные экраны 5 располагают в нижней части топки, поэтому их называют нижней радиационной частью (НРЧ). Экраны, асполо-  [c.11]


Суммарная характеристика перегревателя (температуры t перегрева от паропроизводительности D) может быть конвективной /, радиационной 2 или нейтральной 3 (рис. 140). Выполнение условия t (D) = onst (кривая 3) возможно лишь в тракте высокого давления прямоточных котлов. Характеристика t (D) барабанных котлов является в общем случае конвективной несмотря на наличие потолочных перегревателей и ширм, а промежуточных перегревателей — чисто конвективной.  [c.238]

Паро-паровой теплообменник (ППТО) нашел применение благодаря особенностям теплообмена в радиационных и конвективных поверхностях. Если перегреватель высокого давления имеет развитую радиационную поверхность, то температура в нем при уменьшении нагрузки котла будет расти. Получающийся избыток теплоты в тракте высокого давления передается промежуточному пару в паро-паровом теплообменнике.  [c.242]


Смотреть страницы где упоминается термин Давление радиационное : [c.134]    [c.114]    [c.34]    [c.114]    [c.115]    [c.75]    [c.146]    [c.284]    [c.23]    [c.460]    [c.168]    [c.404]   
Физические основы механики и акустики (1981) -- [ c.228 ]

Основы физики и ультразвука (1980) -- [ c.104 ]



ПОИСК



Вектор радиационного давления

Давление звука (см. Радиационное давление)

Давление радиационное (излучения)

Излучение параметр радиационного давления

Методы основанный на измерении радиационного давления

Методы радиационного давления (метод радиометра)

Методы, основанные па измерении радиационного давления и акустических потоков

Поглощение звука шумом. Акустическая турбулентность ПО Радиационное давление. Акустические течения

РАДИАЦИОННОЕ ДАВЛЕНИЕ Радиационные силы в свободном пространстве

Радиационная сила давления звука на взвешенные сферические

Радиационное давление (давление звукового излучения)

Радиационное давление в кавитационной области

Радиационное давление г- влияние на движение пузырько

Радиационное давление на диск

Радиационное давление на малые частицы

Радиационное давление на препятствия

Радиационное давление на препятствия, размеры которых больше длины волны или сравнимы с ней

Радиационное давление на пузыр

Радиационное давление сферу

Радиационное давление ультразвука

Радиационное давление частицу аэрозоля

Радиационное давление частицу в звуковом поле

Радиационное давление. Общие сведения

Резонансное давление света на атомы. Радиационное охлаждение атомных частиц в ловушках

Рэлеевское радиационное давление

Сила радиационного давления

Силы радиационного давления, действующие па препятствия

Фактор радиационного давления

Экспериментальные методы определения радиационного давления



© 2025 Mash-xxl.info Реклама на сайте