Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения Лагранжа для свободной точки

УРАВНЕНИЯ ЛАГРАНЖА ДЛЯ СВОБОДНОЙ ТОЧКИ  [c.447]

ГЛАВА XIV. УРАВНЕНИЯ ЛАГРАНЖА ДЛЯ СВОБОДНОЙ ТОЧКИ  [c.449]

ГЛАВА XIV. УРАВНЕНИЯ ЛАГРАНЖА ДЛЯ СВОБОДНОЙ ТОЧКИ Точно так же найдем  [c.455]

Подставляя 8лг, 6 у, 82 в равенство (2) и приравнивая результат нулю при произвольных 8 3, 8<72, 8<7д, получим уравнения движения в (форме, указанной в п. 282, из которых мы вывели уравнения Лагранжа для свободной точки.  [c.459]


Пример 21.4. Составление уравнений Лагранжа для свободной точки.  [c.190]

Уравнения Лагранжа для материальной точки. Рассмотрим материальную точку, находящуюся под действием сил. равнодействующую которых обозначим F. Будем определять положение точки какими-нибудь независимыми между собой параметрами любой размерности q,, однозначно определяющими положение точки, которые назовем обобщенными координатами. Число их будет равно числу степеней свободы точки, т. е. для свободной точки их будет три, а для несвободной — две или одна. Тогда декартовы координаты точки, а следовательно, и ее радиус-вектор r = xi- -s)j- - zk можно выразить через параметры и время t, которое может вообще войти в эти соотношения или в результате соответствующего выбора координат qi, или когда на точку наложены нестационарные связи. Допустим для общности, что О  [c.452]

Уравнения движения можно записывать и в обобщенных координатах Лагранжа. Для этого нужно прежде всего составить функцию Лагранжа. Для свободной точки она является величиной, производные от которой по компонентам скорости представляют проекции импульса, а производные по координатам — компоненты силы, т. е.  [c.643]

Историческая справка. Уравнения движения свободной точки или точки, движущейся по поверхности или по кривой как подвижным, так и неподвижным, были составлены Лагранжем в одинаковой для всех этих случаев форме с той лишь разницей, что число параметров, подлежащих определению в функции времени, равно трем для свободной точки, двум для точки на поверхности, и одному для точки на кривой (пп. 259, 263, 282). Мы увидим дальше, что уравнения самой общей задачи динамики системы могут быть составлены в этой же форме, но число параметров б) дет каким угодно, при условии, что связи могут быть выражены, в конечной форме и что эта параметры действительно являются координатами.  [c.466]

Перейдем к выводу уравнений Лагранжа. Уравнения движения для свободной материальной точки в декартовых координатах обычно записываются в следующем виде.  [c.32]

Принцип экстремального действия охватывает и немеханические явления, находя применение в электродинамике и теории относительности, термодинамике и статистической физике, квантовой механике и других разделах теоретической физики. Такое широкое применение принципа тесно связано с методом обобщенных координат. Уравнения Лагранжа не ограничены реальным евклидовым пространством. Только для свободной точки они представляют уравнения движения в координатах трехмерного пространства. В случае системы со связями автоматический учет действия сил реакций связей осуществляется уже самим выбором обобщенных координат, а число их определяет мерность пространства конфигураций. Переход к бесконечномерному пространству конфигураций позволяет применить  [c.211]


Чтобы уравнение (IV.200) определяло действительное движение несвободной материальной точки, следует соответственно определить реакцию R. Таким образом, вопрос об изучении движения несвободной материальной точки усложняется по сравнению с задачами динамики свободной материальной точки тем, что связывается с определением реакции связи R. Чтобы составить в наиболее удобной форме систему уравнений, необходимую для решения задачи о движении несвободной материальной точки, применим координатный способ, связав его с методом множителей Лагранжа.  [c.423]

Уравнения Лагранжа второго рода могут быть применены и для свободной системы п материальных точек. В этом случае координаты точек XI, г/1, zi Х2, г/2, Z2 . .. х , г/ , z являются обобщенными координатами, а проекции активных сил, приложенных к каждой из точек системы  [c.333]

Уравнения Лагранжа. В предыдущих главах мы вывели для точки, движущейся по неподвижной или движущейся поверхности или по кривой, уравнения движения, указанные Лагранжем. Тот же метод позволяет написать уравнения движения свободной точки, причем в любой системе координат. Этот метод тем более важен, что он применим к движению произвольной голономной системы.  [c.447]

Примером универсальных уравнений Лагранжа являются и уравнения Ньютона для системы свободных точек  [c.107]

В работе В. Ф. Котова Основы аналитической механики для систем переменной массы (1955) выведены принципы виртуальных перемещений, уравнения Лагранжа второго рода, канонические уравнения, уравнения Аппеля, уравнения движения свободной точки переменной массы, уравнения движения свободного тела переменной массы, принцип наименьшего действия.  [c.304]

Существует еще другой, хотя в общем и менее удобный метод для исследования движения длинных волн, в котором применяется метод Лагранжа, т. е. координаты относятся к отдельным частицам жидкости. Ради простоты мы рассмотрим только случай канала с прямоугольным поперечным сечением ). Основное допущение, что можно пренебречь вертикальным ускорением, обусловливает, как и раньше, что горизонтальное движение всех частиц в плоскости, перпендикулярной к длине канала, должно быть одно и то же. Мы обозначим поэтому через абсциссу в момент ( той плоскости частиц, невозмущенная абсцисса которой была х. Если ч] означает возвышение свободной поверхности в этой плоскости, то уравнение движения для слоя с шириной, равной единице, и длины (в невозмущенном состоянии) дх будет  [c.325]

Следующим этапом является рассмотрение задач о движении системы точек. Указывается, что для решения задач о движении свободной системы нет другого пути, чем составление и интегрирование системы дифференциальных уравнений для каждой точки. Затем рассматривается несвободная система. Путем введения реакций связей расширяется учение о связях. Отмечается, что решение задачи о движении несвободной системы при помощи уравнений Ньютона, составленных для каждой точки в отдельности, весьма сложно и что здесь лучше применять метод, разработанный Лагранжем.  [c.74]

Уравнения (16) есть уравнения Лагранжа в обобщенных координатах для голономных систем, имеющих силовую функцию. Таким образом, вариационный принцип Гамильтона в компактной математической форме (9) потенциально содержит в себе всю механику систем, имеющих потенциал, с голономными, идеальными, удерживающими связями. Мы можем, следовательно, положить принцип Гамильтона в основу механики голономных систем, причем основной (второй) закон движения Ньютона для свободной материальной точки будет вытекать из принципа Гамильтона как весьма частный случай.  [c.131]

Как уже отмечалось, уравнения Лагранжа с реакциями-связей дают возможность найти и положение точек системы, и реакции связей как функции времени. Однако на практике часто не нужна столь подробная информация о механической системе, а требуется найти лишь закон движения точек по связям. Для разрешения таких задач необходимы уравнения движения, которые в качестве неизвестных содержат только независимые координаты. С другой стороны, эти уравнения должны полностью учитывать влияние связей на систему. Такие уравнения существуют и называются уравнениями Лагранжа в независимых координатах (или уравнениями Лагранжа второго рода). Значение этих уравнений не исчерпывается применением к указанному типу задач. Если требуется определить реакции связей, зачастую проще с помощью уравнений Лагранжа второго рода определить закон движения системы, а затем с помощью уравнений Лагранжа первого рода найти реакции связей. Уравнения Лагранжа второго рода имеют большое значение и для свободных систем. В этом случае они  [c.214]


Движение тяжелой точки по параболе, вращающейся вокруг вертикальной оси. В качестве второго примера рассмотрим следующую задачу. Положим, что тяжелая точка массы т может свободно двигаться по параболе, определяемой уравнением х = 2рг и вращающейся с постоянной угловой скоростью й вокруг оси г (рис. 81). Моделью для этой задачи может служить известная демонстрационная модель — тяжелый шарик в чашке, имеющей форму параболоида вращения. Для составления уравнений движения точки мы могли бы поступить так же, как в предыдущей задаче, именно ввести силы инерции (т. е. снова центробежную силу) и написать уравнения, выражающие второй закон Ньютона для движений в плоскости дг, г. Мы поступим, однако, несколько иначе, чтобы на частном примере напомнить читателям уравнения Лагранжа второго рода, которые нам понадобятся в скором времени.  [c.133]

Применим метод обобщенных координат для получения дифференциальных уравнений движения из общего уравнения механики. Метод обобщенных координат приводит к исключительно важному результату. Он дает общий вид дифференциальных уравнений движения в обобщенных координатах, называемых уравнениями Лагранжа (второго рода). Эти уравнения позволяют для каждой задачи на несвободную систему пользоваться наиболее удобными и естественными величинами при описании движения системы, исключая из рассмотрения связи и силы реакции. Лагранжевы уравнения оказываются полезными и для свободных тел и точек, так как имеют инвариантную (скалярную) форму во всех системах координат, а это позволяет легко составить уравнения в наиболее удобной системе координат, не пользуясь громоздкими формулами перехода (например, от декартовых к сферическим).  [c.180]

Исходя из этой формулы, Лагранж получает все частные и общие свойства равновесия механических систем шесть уравнений равновесия твердого тела, условия равновесия систем, подчиненных связям (способ множителей Лагранжа), условие устойчивого равновесия консервативной системы, введение силовой функции (без какого-либо названия) — вот далеко не полный перечень важнейших оригинальных вкладов Лагранжа в развитие аналитической статики. Следует подчеркнуть, что метод неопределенных множителей Лагранжа является не просто формальной операцией вычислительного характера, а содержит в себе принцип освобождаемости от связей, впервые четко сформулированный и разработанный для различных случаев [4, с. 111] ...таким образом,, применяя эти силы, можно рассматривать тела как совершенно свободные и не подчиненные каким бы то ни было связям .  [c.101]

Во-вторых, для того специального класса динамических систем, которые описываются функциями Лагранжа типа (7), инвариантность уравнений относительно преобразований Галилея вообще не ведет ни к каким новым следствиям. Дело в том, что при преобразовании Галилея, как уже отмечалось при обсуждении преобразования энергии, второй член в выражении (7) вовсе не испытывает никаких изменений, и все сводится к изменению кинетической энергии, которая при выполнении допущения (7) есть просто сумма кинетических энергий отдельных материальных точек системы. А вид кинетической энергии одной свободной материальной точки как раз и устанавливался в 4 исходя из требования максимально допустимого изменения при преобразовании Галилея — т. е. изменения на полную производную.  [c.42]

Этих уравнений недостаточно для решения задач теори трещин, поскольку необходимо располагать смещениями точек, поверхности трещины. Следовательно, приведенные соотношения являются дополнительными к уравнениям теории упругости, т. е. для решения задачи необходимо решить систему уравнений теории упругости совместно с условием разрушения. Например, к соотношениям (29), (30) можно добавить вариационное уравнение Лагранжа для тела, свободного от заданных нагрузок, но с трещиной, на поверхность которой действуют ри  [c.34]

Принцип Эйлера — Лагранжа позволяет определять реакции связей. Действительно, если к заданным активным силам, действующим на механическую систему, добавим все реакции связей, то из принципа Эйлера — Лагранжа получим уравнения Ньютона для системы совершенно свободных точек. Однако практически более интересным является метод определения отдельных реакций. Идея этого метода заключается в том, что заданные активные силы дополняют одной интересующей нас реакцией, но зато систему понимают свободной от связи, порождающей одну и именно эту интересующую пас реакцию. Для освобожденной таким образом механической системы, имеющей на одну степень свободы больше, определяют дополнительную голоноыную координату q, изменение которой дает освобожденное перемещение в системе вычисляют новые Г, обобщенную силу Qq в освобожденном движении, подставляют значения переменных для действительного движения в уравнение Лагранжа  [c.171]

Если предположить, что точка Ж совершенно свободна, то действующие на нее силы зависят, в общем случае, от положения, скорости и времени. Следовательно, проекции X, К, Z равнодействующей являются заданными функциями от х, у, г, т. е. от X, у, г, х, у, г, 1, если употреблять обозначения Лагранжа для производных = Тогда уравнения (1) обра-  [c.266]

Общий метод решения задачи о движении твердого тела. Уравнения Эйлера. Весь аппарат, необходимый для решения задачи о движении твердого тела, нами практически уже получен. В некоторых случаях, когда на это тело наложены не-голономные связи, нам потребуется применить специальные приемы, чтобы учесть их. Так обстоит дело, например, в том случае, когда на тело наложена связь качения , которая может быть учтена с помощью введения неопределенных множителей Лагранжа, как это делается в 2.4. Если, однако, исключить эти специальные случаи, то, как правило, нам придется иметь дело только с голономными и консервативными системами, а движение таких систем вполне определяется их лагранжианом. Если рассматриваемое тело является свободным, то нам потребуется полная система из щести обобщенных координат TpeJ<  [c.177]


Эти последние преобразования дифференциальных уравнений движения второго порядка системы притягивающихся или отталкивающихся точек во всех отношениях совпадают (не считая небольших различий в написании) с изящными каноническими формами, данными Лагранжем в Me anique Analytique, но нам казалось, что стоит вывести их заново из свойств нашей характеристической функции. Предположим (как это часто считается удобным и даже необходимым), что п точек системы не являются целиком свободными и подвержены не только своим собственным взаимным притяжениям и отталкиваниям, но связаны любыми геометрическими условиями и подвергаются влиянию любых внешних факторов, согласующихся с законом сохранения живой силы так, что число независимых отметок положения будет менее велико, а силовая функция менее проста, чем раньше. Тогда мы можем доказать при помощи рассуждения, очень сходного с предыдущим, что и при этих предположениях (которые, однако, дух динамики все более и более склонен исключать) накопленная живая сила, или действие V системы, представляет собой характеристическую функцию движения уже разобранного выше рода. Эта функция выражается тем же законом и формулой вариации, подверженной тем же преобразованиям, и обязана удовлетворять таким же способом, как и выше, конечной и начальной зависимости между ее частными производными первого порядка. Она приводит при помощи варьирования одной из этих двух зависимостей к тем же каноническим формам, которые были даны Лагранжем для дифференциальных уравнений движения, и дает, исходя из изложенных выше принципов, их промежуточные и конечные интегралы. По отношению же к тем мыслимым случаям, в которых закон живой силы не имеет места, наш метод также неприменим однако среди людей, наиболее глубоко занимавшихся математической динамикой вселенной, все более крепнет убеждение, что представление о таких случаях вызывается недостаточным пониманием взаимодействия тел.  [c.189]

Уравнения такого вида впервые применялись в работах Лагранжа и Пуассона по небесной механике. Трактовка их как общей формы уравнений движения механических систем под действием потенциальных сил была дана позднее Гамильтоном (для систем свободных точек), Якоби (для систем со стационарными связями), Остроградским и Донкином (для систем с нестационарными, вообще говоря, связями). Для нас основой такой трактовки послужит  [c.129]

Наиболее существенные отличительные особенности рецензируемого пособия 1) полнее, чем в имеющейся учебной литературе, освещены мировоззренческие вопросы в теоретической механике 2) введен ряд новых разделов в соответствии с тенденциями развития научно-техни-ческого прогресса, например, однородные координаты, применяемые при описании роботов-манипуляторов. что потребовало существенно перестроить раздел кинематики твердого тела основные теоремы динамики изложены не только в неподвижных, но и в подвижных (неинерциальных) системах координат в разделе Синтез движения рассмотрены вопросы сложения не только скоростей, но и ускорений. При этом получен ряд новых результатов сравнение механических измерителей углов поворота и угловых скоростей твердых тел основы виброзащиты и виброизоляции, динамические поглотители колебаний основы теории нелинейных колебаний, включающей изложение основ методов фазовой плоскости, метода малого параметра, асимптотических методов, метода ускорения 3) в методических находках, позволивших углубить содержание курса и уменьшить его объем впервые обращено внимание на то, что условия динамической уравновешенности ротора и условия отсутствия динамических реакций в опорах твердого тела при ударе — это условия осуществления свободного плоского движения твердого тела полнее и глубже развиты аналогии между статикой, кинематикой и динамикой полнее изложены электромеханические аналогии и показана эффективность применения уравнений Лагранжа-Максвелла, для составления уравнений контурных токов сложных электрических цепей получение теоремы об изменении кинетической энергии для твердого тела из соотношения между основными динамическими величинами и многие другие.  [c.121]

Лагранж в историческом обзоре, которым он начинает Динамику , указывал, что закон площадей имеет место для любой системы материальных точек, взаимодействующих любым обра ом и находящихся под действием внешних сил, направленных к неподвижному центру, независимо от того, будет ли система совершенно свободна или же она будет двигаться вокруг центра сил. Лагранж подчеркнул при этом, что, принимая три взаимно перпендикулярных плоскости в качестве плоскостей проекций, мы получаем три закона площадей в виде дифференциальных уравнений первого порядка, свя- зываюпщх время и координаты точек системы, и в этих уравнениях собст-венно, и заключается природа изложенного выше принципа .  [c.127]

Рассмотренным выше (см. пункты 2—4) принципам соответствуют законы сохранения классической механики — это, так сказать, физическая точка зрения. С аналитической же точки зрения они дают зависимости, которые при соблюдении определенных условий приводят к интегралам дифференциальных уравнений движения. Разработка этих принципов в течение первой половины XVIII в. облегчала установление такой их связи с дифференциальными уравнениями движения. Но для того чтобы их объединить в общей аналитической трактовке (а это, как мы увидим, стало делом Лагранжа), понадобилось установление принципов другого рода, что также стало делом XVIII в. Почему это понадобилось тогда же Ответ таков. В работах, на которые мы ссылались в этой главе, вполне очевидны две тенденции. Их авторы рады любой возможности показать значение своих результатов для познания закономерностей системы мира , т. е. Солнечной системы, а движение небесных тел — движение свободное, на него не наложены никакие связи. Одновременно в этих работах отмечается польза вводимых или обобщаемых принципов при рассмотрении системы со связями— в первую очередь то, что при соблюдении известных условий можно избежать явного введения трудно определяемого воздействия различных препятствий . Ведь задачи со свтзями земной механики еще не имели сколько-нибудь общей теории  [c.130]

Один нз способов определения реакций связей был уже рас- мотрен при изучении уравнений равновесия с множителями Лагранжа, когда связи задаются неявными уравнениями или неравенствами. В общем же случае связи, наложенные на систему материальных точек, всегда могут быть заменены соответствующими силами реакций, действие которых эквивалентно действию вязей. После такой замены система может рассматриваться как вободная от связей, но подверженная действию как активных, гак и пассивных сил. Принцип Бернулли для такой свободной пстемы дает необходимые и достаточные условия равновесия в виде уравнения  [c.191]

Вместе с развитием неголономных связей и теории общего их вида приобретают значение новые методы в поисках решений классических задач аналитической механики. Такие новые методы базируются, можно сказать, на двух теоремах. Первая теорема высказана в работах П. В. Воронца в первых десятилетиях нашего века в следующей формулировке каждый первый интеграл уравнений движения некоторой механической системы может считаться уравнением связи, наложенной на систему с соответствующими реакциями, равными нулю . Действительно, примем данный первый интеграл за связь и составим уравнения движения с множителем. Далее, учитывая, что первый интеграл тождественно удовлетворяет левым частям всех уравнений с множителем, мы придем к тому, что данный множитель должен быть равен нулю. Обратная же теорема должна читаться следующим образом. Положим, дана механическая система с заданными, пусть идеальными в смысле Лагранжа — Даламбера, связями и активными силами. Имеются динамические дифференциальные уравнения данной системы. Положим, требуется найти янтеграл заданного вида для дайной системы уравнений. Тогда, 1при-няв данный интеграл за уравнение дополнительной связи, будем составлять уравнения движения с подобной связью. Интеграл же может быть любой аналитической структуры, поскольку мы умеем уже составлять уравнения движения при связях любой, если можно так сказать, неголономности. Далее, если мы решим расширенную систему уравнений движения, т. е. уравнений с множителем вместе с уравнением связи, то могут быть две возможности находятся уравнения движения системы, т. е. обобщенные координаты основной задачи в функциях времени и вместе с ними определяется множитель в функции времени. Но, если при каких-либо параметрах системы, или предполагаемого первого интеграла, или при некоторых начальных данных, множитель обратится в ноль, то тогда действительно уравнение связи окажется первым интегралом данной задачи. Возьмем, к примеру, классическую задачу о движении твердого тела вокруг неподвижной точки. Мы знаем, с каким трудом добывались решения этой задачи и как, по существу, их мало. Всего три случая — общего решения, да и общность относится только к начальным условиям, а на другие параметры — распределение масс и положение центра тяжести — налагаются определенные условия. Частных интегралов больше, но все они находились с трудом (вспомним, например, случай Гесса). Данные же методы наиболее естественны нри выяснении вопроса, является ли заданная связь -первым интегралом уравнений движения данной системы как свободной.  [c.13]


С добавлением конвективного члена, уравнение (7.3), обеспечивающее лагранжево движение узлов и, как следствие, частиц, становится обязательным только для узлов на свободной поверхности. Узлы внутри жидкости можно двигать, вообще говоря, с произвольными скоростями, то есть мы фактически получаем полностью консервативный эйлерово-лагранжев метод на произвольной многоугольной сетке.  [c.136]


Смотреть страницы где упоминается термин Уравнения Лагранжа для свободной точки : [c.538]    [c.18]    [c.856]    [c.31]    [c.25]   
Смотреть главы в:

Теоретическая механика Том 1  -> Уравнения Лагранжа для свободной точки



ПОИСК



Точка свободная

Три точки Лагранжа

Уравнение точки

Уравнения Лагранжа

Уравнения Лагранжа для точки



© 2025 Mash-xxl.info Реклама на сайте