Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Флуктуации равновесные

В 1931 г. Л. Онзагер, исходя из инвариантности микроскопических уравнений движения относительно изменения знака времени (временная симметрия) и из представления о неравновесном состоянии системы, вызванном внешними силами, как крупной флуктуации равновесной системы, установил, что в области линейности необратимых процессов матрица кинетических коэффициентов симметрична  [c.14]


Прямой путь. С другой стороны, флуктуации равновесного поля в бесконечной среде логичней и проще находить, полагая в ФДТ именно поле наблюдаемой величиной, а поляризацию -среды — заданной силой  [c.115]

Флуктуации равновесного излучения .55  [c.55]

Флуктуации равновесного излучения  [c.55]

Флуктуации равновесного излучения 57  [c.57]

Однако для обычных систем, состоящих из большого числа частиц, наиболее вероятное направление процесса практически совпадает с абсолютно неизбежным. Поясним это на следующем примере. Пусть имеется равновесный газ. Выделим в нем определенный объем и посмотрим, возможно ли в этом объеме самопроизвольное увеличение давления. Из-за теплового движения чис ]о молекул в объеме непрерывно флуктуирует около среднего значения JV. Одновременно флуктуируют и температура, и давление, и внутренняя энергия, и т, д. Теория показывает, что относительная величина этих флуктуаций обратно пропорциональна корню квадратному из числа молекул в выделенном объеме, поэтому Др/р=1/ //У,  [c.28]

Как указывалось ранее (гл. I), в любом веществе происходит флуктуация тепловых колебаний, в результате которой отдельные атомы приобретают значительно большую энергию, чем средний уровень энергии атомов, характеризуемый температурой данного тела. Эти атомы могут покидать равновесные положения в узлах решетки и перемещаться в междоузлиях, оставляя места в узлах решетки незанятыми.  [c.320]

Равновесное содержание таких дефектов возрастает с повышением температуры, причем фактическое содержание может не совпадать с равновесным из-за флуктуации внутренней энергии.  [c.468]

Кинетика диффузионного превращения. Диффузионное превращение происходит по механизму образование зародыша и рост новой фазы . Этот тип превращения подчиняется тем же общим закономерностям, что и процессы кристаллизации жидкости (см. гл. 12). Существуют некоторые особенности, связанные с твердым состоянием исходной и образующейся фаз и относительно низкой температурой превращений. Образование зародышей критических размеров сопровождается увеличением свободной энергии системы, равным /з поверхностной энергии зародышей (остальные две трети компенсируются уменьшением объемной свободной энергии). Возникновение зародышей обеспечивается в результате флуктуационного повышения энергии в отдельных группах атомов. При превращении в сплавах образуются фазы, отличающиеся по составу от исходной, поэтому для образования зародыша необходимо также наличие флуктуации концентрации. Последнее затрудняет образование зародышей новой фазы, особенно если ее состав сильно отличается от исходной. Другой фактор, затрудняющий образование зародыша новой фазы, связан с упругой деформацией фаз, которая обусловлена различием удельных объемов исходной и образующейся фаз. Энергия упругой деформации увеличивает свободную энергию и, подобно поверхностной энергии, вносит положительный вклад в баланс энергии. Критический размер зародышей и работа их образования уменьшаются с увеличением степени переохлаждения (или перегрева) по отношению к равновесной температуре Гр, а также при уменьшении поверхностной энергии зародыша.  [c.493]


При ускоренном охлаждении и больших степенях переохлаждения вместо стабильной фазы 0 часто образуется метастабиль-ная фаза 0, содержащая обычно меньше растворенного компонента, чем в стабильной (см. рис. 13.6). Фаза 0 зарождается гетерогенно предпочтительно на малоугловых границах блоков внутри зерен, скоплениях вакансий и отдельных дислокациях. Они имеют полностью или частично когерентные границы раздела. Возникновение метастабильных фаз обусловлено меньшим значением энергетического барьера при их зарождении, чем стабильных. Кроме того, для возникновения метастабильной фазы требуются меньшие концентрационные флуктуации. При длительной выдержке может произойти переход 0 в 0, в результате чего будет достигнуто равновесное состояние сплава с минимальной свободной энергией.  [c.498]

Через некоторое время после таких операций система, если она предоставлена самой себе, может с равной вероятностью оказаться в любом из возможных микросостояний. Но почти все из них будут соответствовать однородному равновесному состоянию. Например, равномерному распределению чернил по стакану. Это и означает, что система почти наверняка перейдет в состояние термодинамического равновесия. Почти наверняка означает с точностью до флуктуаций.  [c.21]

В 1.3 мы говорили, что однородное равновесное макроскопическое состояние включает в себя подавляющее число возможных микросостояний системы. И что уже при малых отклонениях от однородности соответствующее таким условиям число микросостояний резко падает. Это значит, что флуктуации, т.е. случайные  [c.41]

Таким образом, под действием сил поверхностного натяжения, стремящегося сделать поверхность минимальной и энергии теплового движения, обусловливающего отклонение от этого равновесного состояния, возникают мелкие неоднородности на поверхности жидкости. Эти неоднородности на поверхности представляют собой молекулярные шероховатости поверхности, нарушающие правильное зеркальное отражение, тем самым приводящие к рассеянию света на поверхности. Если соприкосновение двух несмешивающихся жидкостей приводит к уменьшению поверхностного натяжения на границе их раздела, то из-за уменьшения противодействия (поверхностного натяжения) флуктуации поверхности должны усиливаться тем самым должна увеличиваться интенсивность рассеянного света. Опыты, проведенные Мандельштамом на смеси из метилового спирта  [c.321]

Трудно объяснимое на первый взгляд наличие каскада переходов в неравновесной системе становится понятным, если принять во внимание статистический характер свойств среды. В равновесных системах состояние равновесия устойчиво относительно флуктуаций, которые непрерывно возмущают средние значения потоков энергии. Вблизи равновесия флуктуации затухают. Поэтому можно считать, что равновесные и близкие к равновесным системы управляемы. В них равновесие контролируется стремлением системы к минимуму свободной энергии Гиббса. В неравновесных условиях устойчивость системы контролируется стремлением системы к минимуму производством энергии. Но что же заставляет систему забывать, что она является неравновесной и эволюционировать на определенном этапе по законам равновесной термодинамики Физические причины такого поведения рассмотрены ниже.  [c.43]

Флуктуации в равновесном фотонном газе. Для равновесного фотонного газа, имеющего температуру Т, вероятность W,. описывается выражением (см. (2.4.22))  [c.295]

Ряд равновесных характеристик системы (теплоемкость, сжимаемость, термический коэффициент давления) вычисляется по значениям флуктуаций энергии и вириала (для гладкого парного потенциала вириал будет равен г(1ф г)1йг). В окрестности фазового перехода флуктуации становятся большими. Особенно значительные вычислительные трудности возникают вблизи критической точки.  [c.191]

Это значит, что первая вариация энтропии равна нулю, а вторая меньше нуля. Равенство нулю первой вариации является лишь необходимым условием экстремума и не обеспечивает того, чтобы энтропия имела именно максимум. Достаточным условием максимума энтропии является отрицательное значение ее второй вариации, которое и обеспечивает устойчивость равновесия. Если же при 65 = 0 вторая вариация энтропии положительна (минимум энтропии), то соответствующее состояние системы будет равновесным, но совершенно неустойчивым , так как благодаря флуктуациям в ней начнутся неравновесные процессы, которые и приведут ее в равновесное состояние с максимумом энтропии. Так как дальше энтропия расти не может, то это равновесие будет устойчивым.  [c.122]


Физическая природа синергетики состоит в том, что в нелинейной области, вдали от равновесного состояния, система теряет устойчивость и малые флуктуации приводят к новому режиму—совокупному движению многих частиц.  [c.280]

Состояние термодинамического равновесия, по Больцману, является лишь наиболее часто встречающимся, наиболее вероятным в равновесной системе всегда самопроизвольно могут возникнуть сколь угодно большие флуктуации.  [c.73]

ТЕОРИЯ РАВНОВЕСНЫХ ФЛУКТУАЦИЙ  [c.291]

Движение частиц статистической системы приводит к отклонению ее динамических величин от средних значений. Эти самопроизвольные отклонения динамических величин от их равновесных статистических средних значений называются флуктуациями.  [c.291]

Статистическая физика позволяет вычислять не только равновесные значения макроскопических параметров многочастичных систем, но и флуктуации этих параметров.  [c.291]

Флуктуации наблюдаются, как в равновесных, так и неравновесных статистических-системах. В соответствии с этим различают равновесные и неравновесные флуктуации. В этой главе мы будем рассматривать флуктуации систем, находящихся в состоянии термодинамического равновесия. При этом за время наблюдения каждый из флуктуирующих параметров много раз проходит через равновесные средние значения.  [c.292]

Неравновесные флуктуации наблюдаются либо в системах, далеких от равновесия, когда время наблюдения меньше времени установления термодинамического равновесия, либо при наличии внешних воздействий (например, разности температур, электрических напряжений или давлений на границах системы), поддерживающих вынужденные отклонения от равновесного состояния . Неравновесные флуктуации рассматриваются в кинетической теории неравновесных систем.  [c.292]

Теория равновесных флуктуаций тесно связана с вопросом устойчивости состояния термодинамического равновесия (см. гл. 6). Их взаимоотношение аналогично отношению теории устойчивости и теории малых колебаний в механике. Подобно тому, как параметры малых колебаний определяются по значениям производных потенциальной энергии механической системы в положении равновесия, в теории равновесных флуктуаций их характеристики определяются значениями термодинамических производных в состоянии равновесия или соответствующими моментами равновесных канонических распределений. Полученные ранее условия устойчивости относительно вариации тех или иных термодинамических параметров соответствуют положительности дисперсии соответствующих величин в теории флуктуаций.  [c.292]

Малые же отклонения, вообще говоря, можно заметить. Только для этого нужно предпринять специальные усилия сильно увеличить чувствительность приборов и уменьшить их инерционность, чтобы они успевали замечать незначительные кратковременные изменения макроскопических величин. Тогда мы увидим, что даже в состоянии термодинамического равновесия эти величины не остаются все время строго неизменными, а слегка пляшут около своих равновесных значений. Такие случайные колебания назьшают флуктуациями. Их существование есть сильнейший довод в пользу больцмановской трактовки состояния термодинамического равновесия.  [c.20]

Из этого примера видно, что, если бы мы могли увеличить число шагов до такой степени, чтобы возникающая в системе неравно-весность оказалась на уровне естественных флуктуаций, можно было бы и полное увеличение энтропии системы сделать порядка тех же флуктуаций и получить таким образом процесс, не сопровождающийся макроскопическим возрастанием энтропии. Все состояния, через которые проходила бы система в таком предельно деликатном процессе, были бы равновесными, а сам процесс — полностью обратимым.  [c.100]

Вероятность попадания подсистемы в какое-то микросостояние с энергией б в условиях термодинамического равновесия всей системы можно найти из следующих соображений. Рассмотрим такое макроскопическое состояние системы, в котором интерес)гющая нас подсистема находится в каком-то определенном ликросостоянии с данным значением б, а остальная часть системы —в равновесном макроскопическом состоянии с энергией Е - е, где Е—полная энергия системы. Если не интереожаться аномально болыпими флуктуациями и  [c.147]

В. Хорстехемке и Р. Лефер [26] распространили понятие фазового перехода на новый класс неравновесных явлений перехода, связанными со случайными свойствами среды. Этот тип переходов авторы [26] назвали неравновесными фа ювыми переходами, индуцированными шумами. Этим на 5ванием подчеркнут тот факт, что новый класс явлений перехода тесно связан с классическими равновесными фазовыми переходами и с неравновесными переходами, характерными для синергетических систем. При анализе неравновесных фазовых переходов, индуцированных случайными свойствами среды (внешний шум), придается важная роль флуктуациям свойств среды, которые в точках неустойчивости системы перестают быть шумом и приводят к глобальным изменениям в системе.  [c.43]

Фликкер - шум был зафиксирован при изменении флуктуаций напряжения на электропроводящих образцах разной природы (полупроводниковые пленки, металлы, угольные резисторы в термодинамически равновесной системе (термостат).  [c.45]

К формуле (2.2.1) Планк пришел, опираясь на формулу Вина (2.1.9) и исследуя равновесие между процессами испускания и поглощения электромагнитного излучения равновесным коллективом линейных гармонических осцилляторов (так называемых вибраторов Герца). Он рассматривал энтропию осцилляторов, в частности вторую производную энтронии S по средней энергии осциллятора < >. Обратная величина этой производной фактически есть средняя квадратичная флуктуация энергии  [c.43]


Таким образом, в равновесном фотонном газе налицо корреляция флуктуаций числа фотонов. Можно сделать вывод, что в световых пучках с достаточно хаотической структурой также существует корреляция флуктуаций числа ( )отонов. Этим и объясняется вид кривой 1 на рис. 13.3, 6, отражающий эффект группировки фотонов. Напомним, что группировку фотонов можно рассматривать как следствие корреляций флуктуаций числа фотонов в пучке.  [c.299]

Мнимая часть обобщенной восприимчивости (функции Грина) и флуктуационно-диссипационная теорема Кэллена—Вельтона играют важную роль в классической и квантовой статистической физике. Теорема устанавливает весьма общую связь между равновесными флуктуациями и необратимостью в статистических системах (см. гл. IX).  [c.84]

В статистической физике, явно учитывающей движение частиц в системе, смысл положения о ее термодинамическом равновесии состоит в том, что у всякой (изучаемой термодинамикой) изолированной системы существует такое определенное и единственное макроскопическое состояние, которое чап1е всего создается непрерывно движунщмися частицами. Это есть наиболее вероятное состояние, в которое и переходит изолированная система с течением времени. Отсюда видно, что постулат о самопроизвольном переходе изолированной системы в равновесие и неограниченно долгое ее пребывание в нем не являются абсолютным законом природы, а выражают лишь наиболее вероятное поведение системы никогда не прекращаюндееся движение частиц системы приводит к ее спонтанным отклонениям (флуктуациям) от равновесного состояния.  [c.17]

Систематически излагается термодинамика и статистическая теория миогочастичных райиовесных систем. В основу статистической физики равновесных идеальных и неидеальных систем положены метод Гиббса и метод функций распределения Боголюбова. Излагается классическая и квантовая теория газа, твердого тела, равновесного излучения, статистическая теория плазмы и равновесных флуктуаций. Обсуждаются методологические вопросы курса, В книге рассматриваются также некоторые новые вопросы, еще не вошедшие в программу теория критических индексов, вариационный принцип Боголюбова, термодинамическая теория возмущений, интегральные уравнения для функций распределения (уравнение самосогласованного поля,, интегральное уравнение Боголюбова—Борна—Грина, уравнение Перкуса— Иевика).  [c.2]

Это значит, что первая вариация энтропии равна нулю, а вторая меньше нуля. Равенство нулю первой вариации является лишь необходимым условием экстремума и не обеспечивает того, чтобы энтропия имела именно максимум. Достаточным условием максимума энтропии является отрицательное значение ее второй вариации, которое и обеспечивает устойчивость равновесия. Если же при 65 = 0 вторая вариация энтропии положительна (минимум энтропии), то соответствующее состояние системы будет равновесным, но совершенно неустойчивым , так как благодаря флуктуациям в ней начнутся неравновесные процессы, которые и приведут ее в равновесное состояние с максимумом энтропии. Так как дальше энтропия расти не может, то это равновесие будет устойчивым. Таким образом, равенство б5 = 0 определяет общее условие равновесия, а неравенство 6 5<О — общее условие устойчивости равновесия изолированных термодинамических систем. Эти условия являются достаточными, так как если бы система, имея максимальную энтропию, не находилась в устойчивом равновесии, то при приближении к нему ее энтропия начала бы расти, что противоречит предположению о ее максимальности. Доказать необходимость максимальной энтропии при устойчивом равновесии изолированной системы исходя из основного неравенства (6.3) нельзя, так как из него не следует, что равновесие невозможно при немаксимальной энтропии. Однако принимая во внимание молекулярную природу термодинамических систем и наличие обусловленных ею флуктуаций внутренних параметров, видим, что состояние равновесия без максимума энтропии невозможно, так как благодаря этим флуктуациям в системе возникают неравновесные процессы, сопровождающиеся ростом энтропии и приводящие систему к равновесию при максимальной энтропии.  [c.101]

В основу нашего курса положен метод Гиббса и метод функций распределения Боголюбова. При этом в гл. 11—13 изложено содержание этих методов, а в последующих гл. 14—16 — их прило жение к исследованию различных миогочастичных систем. В гл. 17 излагается теория равновесных флуктуаций.  [c.182]

Вычисление флуктуаций динамических величин с помощью равновесных функций распределения представляет собой в общем < лучае такую же сложную задачу, как и вычисление средних значений и термодинамических потенциалов. Поэтому часто используется так называемая квазитермодинамическая (полуфеномено- логическая) теория флуктуаций, в которой при определении флуктуаций различных величин предполагается, что термодинамические функции системы известны. Эта теория ограничена задачами, в которых малую часть системы можно характеризовать термодинамическими параметрами. Вследствие этой посылки она имеет существенно приближенный характер, поскольку принимать параметры малой системы термодинамическими правомерно только в случае больших систем, когда флуктуации, которыми мы интересуемся, пренебрежимо малы.  [c.298]

Квазитермодинамическая теория флуктуаций явилась основой развития термодинамики необратимых процессов. Она позволяет рассматривать флуктуации в системе как флуктуацию ее термодинамического состояния, т. е. как переход системы из равновесного состояния в неравновесное. Это неравновесное состояние системы представляется (как это мы делали в 26 при обсуждении термодинамической устойчивости) как новое равновесное ее состояние с большим числом параметров bi,..., bk и соответствующих им фиктивных сопряженных сил Ai,...,Ak, удерживающих систему в равновесии.  [c.298]


Смотреть страницы где упоминается термин Флуктуации равновесные : [c.447]    [c.81]    [c.82]    [c.44]    [c.717]    [c.180]    [c.84]    [c.16]   
Равновесная и неравновесная статистическая механика Т.2 (1978) -- [ c.156 , c.158 ]



ПОИСК



Производящая функция для равновесных флуктуаций

Равновесные флуктуации динамических переменных

Равновесные флуктуации термодинамических величин

Распределение Гаусса для равновесных флуктуаци

Флуктуации

Флуктуации равновесного излучения

Флуктуации функции распределения в равновесном газе

Флуктуации энергии равновесные

Функция распределения равновесных флуктуаций

Функция распределения равновесных флуктуаций энергии

Эйнштейна формула для вероятности флуктуационного отклонения флуктуаций равновесного излучения



© 2025 Mash-xxl.info Реклама на сайте