Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Бернулли принцип

К первому классу относятся принцип возможных перемещений Бернулли, принцип сил инерции Д Аламбера, принцип наименьшего принуждения Гаусса и принцип прямейшего пути Герца. Все эти вариационные принципы можно охарактеризовать как дифференциальные принципы, поскольку они вводят в качестве характерного признака действительного движения свойство движения, которое имеет значение для одного-единственного момента или элемента времени. Для систем механики все эти принципы эквивалентны и законам- движения Ньютона, и между собою. Но все они страдают тем недостатком, что имеют смысл только для механических процессов и что их формулировка делает необходимым пользоваться специальными координатами точек рассматриваемой материальной системы. Их формулировка, в зависимости от выбора координат точки, совершенно различна, и даже, чаще всего, относительно сложна и мало наглядна.  [c.582]


В руководствах по классической гидромеханике уравнение Бернулли часто выводится на основе одного лишь принципа сохранения энергии но методике, которая будет обсуждена в следующем разделе. В таком подходе имеется логическая ошибка в то время как динамическое уравнение не используется вовсе, уравнение Бернулли получается при помощи двух основополагающих предположений одно из них сформулировано уравнением (1.-9.1), а другое, дополнительное состоит в том, что механическая энергия не превращается необратимо во внутреннюю энергию, что означает отсутствие диссипации энергии.  [c.48]

Расчет по формулам сопротивления материалов, основанный на гипотезе плоских сечений Бернулли и однородности напряженного состояния по длине детали (принцип Сен-Венана), приложим к деталям большой длины L при относительно малых размерах d поперечного сечения L/d > 5), т. е. к деталям типа балок, стержней н других элементов строительных конструкций.  [c.142]

Итак, принцип (1.6) порождает уравнения газовой динамики нестационарных и стационарных течений с переменными энтропией и полным теплосодержанием, а в стационарном случае обеспечивает выполнение уравнения Бернулли.  [c.11]

В этом периоде братья Якоб и Иоганн Бернулли, исследуя аналитически движение тяжелой точки по различным кривым, положили начало вариационному исчислению. Кроме того, Иоганну Бернулли принадлежит точная формулировка одного из основных принципов механики — принципа виртуальных перемещений (1717 г.).  [c.13]

Это положение носит название принципа виртуальных (возможных) перемещений. Установленный И. Бернулли, он был окончательно сформулирован Лагранжем, вследствие чего условие (6) часто называют условием Лагранжа.  [c.284]

Корни принципа виртуальных Перемещений уходят в глубокую древность. Довольно общую формулировку принципа для сил тяжести дали Торичелли (1644 г.), Иван Бернулли (1717 г.) и др. Доказательство принципа Лагранжем (1796 г.) является лишь видоизменением доказательства, которое предложил в 1783 г. Лазар Карно. Одновременно с Лагранжем строгое доказательство опубликовал Фурье. Но большая заслуга Лагранжа заключается и в том, что он положил этот принцип в основу всей механики,  [c.260]

Здесь у Д Аламбера были свои предшественники (Гюйгенс, Яков Бернулли, Яков Герман). Однако только Д Аламбер подошел к этому принципу с более общей точки зрения и придал ему всю ту  [c.245]

Среди первых трудов, связанных с теорией движения несвободных систем, следует отметить работы Якова Бернулли, Иоганна Бернулли н Я. Германа. Я. Герман, петербургский академик, сформулировал один нз общих принципов механики ) этот принцип аналитически разработал и обобщил Л. Эйлер. Как было отмечено Ж. Лагранжем, указанный принцип по своему внутреннему содержанию совпадает с введенным несколько позже (1743 г.) принципом Даламбера.  [c.37]


Принцип возможных перемещений (Иоганн Бернулли (1667—1748)). Необходимым и достаточным условием равновесия системы материальных точек, подчиненной геометрическим стационарным неосвобождающим и идеальным связям, является равенство нулю суммы элементарных работ активных сил на любом возможном перемещении системы из рассматриваемого положения равновесия, т. е.  [c.309]

В сопротивлении материалов помимо указанных гипотез используются гипотеза плоских сечений (гипотеза Бернулли) и так называемый принцип Сен-Венана, о которых будет сказано ниже.  [c.178]

Итак, соотношение (3.3) необходимо и достаточно для равновесия. Соотношение (3.3) поэтому является принципом. Принцип этот называется принципом возможных перемещений, он был установлен Иоганном Бернулли ).  [c.75]

Некоторые авторы в числе основных допущений излагают гипотезу Бернулли и даже принцип Сен-Венана. Видимо, это не имеет смысла. Первое из этих допущений следует впервые дать при определении нормальных напряжений при растяжении, с тем чтобы оно сразу же было использовано. Второе — на этой стадии изучения предмета вообще давать преждевременно, так как у учащихся еще нет понятия о напряжениях.  [c.54]

Академик Эйлер в сочинении Общие принципы движения жидкости (1755 г.) вывел дифференциальные уравнения равновесия и движения жидкостей, дав общее решение задачи. Из дифференциальных уравнений Эйлера легко может быть получено и уравнение Бернулли, являющееся частным решением этих уравнений.  [c.7]

Принцип действия напорных трубок основан на равенстве разности полного и статического давлений кинетической энергии потока, которое следует из уравнения Бернулли  [c.40]

Галилей приписывал обоснование золотого правила механики Аристотелю. В общей формулировке принцип виртуальных перемещений встречается впервые у Иоганна Бернулли в 1717 г.  [c.31]

Уравнение (1.41) удовлетворяет требованиям, которые мы поставили в начале этого параграфа оно не содержит реакций fi. Однако уравнение (1.41) относится лишь к случаю равновесия, а нам нужно получить принцип, справедливый для общего случая движения. Чтобы получить такой принцип, мы применим прием, предложенный Яковом Бернулли и развитый впоследствии Даламбером.  [c.27]

В немецкой литературе употребителен термин принцип виртуальных перемещений или смещений . Мы приняли итальянское наименование — принцип виртуальной работы , так как оно, по нашему мнению, лучше всего выражает сущность дела. Термин принцип виртуальных скоростей , введенный Иоганном Бернулли и часто употребляемый в математической литературе, кажется нам неподходящим.  [c.74]

Довольно любопытна также и другая работа Бернулли. Сравнивая движение частицы в поле заданной силы с распространением света в оптически неоднородной среде, он попытался создать на этой основе механическую теорию коэффициента преломления. Этим Бернулли предвосхитил великую теорию Гамильтона, в которой было показано, что принцип наименьшего действия в механике и принцип минимального времени распространения, носящий имя Ферма, аналогичны в своих выводах, что позволяет  [c.386]

Бернулли — с момента появления дифференциального исчисления. Эйлер нашел дифференциальное уравнение, дававшее в явном виде решение для широкого класса таких задач. Хотя Эйлер и не сформулировал четко принцип наименьшего действия, что было впервые сделано Лагран-жем, его применения этого принципа к механическим задачам, по сути дела, эквивалентны лагранжевой явной формулировке.  [c.390]

Изложенный выше анализ побудил Якова Бернулли вернуться к этому вопросу, в результате чего он и дал первое прямое и строгое решение задачи о центрах колебания, решение, которое заслуживает тем большего внимания математиков, что оно содержит в себе зерно известного принципа динамики, ставшего столь плодотворным в руках Даламбера.  [c.309]

Последний принцип по существу представляет собою не что иное, как принцип Якова Бернулли, но только представленный в менее простом виде пользуясь принципами статики, нетрудно вывести один из них из другого. Позднее Эйлер его обобщил и применил к определению колебаний гибких тел соответствующая работа его была напечатана в 1740 г. в VII томе старых петербургских комментариев.  [c.310]


До сих пор этот принцип рассматривался только в качестве простой теоремы механики однако после того как Иван Бернулли принял предложенное Лейбницем различие между мертвыми силами, или силами давления, не вызывающими реального движения, и живыми силами, при которых имеет место движение, а также его предложение измерять последнего рода силы произведением масс на квадраты скоростей, рассматриваемый принцип стал следствием теории живых сил и общего закона природы, согласно которому сумма живых сил нескольких тел остается неизменной, в то время как эти тела действуют друга на друга с помощью одних только сил давления, и равной той живой силе, которая получается в результате действия активных сил, приводящих тела в движение. Поэтому он дал указанному принципу название принципа сохранения живых сил и успешно применил его при разрешении некоторых задач, которые до тех пор еще не были решены и которые представлялось трудным довести до конца с помощью прямых методов.  [c.315]

Но математическая реализация и обобщение идеи взаимосвязи симметрия — сохранение могли произойти лишь в результате того развития ньютоновой механики, которое было связано, прежде всего, с именами И. и Д. Бернулли (принцип виртуальных работ, закон сохранения момента импульса и т. д.), Эйлера (вариахщонное исчисление, принцип наименьшего действия и т. д.), Даламбера (принцип Даламбера), Лагранжа (вариационное исчисление, обш ая формула динамики и т. д.) и некоторых других исследователей.  [c.226]

В форме, близкой к современной, но без доказательства этот принцип, высказал знаменитый математик и механик (швейцарец по происхождению) Иогаин Бернулли (1667—1748). В общем виде принцип впервые сформулировал и доказал Ж. Лагранж U788 г.) Обобщение принципа на случай иеудерживающих связей было дано М.В. Остроградским в работах 1838—1842 гг.  [c.361]

Над строго научным доказательством принципа возможных перемещений работали Иван Бернулли, Фурье, Пуассон, Ампер и Дагранж.  [c.5]

Здесь у Д Аламбера были свои предшественники (Гюйгенс,Яков Бернулли, Яков Герман). Однако только Д Аламбгр подошел к этому принципу с более общей точки зрения и придал ему всю ту простоту и плодотворность, на которые только он был способен . Поэтому этот принцип называют принципом Д Аламбера.  [c.259]

В этих уравнениях С1 орость звука сама должна быть выражена как функция скорости, что может быть, в принципе, сделано с помощью уравнения Бернулли ш-f 0 /2 = onst и уравнения изэнтропичности S = onst (для политропного газа зависимость с от и дается формулой (83,18)).  [c.598]

Идея o HOiBHoro принципа динамики босходит к ученикам Иоганна Бернулли Герману и Эйлеру, первым академикам Петербургской Академии наук. В Phoronomia (1716) Герман разрешил задачу о сложном маятнике, исходя из принципа, что если движущие силы направить в противоположную сторону, то они должны находиться в равновесии с силами тяжести.  [c.140]

Соотношение (7.7) Лаграйж предложил называть принципом Даламбера. Когда все ускорения суть нули и, следовательно, система находится в равновесии, принцип Даламбера (Эйлера — Лагранжа) становится основным принципом аналитической статики — принципом возможных перемещений Бернулли.  [c.212]

В последующем задаче об изгибе балки уделяли много внимания крупные ученые, в числе которых были Мариотт, Лейбниц, Варньон, Яков Бернулли, Кулон и др.. Пишь в 1826 г. с выходом в свет лекций по строительной механике Навье был завершен сложный путь исканий решения задачи об изгибе балки, затянувшийся во времени почти на двести лет. Навье дал правильное решение этой задачи, им впервые введено понятие напряжения. Им же сделан существенный шаг в направлении упрощения составления уравнений равновесия, состоявший в том, что Навье отметил малость перемещений и возможность относить уравнения равновесия к начальному недеформированному состоянию. Это очень широко используемое положение иногда называют принципом неиз жнности начальных размеров. В истории развития механики деформируемого твердого тела важную роль сыграли такие крупные ученые, как Лагранж, Коши, Пуассон, Сен-Венан. Особо следует отметить заслуги Эйлера, впервые определившего критическое значение сжимающей продольной силы, приложенной к прямолинейному стержню (1744). Решение этой задачи во всей полноте тоже заняло по времени почти двести лет Дело в том, что решение Эйлера было ограничено предположением о линейно-упругом поведении материала, что накладывает ограничение на область применимости полученной Эйлером формулы. Применение эюй формулы за границами ее достоверности и естественное в этом случае несоответствие ее экспериментальным данным на долгое время отвлекло интерес инженеров от этой формулы и лишь в 1889 г. Энгессером была предпринята попытка получить теоретическое решение задачи об устойчивости за пределом пропорциональности. Он предложил 1аменить в формуле Эйлера модуль упругости касательным модулем i = da/di. Однако обоснования этому своему предложению не дал. В 1894 г. природу потери устойчивости при неизменной продольной силе правильно объяснил русский ученый Ясинский и лишь в 1910 г. к аналогичному выводу пришел Карман. Поэтому исторически более справедливо назвать его решением Ясинского —Кармана, предполагая, что Карман выполнил это исследование независимо от Ясинского.  [c.7]

Если на стержень действуют внешние нагрузки, равнодействующая которых находится на оси стержня (осевая сила), то стержень продольно деформируется (осевое растяжение или сжатие). В результате деформации расстояния между точками разных поперечных сечений изменяются в зависимости от нагрузок и их распределения по длине стержня. Для достаточно длинных стержней на некотором удалении от концов стержня, к которым приложены внешние продольные силы, можно напряженно-деформированное состояние считать равномерным в пределах каждого отдельного поперечного сечения. Такое положение наблюдается уже на расстоянии порядка толщ,ины стержня от нагруженных концов, и с удалением от концов оно выполняется с более высокой точностью. На рис. 3.1 показаны два различных характера загружения концов стержня внешней осевой нагрузкой Fi = 2Fa- Штриховыми линиями показано очевидное деформированное состояние с изображением искривления поперечных сечений по мере изменения расстояния от нагруженных концов. На расстояниях порядка толщины (ширины) стержня плоские поперечные сечения практически не искривляются. Это одна из иллюстраций справедливости принципа Сен-Вепана, который утверждает, что статически эквивалентное преобразование внешних нагрузок на малой площади границы тела не влияет на распределение напряжений на некотором удалении от места приложения нагрузок. Опираясь на этот принцип, примем гипотезу плоских сечений, которая состоит в следующем материальные, точки стержня, расположенные в плоскости поперечного сечения до деформирования, после деформирования располагаются в одной и той же плоскости поперечного сечения (гипотеза Бернулли), или, иначе, плоские до деформирования поперечные се-нЕНия бруса остаются плоскими и после деформирования.  [c.51]


Покажем, что гипотеза Бернулли при еуществовании в поперечных сечениях балки касательных сил упругости несправедлива. Рассмотрим для этого часть боковой поверхности консольной балки (рис. .38, а) прямоугольного поперечного сечения, нагруженной силой на конце. Опираясь на принцип независимости действия сил, найдем перемещение произвольной точки поперечного сечения в направлении оси балки 3,4 от действия в этом сечении только касательных сил упругости. Деформация элемента с1х, с1г при чистом сдвиге и его новое положение изображены на рис. .38, б, где (18 — перемещение верхней грани элемента относительно нижней в направлении оси х за счет чистого сдвига. Находим  [c.173]

Идея такого подхода связана с принципом виртуальных перемещений (т. е. возможных, допускаемых для данной системы) в механике, который был сформулирован И, Бернулли и применен к расчетам механических систем Лагранжем. Применение и обобщение дан 10го метода для исследования равновесия термодинамических систем было сделано Гиббсом, разработавщим общую теорию термодинамических потенциалов — основной метод современной термодинамики.  [c.113]

В своих исследованиях Галилей пользуется принципами суперпозиции (наложения) движений, независимости действия сил, относительности, инерции, возможных перемещений (возможных скоростей) и др. Особенно важно отметить последний, поскольку он постулирует сохранение работы. В применении к рычагу этот принцип известен в античном мире как золотое правило механики (сколько выигрываешь в силе, столько проигрываешь в перемещении), им пользовались Архимед, Герои, Стевин и другие ученые того времени. Но Галилей первым сформулировал это правило как общий принцип статики Когда наступает равновесие и оба тела приходят в состояние покоя, то моменты, скорости и склонность их к движению, т. е. пространства, которые они прошли бы в одинаковые промежутки времени,, должны относиться друг к другу обратно их весам... Окончательное обобщение этого принципа будет сделано в 1717 г. И. Бернулли.  [c.63]

Исторически этот принцип был намечен уже Галилеем и развит дальше Стевином, Яковом и Иоганном Бернулли, а также Даламбером. Однако доминирующее положение наиболее общего принципа равновесия он получил только в Аналитической механике Лагранжа.  [c.74]

С формальной точки зрения задача нахождення минимума определенного интеграла является собственно задачей вариационного исчисления, в то время как задача нахождения минимума функции принадлежит к обычному анализу. Исторически эти две проблемы возникли одновременно и четкого разграничения между ними не было вплоть до Лагранжа, развившего технику вариационного исчисления. Знаменитая задача Дидоны, хорошо известная геометрам древности, была вариационной задачей, требовавшей нахождения минимума некоторого интеграла. Герон Александрийский вывел закон отражения, исходя из того, что луч света, выходящий из точки А и приходящий в точку В после отражения от зеркала, достигает цели в кратчайшее время. Ферма применил этот принцип для получения законов преломления. Все эти задачи решались геометрическими методами. Задача о брахистохроне (кривой быстрейшего спуска) была предложена Иоганном Бернулли и решена независимо им самим, Ньютоном и Лейбницем. Основные дифферен-  [c.57]

Иоганн Бернулли (1667—1748). Во всех предыдущих формулировках принципа всегда фигурировали две силы движущая сила и нагрузка . При этом закон формулировался с помощью некоторой пропорции. Иоганн Бернулли первый увидел в принципе виртуальных перемещений общий принцип статики, с помощью которого могут быть решены вге задачи о равновесии. Он отказывается от использования пропорций и вводит произвгдение силы и виртуальной скорости в направлении действия силы, взятое с положительным или отрицательным знаком, в зависимости от того, является ли угол между силой и скоростью острым или тупым. В письме, написанном Вариньону в 1717 г. Бернулли сформулировал общий принцип, согласно которому при равновесии сил сумма всех таких произведений обращается в нуль на всех возможных бесконечно малых перемещениях. Теперь уже принцип виртуальных перемещений мог применяться для любых сил и любых механических условий.  [c.386]

Ifi. Появившееся в 1743 г, сочинение Даламбера Traits de Dynamique положило конец всем подобного рода вызовам ученых в нем предложен прямой и общий метод, с помощью которого можно разрешить, или во всяком случае выразить в виде уравнений, все проблемы механики, какие только можно себе представить. Этот метод приводит все законы движения тел к законам их равновесия и таким образом сводит динамику к статике. Мы уже отметили выше, что принцип, примененный Яковом Бернулли при определении центра колебания, обладал тем преимуществом, что он поставил это определение в зависимость от условий равновесия рычага однако только Даламбер подошел к этому принципу с более общей точки зрения и придал ему всю ту простоту и плодотворность, на которые он был способен.  [c.312]


Смотреть страницы где упоминается термин Бернулли принцип : [c.9]    [c.108]    [c.311]    [c.208]    [c.163]    [c.389]    [c.2]    [c.42]    [c.309]    [c.315]   
Теория звука Т.1 (1955) -- [ c.126 ]



ПОИСК



Бернулли

Бернулли и принцип сохранения живых сил



© 2025 Mash-xxl.info Реклама на сайте