Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Колебания механических систем Об устойчивости равновесия

Так, например, на рис. 223, а и (5 изображен физический маятник в состоянии равновесия, но в положении, изображенном на рис. 223, а, потенциальная энергия маятника минимальна и равновесие устойчиво, а на рнс. 223, б потенциальная энергия максимальна и равновесие неустойчиво. Такой маятник является механической системой с одной степенью свободы. Колебания систем со многими степенями свободы складываются из простых колебаний около положения устойчивого равновесия. Указанный Лагранжем метод изучения колебаний (см. 62) имеет громадное применение в различных отраслях науки н техники и, в частности, в теории вибрации машин.  [c.401]


Колебательные движения механических систем удобно описывать уравнениями Лагранжа в обобщенных координатах. При составлении уравнений будем отсчитывать обобщенные координаты всегда от положения устойчивого равновесия, относительно которого и происходят колебания механических систем. В большинстве случаев эти уравнения нелинейны и их интегрирование связано с большими трудностями. Однако при решении многих технических задач оказывается возможным в этих уравнениях отбрасывать квадраты и более высокие степени координат и скоростей. Такая операция называется линеаризацией уравнений. Линеаризованные уравнения не могут, конечно, в точности отобразить движения системы и дают несколько искаженную картину явления. Искажения тем менее существенны, чем меньше отброшенные члены уравнений в сравнении с оставшимися. Если значения координат и скоростей во все время движения остаются очень малыми, то их квадратами и высшими степенями вполне можно пренебречь, подобно тому, как в дифференциальном исчислении пренебрегают бесконечно малыми высших порядков. Таким образом, мы пришли к заключению, что колебания, описываемые линеаризованными уравнениями при сделанном выборе начала отсчета, должны быть только малыми колебаниями около положения устойчивого равновесия.  [c.264]

Следовательно, при изучении колебаний механической системы необходим критерий устойчивости положения равновесия, около которого происходят колебания системы.  [c.198]

Малые свободные колебания механической системы с одной степенью свободы около положения устойчивого равновесия.  [c.370]

Если точкам механической системы, находящейся в состоянии устойчивого равновесия, сообщают малые отклонения и малые начальные скорости, то система совершает свободные колебания около положения устойчивого равновесия.  [c.20]

Рассмотрим свободные колебания механической системы, имеющей две степени свободы, положение которой определяется двумя обобщенными координатами и отсчитываемыми от положения устойчивого равновесия системы.  [c.82]

При интегрировании системы (18.2), представляющей собой систему двух однородных дифференциальных уравнений второго порядка с постоянными коэффициентами, исходим из того, что механическая система совершает малые колебания около положения устойчивого равновесия. Частные решения этих уравнений, предположив, что координаты qi и изменяются по простому гармоническому закону, можно представить в следующем виде  [c.83]


Одним из наиболее замечательных примеров эффективности аналитических методов является приложение уравнений Лагранжа к теории малых колебаний вблизи положения устойчивого равновесия. Эта теория чрезвычайно важна при изучении упругих свойств твердых тел, колебаний молекулярных структур, теории теплоемкости и других фундаментальных проблем. Наиболее замечательной чертой теории является ее общность. Независимо от степени сложности механической системы ее движение вблизи положения равновесия описывается всегда одинаковым образом. Конкретные вычисления усложняются по мере увеличения числа степенен свободы, однако теоретические аспекты задачи остаются неизменными.  [c.175]

Колебания около положения равновесия. Свой метод Лагран>1. с особо выдающимся успехом применил к теории малых колебаний механической системы около положения устойчивого равновесия. Правда, применяемые там уравнения описывают, движение приближенно, но, несмотря на это. представляют большой интерес, поскольку, как уже отмечалось ранее в 8.1. эти уравнения относятся к числу полностью разрешимых задаваясь значениями q и q при г = О, можно получить явные формулы, дающие решения уравнений для всех последующих значений t.  [c.140]

Малые колебания около положения устойчивого равновесия — один из разделов динамики, в котором эффективно используются аналитические методы. Для теории колебаний характерна большая общность. Независимо от степени сложности механической системы, ее движение вблизи положения равновесия при малых колебаниях описывается всегда одинаковыми по структуре уравнениями. Усложнения происходят с увеличением числа степеней свободы.  [c.42]

Малые колебания механической системы с одной степенью свободы. Потенциальная и кинетическая энергия системы при малых колебаниях вблизи положения устойчивого равновесия. Критерий устойчивости положения равновесия. Свободные, затухающие и вынужденные колебания гармонического осциллятора. Явление резонанса.  [c.150]

Одним из наиболее плодотворных применений уравнений Лагранжа 2-го рода является изучение малых колебаний механических систем около положения равновесия. Мы ограничимся рассмотрением случая малых свободных колебаний механической системы, имеющей s степеней свободы, около положения устойчивого равновесия. Как было указано, потенциальная энергия системы V qu <72, .., < s) определяется с точностью до произвольной постоянной. Мы можем выбрать начало отсчета координат qt, 2,. . qs таким образом, чтобы положению равновесия соответствовали значения i=0, 2=0,. . s = 0 и Vo=0. Кроме того, в главе VI раздела Кинетика мы доказали, что при равновесии консервативной системы имеют место следующие условия  [c.501]

Проведенные рассуждения показывают, что для изучения свободных малых колебаний механической системы вблизи положения устойчивого равновесия в потенциальном силовом  [c.503]

Понятие об устойчивости равновесия. Малые свободные колебания механической системы с одной степенью свободы около по-ложе ия устойчивого равновесия системы и их свойства.  [c.10]

Таким образом, функцию Лагранжа одномерной механической системы, совершающей малые колебания вблизи положения устойчивого равновесия, с точностью до величин второго порядка малости по л и л (или в так называемом гармоническом приближении) можно представить в виде  [c.215]

Свободные колебания линейного гармонического осциллятора, если они происходят в вязкой среде, постепенно затухают в результате действия со стороны среды диссипативных сил трения. Как было показано в 29, для полного описания движения механической системы, подверженной действию сил вязкого трения, необходимо наряду с лагранжианом ввести диссипативную функцию Рэлея (29.19), описывающую процесс рассеяния механической энергии. Для одномерной механической системы, совершающей малые колебания вблизи положения устойчивого равновесия, указанные функции имеют вид  [c.223]


Таким образом, лагранжиан 5-мерной механической системы, совершающей малые колебания вблизи положения устойчивого равновесия, можно представить в виде разности двух положительно определенных квадратичных форм  [c.237]

Как и в 148, будем считать, что рассматриваемая механическая система при (7=0 находится в положении устойчивого равновесия. Исследуем ее малые колебания около положения равновесия еще в двух случаях.  [c.392]

Рассмотрим основные свойства малых колебаний механических систем с одной и двумя степенями свободы на основе применения уравнений Лагранжа некоторые результаты для системы с любым, конечным числом степеней свободы приведем без вывода. Механическая система может совершать малые колебания только вблизи устойчивого положения равновесия. Обобщенные координаты системы в положении равновесия принимают равными нулю, т. е. отсчитывают их от положения равновесия. Тогда колебательным движением механической системы в общем случае считают всякое ее движение, при котором все обобщенные координаты или часть из них изменяются не монотонно, а имеют колебательный характер, т. е. принимают нулевые значения по крайней мере несколько раз.  [c.384]

Теория равновесных флуктуаций тесно связана с вопросом устойчивости состояния термодинамического равновесия (см. гл. 6). Их взаимоотношение аналогично отношению теории устойчивости и теории малых колебаний в механике. Подобно тому, как параметры малых колебаний определяются по значениям производных потенциальной энергии механической системы в положении равновесия, в теории равновесных флуктуаций их характеристики определяются значениями термодинамических производных в состоянии равновесия или соответствующими моментами равновесных канонических распределений. Полученные ранее условия устойчивости относительно вариации тех или иных термодинамических параметров соответствуют положительности дисперсии соответствующих величин в теории флуктуаций.  [c.292]

Бифуркационный критерий устойчивости, рассмотренный в 4.4, как мы выяснили там, не всегда дает ответ на вопрос об устойчивости или неустойчивости равновесия. Неполнота этого критерия связана с тем, что он устанавливает возможность иди невозможность смежного состояния равновесия, тогда как при потере устойчивости, вообще говоря, может наступить не новое состояние равновесия, а состояние движения системы. Поэтому естественная постановка задачи устойчивости состоит именно в изучении возможных движений механической системы. Возвращаясь к проблеме устойчивости сжатого стержня, напишем уравнение колебаний такого стержня следующим образом  [c.205]

Колебания около положения равновесия возникают в случае устойчивого равновесия. В случае неустойчивого равновесия система при малейшем отклонении удаляется от положения равновесия и колебания около этого положения не возникают. Поэтому при изучении малых колебаний механических систем важно знать критерий устойчивости равновесия этих систем.  [c.5]

Рассмотрим движение механической системы с одной степенью свободы, подчиненной голономным, идеальным, стационарным связям около положения устойчивого равновесия под действием лишь восстанавливающих сил Р/. При наличии этих сил возникают свободные колебания системы.  [c.24]

Резюме. Движение произвольной механической системы вблизи положения устойчивого равновесия удобно изучать с помощью пространства конфигураций. В этом случае пространство евклидово, а переменные qi служат в нем прямолинейными координатами. Главные оси квадратичной формы потенциальной энергии определяют п взаимно ортогональных направлений в пространстве конфигураций, которые могут быть выбраны в качестве осей естественной системы координат. С-точка совершает гармонические колебания вдоль этих направлений с частотами, меняющимися от одной оси к другой. Амплитуды и фазы этих колебаний, называемых нормальными , произвольны и зависят от начальных условий. Произвольное движение системы является суперпозицией нормальных колебаний. В результате такого движения С-точка описывает фигуры Лиссажу в пространстве конфигураций. Для устойчивости равновесия требуется, чтобы корни характеристического уравнения были положительны, так как в противном случае нарушается колебательный характер движения.  [c.189]

II. Двойным маятником называют систему с двумя степенями свободы, которая получается в результате соединения двух маятников посредством различных связей (твердых, упругих, электромагнитных и т. п.). С этими системами возможны различные интересные опыты. В частности, малые колебания двойных маятников в окрест-носги их положения устойчивого равновесия дают очень наглядное представление механические модели) важных оптических и акустических явлений интерференции и биения (см., в частности, упражнение 6 предыдущей главы).  [c.20]

В моих акустических исследованиях ) я доказал закон взаимности, который в своих лекциях обычно легко распространял на малые колебания любой колеблющейся механической системы около положения устойчивого равновесия. Но этот закон имеет еще большую общность и остается в силе для любой движущейся системы, которая подчиняется закону наименьшего действия и движется обратимым способом.  [c.455]


В ряде случаев колебания возникают и при отсутствии периодического возбуждения. Таковы, например, сравнительно простые процессы свободных колебаний, развивающихся после мгновенного нарушения состояния устойчивого равновесия механической системы, а также более сложные и в то же время менее изученные процессы, например автоколебания.  [c.4]

Пусть при / = О системе дается отклонение от положения устойчивого равновесия к (или) ее точкам сообщаются начальные скорости. Совокупность этих воздействий будем называть начальными возмущениями, которые сообщают системе некоторое количество механической энергии, дополнительное к потенциальной энергии в положении равновесия. Колебания, происходящие в системе при / > О, представляют собой свободные колебания, определение которых дано в гл. I.  [c.55]

Наличие поля силы тяжести также налагает определенное ограничение на систему, поскольку положение и скорость маятника могут принимать только такие значения, которые допускаются законами механики в присутствии данного поля. В частности, можно отметить, что существует лишь единственное положение покоя маятника, в которое он возвращается после начального отклонения за счет вязкого затухания колебаний в воздухе. Это состояние покоя, в котором шарик находится вертикально под точкой подвеса, является единственным состоянием механического устойчивого равновесия маятника при наличии связи, реализуемой данным гравитационным полем. Следовательно, это поле выступает как внешняя связь по отношению к определенной нами системе.  [c.28]

Математический и физический маятники, груз, подвешенный на пружине, плавающее тело представляют собой примеры простейших механических систем, обладающих тем свойством, что, будучи выведенными из положения устойчивого равновесия и предоставленные затем самим себе, они совершают колебания. Системы такого рода называют колебательными системами, а совершаемые ими колебания — собственными .  [c.336]

Влияние диссипативных сил на малые колебания системы около устойчивого положения равновесия. До сих пор рассматривались малые колебания механических систем. При этом предполагалось, что на систему наложены идеальные связи и всякое сопротивление движению системы отсутствует. На самом деле на всякую механическую систему действуют некоторые силы сопротивления. В общем случае характер этих сил очень сложный и каждый раз определяется экспериментально. В простейшем случае предполагается, что силы сопротивления, действующие на каждую точку системы, пропорциональны скорости движения соответствующей точки и направлены в сторону, противоположную скорости движений этой точки.  [c.568]

Существо этой теории сводится к линеаризации уравнений Лагранжа в окрестности положения устойчивого равновесия. Поэтому исследование, собственных колебаний нужно начинать с отыскания таких положений. Прежде всего напомним, что необходимым и достаточным условием равновесия механической системы с голономными идеальными связями является обращение в нуль всех обобщенных сил в некотором положении — положении равновесия ( 7 )ед (/= 1, 2,. .., 5) (см. (5.54)). приведем это условие  [c.262]

Рассмотрим механическую систему, подчиненную требованиям, сформулированным в начале 6.4, предполагая, что на систе- му также действуют нестационарные силы, т. е. силы, явно зависящие от времени. Ниже мы убедимся, что такая система наряду с собственными колебаниями будет совершать еще и вынужденные колебания. Чтобы получить в этом случае уравнения движения, необходимо линеаризовать уравнения Лагранжа около положения устойчивого равновесия, как это было сделано в 6.4. Ввиду наличия нестационарных сил вместо уравнений (6.59) здесь будут иметь место уравнения  [c.300]

Мерой степени устойчивости механической системы может служить скорость, с которой тело после некоторого сдвижения возвращается в положение равновесия при колебаниях около положения равновесия такой мерой служит частота колебаний. Степень устойчивости для регуляторов—см. т. II, отд.. Детали машин .  [c.258]

ОРБИТА электронная — траектория движения электрона вокруг ядра в атоме или молекуле ОРБИТАЛЬ —волновая функция одного электрона, входящего в состав электронной оболочки атома или молекулы и находящегося в электрическом иоле, создаваемом одним или несколькими атомными ядрами, и в усредненном электрическом поле, создаваемом остальными электронами ОСЦИЛЛЯТОР как физическая система, совершающая колебания ангармонический дает колебания, отличающиеся от гармонических гармонический осуществляет гармонические колебания квантовый имеет дискретный спектр энергии классический является механической системой, совершающей колебания около положения устойчивого равновесия) ОТРАЖЕНИЕ [волн происходит от поверхности раздела двух сред, и дальнейшее распространение их идет в той же среде, в которой она первоначально распросгра-нялась диффузное характеризуется наличием нерегулярно расположенных неровностей на поверхности раздела двух сред и возникновением огражен1 ых волн, идущих во всех возможных направлениях зеркальное происходит от поверхности раздела двух сред в том случае, когда эта поверхность имеет неровности, размеры которых малы по сравнению с длиной падающей волны, а направление отраженной волны определяется законом отражения наружное полное сопровождается частичным поглощением световой волны в отражающей среде вследствие проникновения волны в Э1у среду на глубину порядка длины волны полное внутреннее происходит от поверхности раздела двух прозрачных сред, при котором преломленная волна полностью отсутствует]  [c.257]

Метод вспомогательных оторЗажений. Опнсанные выше критерии существования неподвижной точки и особенно критерий, основанный на принципе сжимающих отображений, в тех случаях, когда его удается применить, дает значительные, а ииогд ) и исчерпывающие сведения о поведении изучаемой системы. В качестве примера можно привести произвольную механическую систему с взаимными и собственными комбинированными трениями без падающих участков характеристик трения. К такой системе возможно применение принципа сжимающих отображений, позволяющее установить глобальную устойчивость многообразия состояний равновесия или периодических движений при воздействии на такую систему внешней периодической силы. Применение принципа сжимающих отображений позволяет установить существование и единственность вынужденных колебаний в системе с т 1к называемым конструкционным демпфированием. Соответствующие примеры могут быть продолжены, но все же они не очень многочисленны, поскольку далеко не всегда имеется сжимаемость. В настоящем разделе излагается метод вспомогательных отображений, позволяющий расширить применение критерия о существовании и единственности неподвижной точки на несжимающие отображения. Ради геометрической наглядности это изложение, как и относящиеся к нему примеры, будет ограничено двумерными точечными отображениями.  [c.301]

Некоторые физические системы имеют ограниченное движение, состоящее из малых перемещений относительно положения устойчивого равновесия. Примером такого движения является механическое колебание атомной решетки, как это имеет место в кристалле. Это движение сложное, но может быть представлено в виде суммы конечного числа простых гармонических колебаний. В общем случае каждое слагаемое, т. е. простое гармоническое колебание, соответствует движению всей рещетки. Эти простейщие слагаемые называются главными или нормальными колебаниями системы.  [c.48]


Задачи об устойчивости состояний равновесия занимают одно из центральных мест в теории устойчивости механических систем. К этому классу принадлежит большинство задач об устойчивости элементов конструкций и машин, загруженных квазистатическими силами. Кроме того, многие задачи устойчивости движения также приводятся к задачам об устойчивости состояний равновесии. Так, стационарное движение системы при силах, не зависящих от времени, может быть представлено в виде некоторого относительного равновесия. В других случаях нестационарностью невозмущенного движения допустимо пренебречь. Например, рассматривая устойчивость прямолинейной формы упругих стержней, нагруженных продольньпаи силами -периодическими функциями времени, обычно пренебрегают продольными колебаниями от действия этих сил [3]. Задача об устойчивости движения в результате сводится к родственной задаче об устойчивости равновесия.  [c.473]

После Эйлера в течение XVIII в. теория устойчивости развивается в русле динамики в двух направлениях. Одним из них является изучение малых коле- 119 баний механической системы около положения равновесия. Этим вопросом занимались А. Клеро, Д. Бернулли, Ж. Даламбер, Ж. Лагранж. В Аналитической механике Лагранжа (1788) теория малых колебаний системы с конечным числом степеней свободы изложена в ее классической форме. Ответ на вопрос, устойчиво ли для данной системы положение равновесия, около которого она начинает колебаться, дает исследование корней алгебраического уравнения, определяющего частоты колебаний, соответствующих отдельным степеням свободы. (При этом, как известно, Лагранж высказал ошибочное утверждение, что при наличии кратных корней уравнения частот должны появляться вековые члены и устойчивости не будет.)  [c.119]

Второе направление, тесно связанное с первым, представлено работами по теории возмущений небесной механики. Наибольшее значение здесь имели исследования Ж. Лагранжа и П. С. Лапласа. Математический аппарат и методы теоретического исследования тут по сути те же, что и в теории малых колебаний. Однако в идейном отношении существенно то, что рассматривается устойчивость некоторого состояния движения и что само содержание понятия устойчивости в связи с этим изменялось. Сдвиг в сторону динамики демонстрирует нам и еще один важный результат, полученный механикой XVIII в.,— теорема Лагранжа об устойчивости положения равновесия механической системы, соответствующего максимуму силовой (или минимуму потенциальной) функции. Доказательство теоремы, логически проведенное небезупречно, основано на применении интеграла живых сил.  [c.119]

По существу, все механические системы описываются нелинейными уравнениями. Для исследования поведения систем в окрестности положения равновесия применяют метод линеаризанди уравнений движения поведение системы приближенно описывается линейными уравнениями. Если положение равновесия устойчиво, то движение системы называют линейными колебаниями. Этот вид движения широко распространен в природе и технике.  [c.136]

Вибрацией называют колебательный процесс в механических системах. Колебательный процесс характеризуется таким движением материальной точки, при котором наблюдается периодическое прохождение этой точкой одного и того- же положения устойчивого равновесия. Понятия вибрация и механические колебания являются синонимами. Однако в технике принято называть одни колебательные процессы механическими колебаниями (например, колебание электрона на орбите, колебание маятникаит. п.), а другие —вибрациями (например, вибрация ставка при обработке деталей, вибра-.ция фундаментов сооружений и т. п.). Как правило, вибрациями в технике называют вредные колебательные процессы. Вибрация возникает в механизмах, приборах и их элементах, различных сооружениях вследствие несовершенства их конструкции. Она может появиться в результате периодических толчков, сотрясений, при больших ускорениях движущихся неуравновешенных масс, при периодическом изменении давления пара в паровых котлах и т. д. Значение вибра1 ,ии в технике очень велико. Явление вибрации необходимо учитывать при проектировании, производстве и эксплуатации зданий, судов, самолетов, металлорежущих и деревообрабатывающих станков, турбин, паровых котлов и т. д.  [c.164]


Смотреть страницы где упоминается термин Колебания механических систем Об устойчивости равновесия : [c.264]    [c.419]    [c.264]    [c.268]    [c.407]    [c.16]    [c.5]   
Смотреть главы в:

Теоретическая механика  -> Колебания механических систем Об устойчивости равновесия



ПОИСК



Колебание устойчивое

Колебания механические

Колебания механической системы

Малые колебания механических систем с одной и двумя степенями свободы около положения устойчивого равновесия

Малые свободные колебания механической системы с одной степенью свободы около положения устойчивого равновесия

Механические системы механических систем

Равновесие механическое

Равновесие механической системы

Равновесие системы тел

Равновесие устойчивое

Система Устойчивость

Система механическая

Система устойчивая

Теоремы Ляпунова об устойчивости и неустойчивости Теорема Лагранжа об устойчивости положения равновесия консервативной механической системы Малые колебания в окрестности положения равновесия

УСТОЙЧИВОСТЬ МЕХАНИЧЕСКИХ СИСТЕМ

Устойчивость механическая

Устойчивость равновесия

Устойчивость равновесия механических систем

Устойчивость равновесия системы



© 2025 Mash-xxl.info Реклама на сайте