Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тензор Понятие

Скалярное произведение двух тензоров. Понятие скалярного произведения двух тензоров является обобщением соответствующего понятия для векторов. Для любых двух тензоров, например, заданных следующим образом  [c.16]

До сих пор мы рассматривали тензоры и тензорные операции, не привлекая понятия компонент тензора. С такой ситуацией мы уже сталкивались при рассмотрении векторов, когда наглядно представляли их в виде стрелок в пространстве. С введением векторного базиса е , е , бд компоненты тензора в выбранном базисе можно определить как  [c.23]


Важно проводить строгое различие между системами отсчета и системами координат. В разд. 1-2 мы ввели понятие системы координат как некоторого соотношения, ставящего в соответствие точкам пространства упорядоченные тройки чисел. Ясно, что это соотношение можно определить бесконечным числом способов в одном и том же пространстве, т. е. в одной и той же системе отсчета. Если в одной и той же системе отсчета изменить систему координат, то векторы и тензоры не изменятся, а изменятся лишь их компоненты.  [c.36]

В противоположность этому под жидкими материалами понимают такие материалы, которые не имеют предпочтительной формы, так что попытка соединения интуитивных понятий упругости и текучести приводит, по крайней мере на первый взгляд, к внутреннему противоречию. Действительно, та идея, что текучие материалы нечувствительны к деформации, приводит к концепции, что внутренние напряжения должны определяться скоростью деформации,— концепции, которая воплощена в уравнении (2-3.1). (Тензор растяжения D, как будет показано в следующей главе, описывает мгновенную скорость деформации.)  [c.74]

Следует подчеркнуть, что в определении, выражаемом уравнением (2-7.5), не используются понятия системы координат и компонент. Таким образом, например, тензор А есть оператор, определенный на основе оператора А (т) путем выполнения над последним действий, предписываемых уравнением (2-7.5).  [c.79]

Из уравнений (3-2.17) и (3-2.19) следует, что тензор растяжения D характеризует скорость растяжения в момент наблюдения — понятие, которое было использовано в гл. 2. Разумеется, если рассматривать уравнение (3-1.34), то тензор D также можно отождествить со скоростью деформации. Продифференцируем теперь уравнение (3-1.11)  [c.101]

Применим теперь введенные понятия к простейшему примеру нейтрального тензора, а именно к единичному тензору (который может рассматриваться как функция времени, хотя и имеющая постоянное значение). Из уравнений (3-3.21) и (3-3.22) можно получить  [c.108]

Применим теперь те же самые понятия к другому нейтральному зависящему от времени тензору, скажем к тензору полных напряжений Т. Тогда  [c.109]

Конечно, простейший пример функции имеет место в случае, к гда как аргумент (или аргументы), так и значение функции являются скалярными величинами. Тем не менее распространение этого понятия на другие случаи оказывается интуитивно весьма несложным. В частности, мы трактовали тензоры как векторные функции векторных аргументов, обладающие специальным свойством линейности. Кроме того, мы встречались с функциями тензорных аргументов, значения которых могут быть скалярами, векторами или тензорами.  [c.134]


ВЫЧИСЛЕНИЕ ОСЕВЫХ И ЦЕНТРОБЕЖНЫХ МОМЕНТОВ ИНЕРЦИИ ТВЕРДОГО ТЕЛА. ПОНЯТИЕ О ТЕНЗОРЕ ИНЕРЦИИ ТЕЛА В ДАННОЙ ТОЧКЕ  [c.105]

Понятие о тензоре инерции тела в данной точке. Моменты инерции твердого тела относительно координатных осей, проходящих через некоторую точку О, и центробежные моменты инерции относительно этих осей представляют собой шесть величин, зависящих от положения точки О и от направления осей, так как с их изменением изменяются координаты точек тела Xi, yi, Zi. Эти величины можно расположить в виде симметричной таблицы-матрицы  [c.109]

Курс начинается с раскрытия понятия аффинного точечно-векторного пространства как формальной аксиоматической основы построений теоретической механики. Строится теория преобразований системы скользящих векторов к простейшему виду. Вводится понятие центра масс и тензора инерции и развивается геометрия масс. Весь этот аппарат, помимо теоретической механики, может быть эффективно применен и в некоторых разделах математики [7, 50]. Чтобы подчеркнуть это, ему придана векторно-алгебраическая форма.  [c.10]

Понятие тензора связано с началом  [c.173]

Свёртывание, сложение, симметричность, альтернирование, идеи, понятие, частный случай, свойства, поле, определение, компоненты, элементы, главные значения, главные оси. .. тензора. Умножение вектора. .. на тензор. Действия. .. над тензором. Скалярное произведение. .. тензоров.  [c.88]

Формулы преобразования позволяют указать аналитическое определение скаляров и векторов, которое легко обобщается и приводит к понятию о тензорах.  [c.42]

Понятие о тензорах. Скаляры и векторы как тензоры соответственно нулевого и первого рангов  [c.43]

Рассматривая перемещение тела за бесконечно малый промежуток времени и применяя теорему Эйлера — Даламбера, мы снова придем к заключению о существовании мгновенной оси вращения. Применяя далее результаты 61, получим вновь понятие о мгновенной угловой скорости. Однако этот способ следует признать менее общим, чем рассмотренный в предыдущем параграфе, так как он не вскрывает первообразных свойств угловой скорости как антисимметричного тензора второго ранга.  [c.115]

Рассмотрим некоторые обобщения понятий, введенных в 204. Скалярные и векторные поля представляют собой частные случаи тензорных полей. Тензорным полем называется часть пространства, каждой точке которого можно поставить в соответствие определенное значение компонент тензора. Тензор, определенный этими компонентами, является функцией точки поля или ее радиуса-вектора.  [c.385]

Предположим дополнительно, что гидростатическое давление (первый инвариант тензора напряжений) не влияет на зависимость между девиаторами напряжений и деформаций. Строго говоря, эта гипотеза неверна, но для многих металлов и сплавов она выполняется с достаточно большой точностью, введение же этой гипотезы позволяет намного упростить построение теории. Пусть, для простоты, отличны от нуля два компонента девиаторов. Тогда процесс нагружения в фиксированной точке тела будет изображаться кривой на плоскости а°, а°, процесс деформирования — кривой на плоскости е , Упомянутая выше зависимость связи напряжений с деформациями от истории нагружения означает, что деформированное состояние в данной точке тела зависит от всей кривой на плоскости а°, (т . Математически этот факт эквивалентен тому, что соотношения между напряжениями и деформациями в пластической области, вообще говоря, будут либо дифференциальными неинтегрируемыми, либо операторными зависимостями. Теории, использующие дифференциальные неинтегрируемые соотношения, известны как теории течения они, как правило, строятся с использованием введенного выше понятия поверхности текучести. Рассмотрим простейший класс операторных теорий, которые применяются только для специального вида процессов нагружения.  [c.267]

Другой пример тензора ранга 1 связан с введенным выше понятием линейной формы ф = ф(и) на R . В самом деле, для любого а R имеем а,- = Ф(й,-),  [c.310]

Обратно, каждому тензору ранга р можно с помощью формулы (1.30) поставить в соответствие некоторую р-линейную форму на R , т. е. между множеством р-линейных форм и множеством тензоров ранга р существует взаимно-однозначное соответствие. Следовательно, понятие тензора ранга р можно определить с помощью р-линейных форм на  [c.312]


Прежде всего, однако, возникает вопрос о более точном определении самого понятия скорости и . В релятивистской механике всякий поток энергии неизбежно связан также и с потоком массы. Поэтому при наличии, например, теплового потока определение скорости по потоку массы (как в нерелятивистской гидродинамике) теряет непосредственный смысл. Мы определим здесь скорость условием, чтобы в собственной системе отсчета каждого данного элемента жидкости его импульс был равен нулю, а его энергия выражалась через другие термодинамические величины теми же формулами, как и при отсутствии диссипативных процессов. Это значит, что в указанной системе отсчета должны обращаться в нуль компоненты тоо и тензора т, поскольку в этой системе и = О, то имеем в ней ( а потому и в любой другой системе) тензорное соотношение  [c.703]

Пользуясь понятием о сопряженном тензоре и равенствами (16), (17), найдем  [c.118]

Понятие о напряжении в точке. Тензор напряжении  [c.6]

В заключение рассмотрим понятие о тензоре скоростей деформации и интенсивности скоростей деформации сдвига (уг). Если через е, гу, бг обозначить скорости относительных удлинений элементарного объема в направлении координатных осей, а через у г/. Уг — скорости угловых деформаций, то тензор скоростей деформаций примет вид  [c.100]

Нам хорошо известно понятие векторной величины, которая определяется тремя числами. Напряженное состояние определяется уже не тремя , а шестью числами и представляет собой еще более общее понятие, называемое тензором. Тензорной величине не удается найти простого геометрического толкования, как вектору. Вектор мы для наглядности изображаем стрелкой, задавая, например, координаты конца вектора тремя числами. С тензором подобные изобразительные приемы не проходят. Тензор обычно задают в виде таблицы-матрицы хотя бы, например, такого вида  [c.19]

Аналогично понятию тензора напряжений введем понятие тензора деформаций, который записывается следующим образом  [c.21]

Введем понятие направляющего тензора деформаций  [c.23]

Многие задачи механики, теоретической физики и других наук приводят к понятию тензора. Это понятие имеет более сложный характер, нежели понятие вектора. Определение вектора как направленного отрезка не дает возможности естественным обобщением перейти к понятию тензора. Поэтому постараемся дать такое определение вектора, эквивалентное прежнему, чтобы обобщение его привело к понятию тензора, которое нельзя пояснить при помощи простого геометрического образа. Для этого нам понадобится ввести в рассмотрение произвольные криволинейные координаты. По отношению к этим координатам и будет дано определение вектора, а впоследствии тензора, как некоторого объекта, не меняющегося при изменении системы координат.  [c.6]

Если рассматривать полилинейную форму, то аналогично придем к понятию тензора любого ранга.  [c.393]

Для окончательного построения связной теории деформирования сплошной среды после введения понятия напряженного и деформированного состояния необходимо, сообразуясь с определенной моделью, установить соотношения между тензором деформаций и тензором напряжений.  [c.216]

Представленный материал располагается в следующей последовательности сначала излагаются законы сохранения нелинейной теории упругости в их каноническом варианте [2] и необходимые для дальнейшего элементы теории поля, затем на основании теоремы Нетер (Е. Noether) [3] получена общая форма закона сохранения, соответствующая той или иной вариационной симметрии действия, далее с помощью базовых вариационных симметрий даются канонические определения всех важнейших векторных и тензорных полей нелинейной механики сплошных сред, необходимые для вывода нетривиальных законов сохранения в общем нелинейном случае (в том числе с учетом динамического вклада в функционал действия), и, наконец, обсуждается ограниченный вариант теории вариационных симметрии, развитый в [4]. В качестве дополнения следует рассматривать последний раздел статьи, посвященный лагранжиану пустого пространства. Добавление лагранжиана пустого пространства к лагранжиану физического поля не изменяет условий стационарности действия, хотя и может изменять выражения для канонических тензоров. Понятие о лагранжиане пустого пространства совершенно необходимо для установления степени определенности канонических тензорных полей, входящих в формулировку как классических, так и нетривиальных законов сохранения.  [c.658]

В настоящее время имеется большое количество работ, посвященных анализу прочности и долговечности материалов и элементов конструкций. В ряде публикаций проблема прочности и разрушения рассматривается с феноменологических позиций— на базе концепций механики деформируемого твердого тела. К другому направлению относятся работы по развитию физики прочности и пластичности материалов, в которых анализ рузрушения проводится на атомарном и дислокационном уровнях, т. е. на микроуровне. В этих исследованиях весьма затруднительно включение в параметры, управляющие разрушением, таких основных понятий механики, как, например, тензоры деформаций и напряжений или жесткость напряженного состояния. Поэтому в последнее время интенсивное развитие получило направление, которое пытается соединить макро- и микроподходы при описании процессов повреждения и разрушения материала и формулировке критериев разрушения.  [c.3]

Нам известно понятие числа и понятие вектора как величины, определяемой тремя числами. Напряженное состояние определяется уже не тремя, а шестью числами и представляет собой тензор. Тензору в отличие от вектора не может быть дано простого геометрического толкования, и тензор обычно задают матрицей (таблицей), иаписаипой, например, в виде  [c.234]


Найденный нами вектор с компонентами j называется дополнением к бивектору с компонентами Он совпадает с векторным произведением ахЬ. Эти понятия можно обобщить на пространство произвольного количества измерений, а также перейти от бивекторов к поливекторам. При этом выясняется, что векторное произведение существует как вектор лишь в трехмерном пространстве. Чтобы выяснить еще некоторые существенные свойства тензоров, рассмотрим применение косоугольных декартовых координат.  [c.49]

Теперь мы можем обобщить понятие тензора, введенное нами первоначально в ортогональной системе декартовых координат. Рассмотрим сначала тензоры второго ранга. Применяя контрава-риантные и ковариантные компоненты векторов а и Ь, можем построить четыре мультипликативных тензора второго ранга. Эти тензоры имеют следующие компонешы  [c.55]

При переходе от одноосного напряженного к сложному напряженному состоянию возникает проблема формулировки условий перехода от упругого деформирования к упругопластическому. Если рассмотреть девятимерное пространство, каждое измерение которого соответствует одному компоненту тензора напряжений, то, обобщая понятие предела текучести, в этом пространстве можно ввести поверхность текучести, обладающую тем свойством, что при выходе точки, изображающей напряженное состояние данной частицы, на эту поверхность материал переходит в пластическое состояние. Таким образом, условие перехода от упругого состояния к упругопластическому, или, как говорят, условие текучести, может быть записано в виде  [c.265]

Тензор потока импульса, переносимого турбулентными пульсациями, называют тензором рейнольдсоаых напряжений-, это понятие было введено Рейнольдсом (О. Reynolds, 1895).  [c.247]

Если ф( /)=0, то траекторию частицы называют геодезической линией в двумерном пространстве. Поскольку эта линия лежит на поверхности, то она не является прямой , а реальное движение частицы не будет прямолинейным равномерным. Понятие геодезической связано с производной вектора по направлению. Следует отметить, что в криволинейных К0 рдинатах производная вектора не является тензором. Величина также не обра-  [c.82]

В гл. 1 были введены понятия тензоров, хнаровых тензоров и де-виаторов напряжений и деформаций. Там н е отмечено, что тензоры напряжений и деформаций полностью определяются их направляющими тензорами DD , средними значениями напряжений Оср и деформаций Вср (или объемной деформацией 0) и интенсивностями напряжений о и деформаций е .  [c.299]


Смотреть страницы где упоминается термин Тензор Понятие : [c.115]    [c.134]    [c.46]    [c.57]    [c.254]    [c.505]    [c.9]    [c.694]   
Механические свойства металлов Издание 3 (1974) -- [ c.29 , c.30 , c.32 , c.45 , c.52 ]



ПОИСК



Вычисление осевых и центробежных моментов инерции твердого тела Понятие о тензоре инерции тела в данной точке

ДОБАВЛЕНИЯ Добавление I. О понятии тензора

ОСНОВНЫЕ ПОНЯТИЯ ТЕНЗОРНОГО ИСЧИСЛЕНИЯ Ортогональные тензоры

Обобщение понятия тензор

Понятие о напряжении в точке. Тензор напряжений

Понятие о тензорах. Скаляры н векторы как тензоры соответственно нулевого и первого рангов

Понятие о тензоре деформаций

Понятие о тензоре напряжений

Преобразование координат. Общее понятие, тензора



© 2025 Mash-xxl.info Реклама на сайте