Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Изнашивание механизмы

Применение конструкций с дополнительными связями между элементами кинематической пары возможно при достаточной жесткости звеньев и особенно стойки (корпуса, станины и рамы). Деформация звеньев при воздействии нагрузок не должна приводить к заклиниванию элементов кинематических пар или их повышенному изнашиванию. Механизмы, которые удовлетворяют требованиям приспособляемости к деформации звеньев, надежности, долговечности и технологичности конструкции, обладают оптимальной структурой.  [c.47]


Виды изнашивания. Механизм разрушения поверхностного слоя различный из-за многообразия изменений, возникающих в контактном слое. Различают механическое (усталостное, абразивное), молекулярно-механическое, коррозионно-механическое (окислительное, фреттинг-коррозия и т. д.) изнашивание. По характеру промежуточной среды различают изнашивание при трении без смазочного материала, изнашивание при граничном трении, изнашивание при наличии абразива. По характеру деформирования поверхностного слоя изнашивание может происходить при упругом и пластическом контакте, при микрорезании.  [c.266]

Последовательная схема прозвучивания обладает существенными недостатками, главными из которых являются сложность синхронизации перемещений и записи использование механизма разгона и перемены направления движения преобразователей, что приводит к относительно быстрому изнашиванию механизмов трудность стабилизации акустического контакта относительная сложность и большая масса механизма сканирования низкая скорость контроля (не более 15 м/ч) вследствие ограничения скорости перемещения преобразователей при многоцикловом продольно-поперечном сканировании. Подобные схемы практически не используют при разработке современных установок автоматизированного контроля.  [c.372]

При оценке общей картины развития изнашивания при ударе следует учитывать сложный комплексный характер этого вида изнашивания. Механизм и основные закономерности изнашивания при ударе определяются рядом факторов прежде всего энергией удара, поверхностью изнашивания и твердостью абразивной частицы . прямым внедрением твердой абразивной частицы в  [c.4]

Первым в группе механических видов поставлено абразивное изнашивание. Механизм абразивного изнашивания объясняется снятием мельчайшей стружки твердыми частицами. В зависимости от твердости изнашиваемого материала, твердости частиц, их формы (наличия острых ребер) и ориентации ребер относительно поверхностей трения и направления движения действие частиц может быть различным.  [c.8]

При дуговой сварке важное значение имеет подготовка электродного и присадочного материалов. Подача грязного или корродированного электродного и присадочного материала приводит к дефектам сварного соединения, засорению и изнашиванию механизмов, сбоям в работе сварочного оборудования. Поэтому важно, чтобы стальная электродная проволока имела медное покрытие. Кроме того, наиболее целесообразно использовать электродную и присадочную проволоку в состоянии поставки без перемотки в заводских условиях. Перемотка, осуществляемая потребителями, не всегда выполняется достаточно качественно, в результате чего проволока наматывается без должной укладки с остаточным изгибом в различных направлениях. Поэтому при дуговой сварке свободный конец проволоки, выходящий из сварочного инструмента, занимает  [c.46]


При работе оборудования периодически проверяется качество обрабатываемых деталей. При ухудшении качества, которое контролируется приборами, оператор (наладчик) должен произвести подналадку оборудования, отрегулировать его механизмы. Для устранения неисправностей и восстановления работоспособности станков производят ремонт. Ремонт производят заблаговременно, не дожидаясь выхода из строя оборудования. Такой ремонт называется планово-предупредительным ремонтом (ППР). Плановым потому, что производится в плановом порядке, а предупредительным потому, что его выполнение предупреждает выход его из строя по причине изнашивания механизмов станка.  [c.308]

В механических коробках передач периодически проверяют уровень масла в картере и заменяют его. Отработавшее масло сливают через сливную пробку сразу после остановки машины, пока оно не остыло. Перед заливкой свежего масла коробку передач промывают, заливают в картер 5...6 л веретенного масла, заводят двигатель и дают ему поработать на холостом ходу при включенной передаче 5...10 мин. Особенно это важно выполнять через 240 ч работы новой коробки передач, так как происходит приработка деталей и возможно интенсивное изнашивание механизмов.  [c.161]

Существуют различные виды изнашивания усталостное, абразивное, адгезионно-механическое, эрозионное, коррозионно-механическое и др. Интенсивность изнашивания деталей машин зависит от формы, размеров, физико-химических свойств, условий нагружения и теплового режима работы контактирующих поверхностей, а также физико-химических свойств смазочного материала. В зубчатых передачах, подшипниках качения и некоторых других механизмах при работе возникает усталостное изнашивание (выкрашивание), характерное для хорошо смазанных контактирующих поверхностей деталей машин, которые испытывают повторные контактные напряжения и работают в режимах качения и качения со скольжением. Абразивное изнашивание возникает в результате режущего или царапающего действия твердых тел и частиц. Данный вид износа типичен для механизмов, функционирующих в запыленной среде, в условиях недостатка смазки, при работе всухую. В трущиеся контакты в процессе работы попадают частицы песка, пыли, грязи, продукты износа. Интенсивность абразивного изнашивания механизмов зависит от физико-механических и геометрических характеристик абразива, его количества, прочностных свойств материала трущихся тел, действующей нагрузки, состояния смазочного слоя. В местах контакта  [c.9]

Необходимо отметить, что на скорость изнашивания механизмов машин сильное влияние оказывают условия эксплуатации (фильтрация смазки и ее сорт, изоляция трущихся поверхностей, запыленность атмосферы, в которой работает машина, вибрации, передающиеся на машину от других работающих агрегатов, и т. д.).  [c.42]

Изнашивание — процесс постепенного изменения размеров деталей в результате трения. При этом увеличиваются зазоры в подшипниках, в направляющих, в зубчатых зацеплениях, в цилиндрах поршневых машин и т. п. Увеличение зазоров снижает качественные характеристики механизмов мощность, к. п. д., надежность, точность и пр. Детали, изношенные больше нормы, бракуют и заменяют при ремонте. Несвоевременный ремонт приводит к поломке машины, а в некоторых случаях и к аварии.  [c.6]

Для того чтобы при изнашивании не требовалось слишком частого регулирования гаек, нажимные механизмы должны иметь определенную податливость. Иногда для увеличения общей податливости системы применяют тарельчатые пружины. Нажимные механизмы должны обеспечивать равномерное распределение давления как по ширине поверхности трения, так и по окружности.  [c.446]

В настоящее время коллектив кафедры работает над совершенствованием учебного курса теории механизмов и машин. Стремительное развитие новой техники поставило новые проблемы и перед высшим образованием. Поэтому в курс теории механизмов и машин введены разделы, посвященные изнашиванию, влиянию упругости звеньев на движение механизма, виброактивности и виброзащите, проектированию манипуляторов, управлению системой механизмов. Содержание этих разделов курса изложено в соответствующих главах учебника.  [c.8]


Кинематические пары во многом определяют работоспособность и надежность машины, поскольку через них передаются усилия от одного звена к другому в кинематических парах, вследствие относительного движения, возникает трение, элементы пары находятся в напряженном состоянии и в процессе изнашивания. Так, например, при работе механизма ДВС, изображенного на рис. 2.1, а, изнашиваются гильза цилиндра и поршневые кольца, коренная А и шатунная В шейки коленчатого вала / и т. д. Поэтому правильный выбор вида кинематической пары, ее геометрической формы, размеров, конструкционных и смазочных материалов имеет большое значение при проектировании машин.  [c.19]

Ошибки третьей группы возникают при эксплуатации механизмов. Они обусловлены местными искажениями профиля контактирующих поверхностей, изменением упругих деформаций, колебательными процессами и т. п., вызванными действующими силами (см. гл. 23, 24). К этой группе относятся и температурные ошибки, возникающие при изменении линейных размеров звеньев и механических свойств их материалов, а также вязкости смазывающих материалов при изменении температуры в механизме. Весьма существенны ошибки, связанные с изнашиванием элементов кинематических пар.  [c.335]

Материалы высокой твердости используются главным образом в механизмах, подверженных абразивному изнашиванию.  [c.111]

Трибология изучает внешнее и внутреннее трение твердых и жидких тел, закономерности и механизмы их изнашивания. Она изучает комплекс элементов, участвующих в процессах трения и изнашивания, существующие между ними связи и свойства этих элементов. Взаимодействующие элементы образуют единую систему, которая при внешнем рассмотрении воспринимается как единое целое. При анализе процессов и состояний трибологической системы (ТС) необходимо четко определять ее границы.  [c.7]

В зависимости от структуры фафита, металлической основы и механических свойств чугуны разделяются на три вида серые, ковкие и высокопрочные (табл. 1.4). Все они находят применение в производстве деталей узлов трения, передаточных механизмов и других устройств, работающих в условиях трения и изнашивания.  [c.19]

Качественные различия в действии среды на фрикционные характеристики металлополимерных пар могут быть объяснены, как и для металлических пар, действием двух процессов, обусловленных эффектом П. А. Ребиндера. Этими процессами являются адсорбционное понижение прочности поверхностного слоя и одновременное диспергирующее действие поверхностно-активных веществ, а также интенсификация роста микротрещин. Одновременное протекание указанных процессов определяет механизм фрикционного поведения. Какой из процессов будет ведущим в изнашивании, зависит от напряженного состояния поверхностного слоя и степени взаимной растворимости полимера и смазки.  [c.74]

Износостойкость - свойство материала оказывать сопротивление изнашиванию, оцениваемое величиной, обратной интенсивности изнашивания или скорости изнашивания. Величина износа деталей должна быть ограничена некоторым предельным значением в зависимости от конструкции узла трения и условий эксплуатации. Предельным износом детали называют износ, при котором дальнейшая эксплуатация становится невозможной вследствие выхода детали (узла) из строя, неэкономичной или недопустимой вследствие снижения надежности механизма или всего изделия.  [c.79]

При пластической деформации выступов фактическая площадь контакта почти не зависит от микрогеометрии поверхности, определяется пластическими свойствами материала и нагрузкой. Упрочнение материала влияет на формирование фактической площади контакта, которая при этом зависит от нагрузки в степени. В случае упругой деформации шероховатостей на фактическую площадь контакта существенно влияют геометрические характеристики шероховатости и упругие свойства материала. Площадь в этом случае пропорциональна нагрузке в степени 0,7-0,9. В узлах трения механизмов и машин, приборов, оборудования часто встречающимися видами износа являются адгезионный, абразивный, коррозионно-механический, усталостный. При воздействии потока жидкости, газа возникает эрозионное изнашивание. Наиболее интенсивно изнашивание протекает в процессе заедания. Поверхности трения при малых колебательных пере-меще1шях подвержены фреттинг-коррозии. В условиях кавитационных явлений возникает кавитационное изнашивание. Механизм физико-химических связей при адгезионном взаимодействии и интенсивность поверхностного разрушения непосредственно зависят от величины площади фактического контакта [4, 8—12]. Значительный рост интенсивности изнашивания наблюдается при достижении контактными нормальными напряжениями величины предела текучести материала. Энергия адгезии увеличивается при физически чистом контакте материалов и совпадающих по структуре материалов. Гладкость поверхностей способствует увеличению адге-  [c.158]

Для 1ИНОГИХ типов машин за период их эксплуатации затраты на ремонты и техническое обслуживание в связи с изнашиванием в несколько раз превышают стоимость новой машины. Этим объясняется большое внимание, которое уделяют в настоящее время трибонике — науке о трении, смазке и изнашивании механизмов.  [c.6]

Перспективным направлением развития диагностики состояния подвижных сопряжений является использование встроенных устройств, осуществляющих постоянное слежение за интенсивностью изнашивания механизма. Для непрерывного анализа важно правильное расположение чувствительного датчика относительно контролируемого сопряжения для обеспечения минимального искажения полученных данных. Примером таких систем является устройство, разработанное на основе феррографии прямого считывания (рис. 5.8) [144].  [c.192]


При построений системы технического обслуживания надо стре-мнться, чтобы число видов обслуживания за цикл технического обслуживания было минимальным и чтобы виды обслуживания, проводимые после больших пробегов, включали в себя операции по уходу, выполняемые после более коротких пробегов в предыдущем виде технического обслуживания. При выполнении работ по каждому виду технического обслуживания работы по внешнему уходу, смазке, осмотру креплений и точек регулировки проводятся в обязательном порядке. К наиболее ответственным и сложным работам по техническому обслуживанию относятся регулировочные работы. Необходимо иметь в виду, что эти работы следует выполнять только при действительной потребности в регулировке. В противном случае повреждаются крепежные детали, нарушаются уплотнения и сопряженные поверхности деталей и ускоряется изнашивание механизма в целом. Если проверяются агрегаты или устройства, регулировка которых не предусмотрена конструкцией, либо качественное выполнение регулировки не может быть обеспечено применением имеющегося комплекта инструмента, то результаты проверки служат основанием для определения годности агрегата к дальнейшей эксплуатации или для проведения. регулировочных и ремонтных работ с применением специального оборудования.  [c.15]

Описанная методика определения была построена на ис пользовании совокупности реализаций вейерного типа с фиксиро ванным предельным значением. Однако во многих случаях имеет место другая картина изменения диагностических параметров по пробегу, когда отдельные реализации сильно переплетаются, а предельное значение параметра не фиксировано (рис. 4.9). Это объясняется преобладающим влиянием на процессы изнашивания механизмов переменных условий эксплуатации. В таких случаях допустимый норматив определяют, пользуясь вторым методом, который заключается в установлении граничного зиачения Яд между плотностями распределения значений диагностического пара-  [c.70]

На автомобиле КамАЗ для уменьшения нагрузки на ось устанавливают два ведущих моста — средний и задний. Для равномерного распределения крутящего момента между двумя ведущими мостами в трансмиссию введен межосевой дифференциал, установленный в промелсуточном мосту (рис. 140). Дифференциал с механизмом блокировки собран в отдельном картере, который крепится болтами к фланцу стакана подшипникового узла ведущей конической шестерни среднего моста. Вкар-тере расположены правая и левая чашки межосевого дифференциала, конические шестерни привода среднего и заднего мостов,. между которыми расположена крестовина с посаженными на ней сателлитами на бронзовых втулках. Здесь же расположен механизм блокировки дифференциала, состоящий из муфты блокировки, вилки муфты и диафраг-менной камеры, Механизм блокировки предназначен для принудительной блокировки дифференциала при движении по скользким и размокшим дорогам. Блокировка межосевого дифференциала осуществляется механизмом блокировки, который состоит из корпуса, диафрагмы, двух пружин, крышки и штока. При повороте ручки крана управления блокировки мел осевого дифференциала, расположенной с правой стороны щитка приборов, под рулевой колонкой, воздух из пневматической системы поступает в диафрагменную камеру. Диафрагма, прогибаясь, сжимает пружину, перемещая шток с вилкой и муфту блокировки. Муфта, соединяясь шлицами с зубчатым венцом задней чашки дифференциала, блокирует его. Блокировку следует производить при малой скорости движения автомобиля или перед началом его движения во избежание изнашивания механизма блокировки, Прн движении на сухих дорогах с твердым покрытием блокировать межосевой дифференциал не следует, так как это приводит к повышенному износу шин и перерасходу топлива. 196  [c.196]

Детали, обработанные на электромагнитных плитах (патронах), приобретают остаточные магнитные свойства. 17ри их работе в собранном узле они могут притягивать продукты износа стальных и чугунных деталей, вызывая ускоренное изнашивание механизмов. Размагничивание деталей производят в переменном магнитном поле, плотность которого постепенно уменьшается от максимума до нуля. Детали пропускают через соленоид, питаемый переменным током (50 Гц), или кладут на стол специального устройства, где они выполняют роль замыкающего якоря электромагнита. Допустимая степень намагниченности для большинства деталей 2—3 Ги, для деталей подшипников качения не более  [c.134]

Номинальные размеры у изготовляемой детали абсолютно точно получить невозможно. Это объясняется различными причинами изнашиванием частей (деталей) механизмов станков и режуи1их кромок инструментов, деформацией самой детали при ее обработке, погрешностью измерительных инструментов, изменением температуры воздуха и др.  [c.176]

Остроконечный толкатель совершает наиболее точное перемещение по заданному закону, но быстрее изнашивается. Для уменьшения изнашивання толкатель снабжается роликом. В этом случае различают два профиля кулачка центровой и действительный (рис. 2.16, а). Центровой профиль кулачка 1 представляет собой траекторию движения центра ролика плоского кулачкового механизма при движении этого ролика относительно кулачка, а действительный профиль I — огибающую к последовательным положениям ролика при том же относительном движении. Преимуществом плоского толкателя (рис. 2.16, б, з, и) является то, что угол давления в любом положении механизма не изменяется. Поскольку сонрикосно-вение звеньев происходит в разных точках, интенсивность изнашивания снижается. Но при плоском толкателе профиль кулачка должен быть выпуклым.  [c.49]

У механизма с коромыслом заклинивание происходит при больших углах давления, чем у механизмов с ноступательпо движущимся тoJП aтeлeм. Следовательно, при прочих равных условиях размеры кулачка будут меньшими (уменьшатся реакции в кинематических парах, интенсивность изнашивания и расход потребляемой энергии, рис. 2.16, я, е, ж). В тех случаях, когда рабочий орган совершает поступательное движение и мо кет быть укреплен иа выходном звене, выбирается схема кулачкового механизма с поступательно движущи.мся толкателем.  [c.49]

К первой группе относятся законы, согласно которым скорость толкателя как функция времени или угла поворота кулачка имеет разрыв. Ускорение в этот момент времени, а следовательно, и сила инерции звена становятся теоретически равными бесконечности, что и вызывает жестк1п 1 удар. Звенья механизма подвергаются деформации и интенсивному изнашиванию. Примером является линейный закон (постоянной скорости). Этим законом пользуются, когда по условию синтеза требуется постоянная скорость движения выходного звена.  [c.54]

При синтезе механизма с оптимальной структурой учитывают, что стойка, которая обычно рассматривается как жесткое неподвижное звено, в реальных машинах под действием приложенных нагрузок испытывает деформации. Эти деформации могут оказывать влияние на относительное положение элементов кинематических пар не только в пределах одной кинематической пары, как это было рассмотрено в 2.6, но и в пределах замкнутых кинематических цепей механизма. При неправильном выборе структурной схемы (например, в предположении движения звеньев по схеме плоского механизма) в процессе эксплуатации возможны заклинивание ( заш,емление ) некоторых элементов кинематических пар, появление значительных дополнительных нагрузок из-за перекоса, изгиба, растяжения звеньев, чрезмерного изнашивания элементов кинематических пар, низкая надежность и частые отказы конструкции. Подобные явления могут иметь место, например, в тяжелонагруженных механизмах технологического оборудования (прессы, прокатные станы, литейные машины и т. п.), в сельскохозяйственных и транспортных машинах.  [c.50]


При оптимальных значениях показателей качества поверхностного слоя материала (твердости, шероховатости и др.) скорость изнашивания деталей наименьшая, детали прирабатываются быстрее, возрастают долговечность машин и их точность. При сглаживании неровностей уменьшается (до некоторого предела) коэффициент трения. Очень важно установить минимально допускаемый износ деталей, при достижении которого должна быть прекращена эксплуатация механизма и проведен его рем(шт, так как увеличенные зазоры могут вызвать дополнительные динамические нагрузки и интенсивное увеличение скорости изнашивания (участки Б В[ и Б2В2).  [c.195]

Если после сборки диаметральный зазор в соединении равен Sm nFt то после приработки и некоторого времени работы механизма этот зазор достигает оптимального значения Sop(. При даль-нейнгем изнашивании трущихся деталей зазор увеличивается и при 5 = 5, axF эксплуатация механизма должна быть прекращена из-за снижения его эксплуатационных показателей (см. рис. 8.22).  [c.214]

Для обеспечения высокой работоспособности кулачкового механизма при его проектировании необходимо подобрать соответствующие сочетания параметров поверхностей кулачка и ведомого згена, в частности кривизны профиля кулачка и ролика толкателя, ели радиус кривизны профиля кулачка мал, то при эксплуатации он быстро выходит из строя из-за потери контактной прочности или из-за интенсивного износа, так как и контактные напряжения и темп изнашивания обратно пропорциональны приведенному радиусу кривизны. Если неправильно выбрать радиус ролика толкателя, то может случиться, что он не будет вращаться и введение его в кинематическую цепь не приведет к снижению потерь на трение.  [c.184]

При решении задач анализа (см. гл. 16...19) и синтеза механизмов (см. гл. 7...15) были приняты допущения, идеализирующие условия их изготовления и работы звенья — абсолютно жесткие, кинематические пары — без за.зоров, законы движения входных звеньев — совпадающие с принятыми в исходных данных и т. д. При этих допущениях получены зависимости, опред дяющие перемещения, скорости, ускорения, сил.ы и т. п. для различных типов механизмов. Но в реальных механизмах эти закономерности точно не выполняются, так как всегда имеют место отклонения действительных параметров звеньев и кинематических пар от принятых при расчете. Это объясняется неизбежными погрешностями при изготовлении звеньев и сборке механизма, изнашивании элементов кинематических пар и т. п., что приводит к отклонению положения звенье.д от предусмотренных на схеме механизма. Чем больше значения отклонений соизмеримы с линейными размерами звеньев, тем сильнее их влияние на работу механизма. Это проявляется в отклонении законов движения реального механизма от предусмотренных при проектировании.  [c.332]

Появление уеталостнон теории И В. Крагельского позволило получить ответы на ряд неясностей в теории трения н изнашивания. Согласно этой теории отделение частиц изнашивания происходит лишь после определенного числа циклон нагружения. Тем не менее остаются нопросы. трсбуюн(ие рассмотрения их с точки зрения фрикционного переноса и образования поверхностных пленок какова судьба отде-ливuJиx я частиц материала, каков механизм их переноса на контртело, закрепления па нем и формирования пленки  [c.67]

Наибольший экспериментальный материал накоплен при изучении механизма изнашивания металлических материалов, занимающих ведущее место среди конструкционных материалов, применяемых в узлах трения машин. Независимо от вида трения металлических пар трения механизм изнашивания в большинстве случаев содержит однотипные процессы и характеристики, классифицированные в 1953 г. Е.М. Швецовой и И.В. Крагельским. Они предложили при анализе процесса изнашивания расчленить его на три явления взаимодействие поверхностей трения изменения, происходягцие в поверхностном слое металла разрушение поверхностей. Рассмотрим каждое явление отдельно, хотя в реальности они происходят одновременно, взаимно влияя друг на друга.  [c.83]

Описанный механизм изнашивания металлических материалов отражает процессы изнашивания независимо от вида трения и режима смазки. В рабочих органах машин процесс изнашивания может бьггь  [c.90]


Смотреть страницы где упоминается термин Изнашивание механизмы : [c.157]    [c.176]    [c.30]    [c.374]    [c.406]    [c.2]    [c.66]    [c.67]    [c.71]    [c.71]    [c.82]    [c.88]   
Металловедение и термическая обработка стали Справочник Том1 Изд4 (1991) -- [ c.2 , c.391 ]



ПОИСК



Изменение положения ведомого звена механизма в процессе изнашивания

Изменение траектории ведомого звена механизма в процессе изнашивания

Изнашивание

МЕХАНИЗМ ИЗНАШИВАНИЯ ДЕТАЛЕЙ ПАР ТРЕНИЯ И РАБОЧИХ ОРГАНОВ

Механизм изнашивания металлических поверхностей

Механизм изнашивания поверхности катания подкрановых рельсов и ходовых колес мостовых электрических кранов

Механизм изнашивания полимеров и резины

Механизм формирования макро- и микрорельефа при ударно-абразивном изнашивании

Направляющие скольжения — Конструктивные разновидности 202 — Механизм изна интегрального линейного изнашивания

Общие сведения об изнашивании машин и механизмов

Протекторы Механизм изнашивания

Современные методы исследования механизма изнашивания инструментальных материалов при резании

Сопротивление изнашиванию деталей кривошипно-шатунного механизма

Уплотнения Механизм изнашивания



© 2025 Mash-xxl.info Реклама на сайте