Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние движения окружающей среды

ВЛИЯНИЕ ДВИЖЕНИЯ ОКРУЖАЮЩЕЙ СРЕДЫ  [c.131]

В значительно большей степени оказывает влияние температура окружающей среды на величину силы, необходимой для отрыва поршня и его движения.  [c.148]

Под влиянием температуры окружающей среды, атмосферных воздействий и налипания на кузов грязи, содержащей органические и неорганические кислоты, происходят необратимые изменения химических свойств лакокрасочных покрытий. Потеря эластичности лакокрасочного покрытия происходит также под влиянием деформаций и вибраций кузова при движении автомобиля, в результате чего на его поверхности образуются микротрещины, происходит обнажение металла, что способствует его коррозии. В результате слой краски на поверхности кузова автомобиля постепенно тускнеет и разрушается.  [c.122]


Постоянно возрастающее количество автомобилей оказывает определенное отрицательное влияние на окружающую среду и на здоровье человека. Миллионы автомобильных двигателей загрязняют и отравляют атмосферу отработавшими газами, особенно в крупных городах, где движение транспорта очень интенсивное. Шум работающих двигателей и движущихся автомобилей оказывает раздражающее действие на нервную систему людей, мешает им работать и отдыхать. Движущийся с высокой скоростью автомобиль представляет в определенных условиях опасность для жизни людей, находящихся как на дороге и вблизи ее, так и в самих автомобилях. Все эти отрицательные воздействия автомобилей на людей и окружающую среду нельзя полностью исключить, но можно в значительной степени уменьшить.  [c.14]

Для характеристики влияния температуры окружающей среды введен коэффициент, показывающий отношение продолжительности времени движения ходовой части конвейера в зоне предельных температур (например, в сушильной или охладительной камерах) ко времени Гц всего цикла движения ходовой части конвейера  [c.225]

Методы диагностирования автомобилей характеризуются физической сущностью диагностических параметров. Они делятся на две группы (рис. 4.15) измерения параметров эксплуатационных свойств автомобиля (динамичности, топливной экономичности, безопасности движения, влияния на окружающую среду) и измерения параметров процессов, сопровождающих функционирование автомобиля, его агрегатов и механизмов нагревы, вибрации, шумы и др.). Кроме того, существует группа методов диагностирования, обеспечивающих измерение геометрических величин, непосредственно характеризующих техническое состояние механизмов автомобилей.  [c.75]

Один из важных вопросов влияния на окружающую среду преобразования энергии волн в прибрежной зоне - это воздействие на процессы в ее пределах. Вещества, перемещаемые волнами, назьшаются прибрежными наносами. Движение их необходимо для стабилизации береговой полосы, т. е. баланса между эрозией и отложениями. В связи с этим цепь из преобразователей энергии волн целесообразно устанавливать в местах намечаемых волноломов, чтобы они выполняли двойную функцию использование энергии  [c.171]

Броуновское движение - беспорядочное движение мельчайших частиц, взвешенных в жидкости или газе, под влиянием ударов молекул окружающей среды,  [c.147]

Чтобы понять это очень важное обстоятельство, обратимся к схеме рис. 138. Скорость в отверстии образуется за счет энергии давления в резервуаре. Давление в вытекающей струе равно давлению окружающей среды и управляется им, поскольку влияние среды распространяется на струю (сечение К—К) с местной скоростью звука. Вследствие того, что сами частицы газа движутся из резервуара наружу со скоростью истечения о, скорость распространения влияния окружающей среды против движения относительно отверстия составит а — о. Однако указанное внешнее влияние среды действует на процесс истечения до тех пор, пока скорость истечения меньше а.  [c.248]


Износ систем и агрегатов Во многих сложных машинах можно выделить отдельные системы и агрегаты, работоспособность которых в основном зависит от их износа и в меньшей степени от влияния других узлов и механизмов машины. Износ таких систем и агрегатов и его влияние на выходные параметры целесообразно изучать самостоятельно, но учитывать воздействия на данную систему других агрегатов машины, которые для нее играют роль окружающей среды. Взаимодействие и влияние износа отдельных пар трения рассматривается в пределах данной системы или агрегата. Примером таких узлов могут служить гидравлические системы и агрегаты машин [82, 107]. Износ элементов гидросистемы— насосов, распределительных пар, уплотнений, силовых цилиндров, поршней—непосредственно сказывается на выходных параметрах системы — точности передачи движения или управляющего воздействия, КПД, передаваемых нагрузках и др. Износ других элементов машины скажется в основном на силовых и тепловых нагрузках в гидросистеме, но не повлияет на изменение ее внутреннего состояния. Целесообразно также самостоятельно изучать износ пневматических систем, систем управления, систем подачи топлива, смазки, охлаждения, тормозных систем [39 ], и др. Сказанное можно отнести и ко многим агрегатам машины — двигателю и его системам, приводным коробкам передач,  [c.368]

До сих пор рассматривались механические элементы, определяющие динамическое поведение конструкций. В большинстве случаев конструкции являются не изолированными, а располагаются на поверхности сплошной среды или окружены ею. Поскольку упругие волны могут распространяться во всех средах, то следует ожидать некоторого взаимодействия с этими средами. Например, колеблющаяся конструкция возбуждает акустические волны в воздухе, которые будут слышны, если их интенсивность и частота располагаются в пределах чувствительности уха. Акустические волны будут также отражаться от окружающей среды и влиять на динамическое поведение конструкции. Аналогично, когда акустические волны от одного источника, например колеблющейся поверхности, падают на другую гибкую поверхность, они порождают на этой поверхности нагрузки в виде периодически меняющегося давления, что заставляет ее колебаться и в свою очередь излучать акустические волны (рис. 1.25). В принципе явление акустических взаимодействий с конструкцией можно описать уравнениями движения конструкции и окружающей среды. До сих пор ввиду сложности геометрии действительных конструкций и многократности отражений акустических волн это совсем не легкая задача, и обычно только очень простые идеализированные задачи могут быть решены с необходимой степенью точности. Однако эти простые классические решения могут оказать значительную помощь в понимании сути явления и в интерпретации результатов экспериментальных исследований или очень громоздких расчетов на ЭВМ, Особенно важно помочь инженерам понять суть результатов различных замеров шумов и колебаний, получаемых ими, а также оценить влияние изменений различных параметров. Без подобных экспериментов получение и оптимизация данных экспериментов с целью снижения шума установок и решения реальных задач подавления колебаний будет, разумеется, очень сложным делом. Некоторые работы общего характера [1.47— 1.52] могут представить интерес для читателей, которые только начинают знакомиться с этой темой.  [c.52]

Если не учитывать теплообмен ЦТТ с окружающей средой и не рассматривать теплопередачу через стенки, то величина теплового потока, передаваемого ЦТТ, зависит от протекания двух процессов теплообмена при кипении рабочей жидкости в зоне нагрева ЦТТ и при конденсации пара в зоне охлаждения. На интенсивность этих процессов существенное влияние оказывают поле центробежных сил, организация движения рабочей жидкости по поверхности теплообмена, взаимодействие потоков пара и жидкости, наличие неконденсирующихся газов, состояние поверхности теплообмена и др.  [c.84]


Состояние учения о свободной конвекции в настоящее время таково, что многие стационарные задачи имеют точные или приближенные аналитические решения. Среди аналитических работ преобладают исследования ламинарных потоков, возникающих при свободной конвекции. Труднее математической обработке поддаются вопросы свободной конвекции при турбулентном течении в пограничном слое. В этом случае, как и в случае ламинарного режима, для описания теплообмена в условиях свободной конвекции применяются методы теории подобия с широким использованием эксперимента. Изучение вопросов нестационар- ной свободной конвекции имеет также большое значение. Одним из важнейших вопросов теории нестационарного теплообмена в условиях свободного движения является вопрос о влиянии вибраций на конвективные процессы. Вибрационный эффект, создаваемый или перемещением нагретой поверхности в окружающей среде или подводом возмущений в виде акустических или других периодических колебаний к самой среде, может изменить теплоотдачу в несколько раз. Такое изменение теплоотдачи позволяет качественно по-другому подходить к решению новых задач в условиях естественной конвекции, и в настоящее время обширные исследования посвящены этому вопросу. Получить общее аналитическое решение задачи не всегда удается, поэтому большинство работ посвящено экспериментальному и аналитическому исследованию частных случаев.  [c.143]

ЖИДКОЙ пленки, связи которого с окружающей средой учитываются не полностью. Влиянием газодинамической силы взаимодействия пленки с парокапельным пограничным слоем, гравитационной силы п силы, обусловленной изменением массы элемента при выпадении или уносе капель, а также при конденсации или испарении, пренебрегаем. Не учитывается, кроме того, волновая структура внешней поверхности пленки. В такой постановке можно получить некоторые важные сведения о возможных траекториях движения жидких частиц по криволинейным поверхностям лопатки.  [c.163]

Внешние вибрации окружающей среды, вызывающие периодическое движение точки О закрепления упругого элемента k . Наиболее опасной помехой является гармоника этого возмущения по частоте, совпадающей с частотой вращения ротора О), а поэтому для оценки влияния  [c.19]

Диссипативные процессы вязкость и теплопроводность — стремятся сравнять темп-ру в поднимающемся элементе с темп-рой окружающей среды. Их стабилизирующее влияние существенно только для мелкомасштабных движений. Вблизи границы потери устойчивости конвективные движения носят регулярный (ламинарный) характер. Когда Рейнольдса число Ле= Lv/v L — характерный размер, v кинематич. вязкость, V — скорость конвективных движений) превысит 10, произойдёт турбулизация конвективных движений.  [c.434]

Обычно между трущимися поверхностями имеется тонкая пленка оксидов, которая изолирует поверхности соприкасающихся металлов. Механизм изнашивания и величина износа зависят как от свойств материала пар трения, так и от характера их движения (трение скольжения, качения и т. д.), величины Р, скорости перемещения V и физико-химического действия среды. Ниже описаны различные разновидности изнашивания. Чаще имеют место коррозионно-механическое или окислительное изнашивание. Окислительным называется изнашивание, при котором основное влияние на изнашивание оказывает химическая реакция материала 6 кислородом или окисляющей окружающей средой.  [c.105]

Под вредностью автомобильного транспорта понимается уровень его отрицательного влияния на население, персонал и окружающую среду. Это влияние проявляется в токсичности отработавших газов (ОГ) и картерных газов, испарений топлив, масел и кислот насыщении продуктами износа шин, асбестовых и металлических материалов окружающей среды шумах, возникающих при движении автомобилей загрязнении производственных помещений и их атмосферы при ТО, ремонте, хранении загрязнении воды и грунта при ТО и ремонте потреблении кислорода воздуха для процессов сгорания и воды при техническом обслуживании автомобилей.  [c.367]

Характерной особенностью задач динамики судовых конструкций является необходимость учета влияния жидкости, окружающей корабль и находящейся в отсеках. Жидкость при этом оказывается не только средой, в которой возбуждаются интенсивные поля давлений, но также играет роль источника динамических нагрузок на корпус при движении корабля в условиях волнения.  [c.435]

Россия принимает непосредственное участие в работе Комитета по внутреннему транспорту (КВТ ЕЭК ООН), в центре внимания которого вопросы дорожного движения и безопасности, влияния транспорта на окружающую среду, а также разработка международных стандартов на конструкцию автотранспорта, судов, вагонов и контейнеров, вопросы упрощения процедур международной торговли. КВТ не только форум для обмена информацией и решения проблем, но и орган, в рамках которого заключаются международные соглашения и вырабатываются международные рекомендации.  [c.39]

На различные процессы взаимодействия излучения с атомными системами существенно влияет релаксация атомов или молекул. Причины релаксации станут понятными, если при реальной оценке атомных систем, которые первоначально рассматривались как изолированные, учесть влияние окружающей систему среды. Такой учет является неизбежным. Рассмотрим, например, определенную молекулу в газе. Ее поведение в первом приближении определяется электронной и ядерной структурой изолированной молекулы. Однако вследствие, например, стохастического, поступательного движения окружающие молекулы будут влиять на данную молекулу. Другими примерами релаксационных механизмов могут служить воздействие тепловых колебаний решетки в твердых телах и спонтанное испускание. Здесь речь идет о необратимых процессах, которые характеризуются связью между интересующей нас динамической системой (с относительно малым числом степеней свободы) и диссипативной системой с очень большим числом степеней свободы. Такая система образуется окружением и называется термостатом. Гамильтониан такой системы в целом состоит из трех частей  [c.43]


Описаны устройство, назначение и принципы работы механизмов, агрегатов и систем современных отечественных автомобилей, технологические и конструктивные мероприятия, повышающие надежность автомобиля. Освещены вопросы влияния конструкции автомобиля на безопасность движения, экономичности автомобиля, охраны окружающей среды.  [c.312]

Физически это нужно понимать так силы трения (направленные навстречу течению) способствуют переходу части механической энергии движущейся жидкости в энергию теплового движения молекул. Эта теплота непрерьшно рассеивается в окружающей среде и в данном случае сколько-нибудь существенного влияния на рассматриваемые физические процессы не оказывает.  [c.71]

Картина течения, наблюдаемая на опыте, находит объяснение, если предположить, что после того как поток вышел за пределы канала, действие сил трения не оказывает существенного влияния на движение частиц и рассматривать струю так, как это делается в теории струй идеальной жидкости. В связи с этим еще раз следует напомнить данные раздела книги Бай Ши-и [7], посвященного струям идеальной жидкости, о которых говорится в 7. Здесь отмечается, что при истечении воздуха или другого газа в окружающее пространство под давлением, превышающим давление окружающей среды на несколько мил-  [c.206]

При трогании с места. Приведенные выше формулы и графики для определения удельного основного сопротивления, полученные опытным путем, действительны только при скорости выше 10 км ч. При скорости от О (момент трогания поезда с места) до 10 км ч закономерность изменения сопротивления имеет другой характер (рис. 54). Это явление объясняется тем, что при трогании поезда с места, особенно после продолжительных стоянок, смазка постепенно выдавливается из-под подшипников. Поэтому в первые моменты трогания между шейкой и подшипником возникает не жидкостное, а полужидкостное или даже полусухое трение и коэффициент трения при этом значительно повышается. Кроме того, на увеличение сопротивления в момент трогания оказывает влияние и повышение трения качения колеса по рельсу, так как при продолжительных стоянках увеличивается вдавливание бандажа в рельс по сравнению с вдавливанием при движении. Степень повышения сопротивления при трогании зависит от длительности стоянок, причем она наиболее интенсивно увеличивается в первые 20—30 мин, от нагрузки от оси на рельс, температуры окружающей среды, состояния ходовых частей, в меньшей степени от рода смазки, так как последняя во время стоянки стекает с шейки оси.  [c.88]

Чтобы предупредить неисправность, надо знать те условия и обстоятельства, при которых эта неисправность может возникнуть. Поэтому необходимо хорошо знать путь, каждую его часть знать, какие в нем происходят изменения под воздействием проходящих поездов и под влиянием окружающей среды, метеорологических явлений. Многие изменения, происходящие в пути, известны известны и способы борьбы с ними. Например, под воздействием проходящих поездов рельсы перемещаются по направлению движения. Это явление получило название угона пути. При загрязненном балласте и плохом отводе воды от балластной призмы зимой наблюдаются вспучивания пути. Оба явления вызывают большие расстройства рельсовой колеи, если против них не принять соответствующих мер.  [c.294]

Современные печи работают в основном на газообразном и жидком топливе, следовательно, с вынужденным движением газов, обусловленным напорами факелов горелок (форсунок). При этом расположение и размеры каналов для отвода дымовых газов, уходящих из рабочей камеры, часто не оказывают существенного влияния на общую картину движения газов а картина эта такова. При большом объеме рабочей камеры печи, когда размеры (поперечное сечение) струи газов невелики по сравнению с камерой, наблюдается резко очерченная форма струи (факела) причем по выходе струи из насадки горелки (форсунки) ее сечение постепенно увеличивается, и струя, вытекающая из круглой насадки, принимает коническую форму 118], [70]. Увеличение сечения струи и падение ее скорости происходит вследствие трения между струей и окружающей средой. Скорость истечения струп по ее сечению неодинакова (фиг. 63). Внеш-  [c.102]

Диагностирование автомобиля в целом проводят для определения уровня показателей его эксплуатационных свойств мощности, топливной экономинностн, безопасности движения и влияния на окружающую среду. Выявив снижение этих показателей по сравнению с установленными нормами, проводят углубленное  [c.131]

В системах управления дорожных машин наряду с гидроприводом распространены механические передачи — редукториые, канатно-блочные и рычажные. Эти передачи надежны в работе и просты в обслуживании. На их эксплуатацию не оказывает влияния температура окружающей среды. Редукториые передачи применяются на автогрейдерах и грейдер-элеваторах, канатно-блочные — на скреперах, бульдозерах, кусторезах и некоторых других навесных машинах. На рис. 38 изображена канатноблочная система бульдозера. Она состоит из лебедки 1, каната 2, направляющего блока 3 и полиспаста, в неподвижной обойме которого закреплены блоки 4 и 5, а в подвижной — 6 и 7. Подвижная обойма закреплена на отвале. При наматывании каната на барабан отвал поднимается, так как расстояние между обоймами сокращается. Когда барабан вращается в обратную сторону, отвал под действием силы тяжести опускается, поэтому максимальное усилие на грунт ограничивается массой бульдозерного оборудования. Так как канаты дорожных машин работают в тяжелых условиях при больших динамических нагрузках, необходимо конструктивными мерами повышать их работоспособность и надежность. С этой целью следует по возможности сокращать количество перегибов, а диаметры блоков и барабанов выбирать как можно больше. В зависимости от режима работы отношение диаметра блока или барабана к диаметру каната должно находиться в пределах от 15 до 30. Из-за громоздкости конструкций, очень низкого к. п. д. и возможности создания принудительного движения только в одном направлении канатно-блочные системы вытесняются гидравлическими, которые обеспечивают незави- 62  [c.62]

Хинце [197], рассматривая проблемы переноса в турбулентных потоках, ввел понятие жидкого моля, под которым понимает достаточно протяженную часть жидкого континуума, состоящую из когерентного конгло (ерата жидких частиц . Размер жидкого моля сравним с интефальным масштабом турбулентного движения, причем обмен его с окружающей средой будет определяться влиянием мелкомасштабных турбулентных движений. В процессе перемещения в радиальном направлении, совпадающем с направлением фадиента давления и при противоположном движении, турбулентные моли совершают микрохолодильные циклы. В рамках формализма Прандтля предполагается, что каждый жидкий или, как его еще называют, турбулентный моль в процессе турбулентного движения представляет собой некоторую индивидуальность, сохраняющую свою субстанцию в течение некоторого характеристического промежутка времени. Необходимо помнить, что имеющие место пульсации давления при перемещении моля на длине пути смешения / будут сопровождаться переносом импульса. Тогда, если импульс не сохраняется, нарушается требование, предъявляемое Прандтлем к транспортабельной субстанции,— турбулентному молю. Тем не менее понятие турбулентного моля удобно использовать при анализе задач переноса. Ссылаясь на работу Шмидта [256], Хинце отмечает, что расслоение будет устойчивым, если распределение температуры отличается от адиабатного  [c.164]

В связи с обсуждением опытов Вавилова м ы обращали внимание на изменение числа поглощающих частиц под влиянием мощного падающего излучения. Однако это не единственный эффект, имеющий место при больших интенсивностях света. В 156 подчеркивалась тесная связь законов поглощения и дисперсии с представлением об атоме как о гармоническом осцилляторе, заряды которого возвращаются в положение равновесия квазиупругой силой. Если интенсивность света, а следовательно, и амплитуда колебаний зарядов достаточно велика, то возвращающая сила уже не будет иметь квазиупругий характер, и атом можно представить себе как ангармонический осциллятор. Из курса механики известно, что при раскачивании такого осциллятора синусоидальной внешней силой (частота ш) в его движении появляются составляющие, изменяющиеся с частотами, кратными со, — двойными, тройными и т. д. Пусть теперь собственная частота осциллятора соо. подсчитанная в гармоническом приближении, совпадает, например, с частотой 2ш. Энергия колебаний зарядов в этом случае особенно велика, она передается окружающей среде, т. е. возникает селективное поглощение света с частотой, равной со = /2 0o. Таким образом, спектр поглощения вещества, помимо линии с частотой о),,, должен содержать линии с частотами, равными /гСОо, а также /зй)(, и т. д. Коэффициент поглощения для этих линий, как легко понять, будет увеличиваться с ростом интенсивности света.  [c.570]


В области изучения износа транспортных машин имеются исследования по износу автомобилей [1 98], самолетов [38, 97], железнодорожного транспорта, судовых установок [1011 и др. Характерным для всех транспортных машин является взаимосвязь износа с динамическими параметрами машины. Нередко поломки элементов машины связаны с износом ее механизмов, так как в результате износа возрастают динамические нагрузки. Стремление к высоким скоростям и нагрузкам современных транспортных машин приводит к жестким требованиям в отношении износа основных элементов, влияющих на эти показатели и опре-деляюш,их безопасность движения. Существенно также влияние окружающей среды — запыленности и влаги воздуха, наличия агрессивных сред, возможности столкновения с препятствиями, качества дорог и покрытий аэродромов. Кроме того, из-за сильной изменчивости режимов работы, для транспортных машин характерен широкий диапазон силовых и температурных нагрузок.  [c.367]

ТСЯ из статических, квазистатических и динамических погрешностей (систематических и случайных). Прогибы руки манипулятора различны при различном весе объектов манипулирования, различных вылетах и направлении движения. Поэтому они не всегда могут быть компенсированы у переналаживаемых конструкций роботов. В процессе эксплуатации возникает смещение нуля настройки, которое устраняется при обслуживании. К квазистатическим погрешностям отнесены сравнительно медленно изменяющиеся смещения узлов в процессе их прогрева. Наибольшее количество составляющих относится к динамическим погрешностям, возникающим во время движения или под действием окружающей среды и источников питания энергией (разброс сигналов системы управления при изменении напряжения в сети, колебание фундаментов, воздушные потоки и т.п.). На случайные и систематические погрешности оказывают влияние погрешности изготовления датчиков внутренней системы измерения робота или расстановка упоров у простейших манипуляторов.  [c.84]

Получая приведенные выше формулы, мы стрмились главным образом установить влияние различных факторов на действительный расход через каналы решетки. Из таких факторов мы остановились на внешнем воздействии на поток стенок канала как из-за их кривизны, так и из-за их тормозящего воздействия на поток. Однако и в самом потоке имеются факторы, которые решающим образом воздействуют на поток. Это закономерности самого процесса течения, сопровождаемого расширением, превращением в потоке его потенциальной энергии в кинетическую. В сопловых кольцах, когда поток энергоизолирован от окружающей среды, скорость движения возрастает, число М в потоке увеличивается и во многих практически важных случаях может дойти до значения М = 1, при котором местная скорость становится равной скорости звука а. При этом площадь поперечного сечения потока становится минимальной и массовый расход через единицу площади поперечного сечения достигает максимума. Дальнейший  [c.215]

КОЛЕБАНИЯ (вынужденные [возникают в какой-либо системе под влиянием внешнего воздействия переменного пружинного маятника (характеризуется переходным режимом и установившимся состоянием вынужденных колебаний резонанс выявляется резким возрастанием вынужденных механических колебаний при приближении угловой частоты гармонических колебаний возмущающей силы к значению резонансной частоты) электрические осуществляют в электрическом колебательном контуре с включением в него источника электрической энергии, ЭДС которого изменяется с течением времени] гармонические относятся к периодическим колебаниям, а изменение состояния их происходит по закону синуса или косинуса затухающие характеризуются уменьшающимися значениями размаха колебаний с течением времени, вызываемых трением, сопротивлением окружающей среды и возбуждением волн когерентные должны быть гармоническими и иметь одинаковую частоту и постоянную разность фаз во времени комбинационные возникают при воздействии на нелинейную колебательную систему двух или большего числа гармонических колебаний с различными частотами кристаллической решетки является одним из основных видов внутреннего движения твердого тела, при котором составляющие его частицы колеблются около положений равновесия крутильные возршкают в упругой системе при периодически меняющейся деформации кручения отдельных ее элементов магнитострикционные возникают в ферромагнетиках при их намагничивании в периодически изменяющемся магнитном поле модулированные имеют частоту, меньшую, чем частота колебаний, а также определенный закон изменения амплитуды, частоты или фазы колебаний неавтономные описываются уравнениями, в которые явно входит время некогерентные характерны для гармонических колебаний, частоты которых различны незатухающие не меняют свою энергию со временем нормальные относятся к гармоническим собственным колебаниям в линейных колебательных системах  [c.242]

На основании вышеизложенного можно сделать вывод о том, что разработанная теоретическая модель движения вскипающей жидкости в протяженных трубопроводах при условии реализации критического режима течения на выходе из трубопровода может стать базовой для расчета расхода и потерь на трение при давижении вскипающей жидкости в трубах. При этом основное влияние на расход и потери давления на трение при гомогенном течении оказывают сжимаемость среды в форме числа Маха и физические параметры среды в форме коэффициента Грю-найзена. Другие факторы (как, например, вязкость, скольжение фаз) в исследованном диапазоне параметров являются величинами второго порядка малости. Разумеется, в реальных условиях необходимо учитывать влияние местных сопротивлений, нивелирных напоров по длине трассы и теплообмена с окружающей средой. Учет всех этих факторов предусмотрен разработанной расчетной моделью, однако возможность ее использования в качестве РТМ при проектировании магистральных трубопроводов в схемах АТЭЦ (ТЭЦ) и A T требует ее тщательной проверки путем проведения крупномасштабных модельных или натурных испытаний, особенно при высоких параметрах теплоносителя.  [c.135]

При интенсивном испарении и наличии эф-фузиоиного натекания воздуха из окружающей среды по микрокапиллярам в крупных порах, которые сообщаются,с микрокапиллярами, возникает градиент общего давления. Под влиянием этого градиента общего давления возникает движение пара и воздуха аналогично фильтрации.  [c.436]

Положение Ц. д. зависит от формы тела, а у движущегося тела может ещё зависеть от направления движения и от свойств окружающей среды (её сжимаемости). При движении со сверхзвуковой скоростью Ц.д. значительно смещается к хвосту из-за влияния сжимаемости воздуха. Изменение положения Ц.д. у движущихся объектов (самолёт, ракета, мина и др.) существенно влияет на устойчивость их движения. Чтобы их движение было устойчивым при случайном изменении угла атаки а, Ц. д. должен сместиться так, чтобы момент аэродинамич. силы относительно центра тяжести (положение к-рого также может изменяться в процессе полёта) вызвал возвращение объехта в исходное положение.  [c.424]

Магнитные газоанализаторы основаны на явлении термомагнитной конвекции, которая представляет собой движение кислородосодержащего газа в неоднородных температурном и магнитном полях. Технические данные магнитных газоанализаторов, выпускаемых Вырусским заводом газоанализаторов , ПО Аналитприбор (г Смоленск), приведены в табл. 5.40. Эти газоанализаторы являются микропроцессорными, что позволяет при контроле давления газовой смеси и температуры окружающей среды исключить влияние этих факторов на показания прибора.  [c.368]

Количественная оценка влияния уменьшения массы на затраты, связанные с топливом, дана одним из английских предприятий в работах, посвященных исследованию коробок передач с автоматическим управлением. Эти работы показали, что доля топлива, расходуемого на разгоны типичного европейского автомобиля в соответствии с Правилами Американского агенства по охране окружающей среды при движении по автострадам, составляет 18 % общего расхода топлива. В случае движения в городских условиях указанная доля расхода топлива достигает 38 %, а при проведении 15 циклов дорожных испытаний, предусмотренных Европейским экономическим сообществом, —25 %. Таким образом, можно ожидать, что со снижением массы автомобиля на 1/3 экономия топлива составит 6—12 %. Этот сравнительно скромный вывод показывает, что разработка новых облегченных узлов автомобиля обычно приводит к созданию менее дорогостоящей конструкции как по материальным, так и по трудовым затратам.  [c.10]

На испарение и конденсацию капелек жидкости, оседающих под действием силы тяжести на разные подложки и находящиеся в движении, оказывают влияние различные факторы, связанные как с формой и размером частиц, свойствами веществ, из которых они образованы, так и с характером, окружающей среды. Учёсть влияние всех этих факторов довольно сложно поэтому нил<е рассмотрены лишь те методы приготовления пре-  [c.141]


В результате многолетних исследований прочности стекол был выявлен ряд новых причин, влияющих на получаемые зна-У чения прочности, а именно условия испытаний образца, нродол- жительность его нагружения, влияние окружающей атмосферы, температуры, химического и физического прошлого образца и т. п. Эти зависимости не могли быть объ яснены теорией Гриффиса и статистической теорией, а потому для объяснения их была разработана флуктуационная теория прочности, в которой существенная роль отводится влиянию тепловых движений атомов и молекул около вершины трещины в твердом хрупком теле на величину прочности. Эта теория хорошо объяснила временную и температурную зависимость прочности стекла. Имеющиеся экспериментальные данные о влиянии окружающей среды, строения стекла и состояния поверхностного слоя образца на его прочность пока не нашли достаточно аргументированного научного объяснения.  [c.22]

Геофизическая турбулентность. Турбулентные движения всегда диссипативны, поэтому они не могут поддерживаться сами по себе, а должны черпать энергию из окружающей среды. Турбулентность возникает либо в результате роста малых возмущений в ламинарном потоке, либо вследствие конвективной неустойчивости движения. В первом случае энергия турбулентности извлекается из кинетической энергии сдвиговых течений, во втором - из потенциальной энергии неравномерно нагретой жидкости в гравитационном поле. На характер геофизической турбулентности специфическое влияние оказывает стратификация атмосферы (распределение массовой плотности р и других термогидродинамических параметров по направлению силы тяжести) и вращение Земли (с угловой скоростью Q =7.29-10" с" ). Кроме этого, многокомпонентность реальной атмосферы приводит часто к бароклинности смеси, вызванной зависимостью р не только от давления р (как в баротропных средах), но также от  [c.11]


Смотреть страницы где упоминается термин Влияние движения окружающей среды : [c.58]    [c.260]    [c.401]    [c.639]    [c.282]    [c.371]   
Смотреть главы в:

Металлические противокоррозионные покрытия  -> Влияние движения окружающей среды



ПОИСК



179, 182, 242, 267—268 — Влияние окружающей среды

Влияние pH среды

Влияние движения среды

Окружающий нас мир



© 2025 Mash-xxl.info Реклама на сайте