Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Равновесие критерии устойчивости

Теперь возникает вопрос об устойчивости указанных форм равновесия. Критерием устойчивого положения  [c.393]

Малые колебания механической системы с одной степенью свободы. Потенциальная и кинетическая энергия системы при малых колебаниях вблизи положения устойчивого равновесия. Критерий устойчивости положения равновесия. Свободные, затухающие и вынужденные колебания гармонического осциллятора. Явление резонанса.  [c.150]


Наша цель состоит в том, чтобы сформулировать (а в некоторых случаях и доказать) критерии, позволяющие установить, устойчиво ли положение равновесия. Критерии такого рода мы рассмотрим отдельно для консервативных систем, диссипативных систем и систем общего вида.  [c.219]

Устойчивость равновесия консервативной системы. Потенциальные ямы и барьеры. Рассмотрим теперь условия устойчивости равновесия консервативной системы. Критерии устойчивости, приведенные выше, непригодны для этой цели. Дело в том, что у характеристического уравнения линейного приближения для консервативной системы все корни чисто мнимые ) и асимптотическая устойчивость не может иметь места. Выделить устойчивые положения равновесия в консервативной системе позволяет  [c.225]

Из второго закона непосредственно следует только (12.3), но знаки неравенств в критериях равновесия и устойчивости совпадают, поэтому дополнительных доказательств (12.4) — (12.6) не требуется. Достаточные условия равновесия выражаются, следовательно, через вариации второго порядка характеристических функций при постоянных значениях их естественных наборов аргументов. Как и в случае (11.1), (11.13) и других, варьируются при этом внутренние переменные системы.  [c.115]

Критерии (11.1) и (11.37), (11.13) и (11.33) и т. д. гарантируют необходимый экстремум характеристической функции в некоторой ограниченной области изменения внутренних переменных системы только вблизи равновесия и, очевидно, не позволяют выяснить, является ли равновесие абсолютно устойчивым или метастабильным. В связи с этим целесообразно остановиться на том, какие термодинамические состояния надо  [c.115]

Необходимость анализа равновесия на устойчивость можно показать на примере из 11 (см. рис. 5). Как отмечалось, критерии равновесия, выраженные через вариации первого порядка энергий Гиббса и Гельмгольца, приводят к одинаковым частным условиям равновесия жидкой капли с насыщенным паром (11.49) и (11.50). Первое из них имеет ту особенность, что химические потенциалы р, и р, относятся к одинаковым температурам, но разным давлениям. Дифференцирование  [c.116]

Оба слагаемых в фигурных скобках (12.19) положительные, поэтому при заданных размерах фазы а знак D зависит от отношения (WV ). Если это отношение большое, то D>0 и устойчивого равновесия нет, в противном случае D<0 и выполняется критерий устойчивого равновесия (12.10).  [c.118]


Ранее отмечалось, что термодинамические системы не могут находиться в состоянии неустойчивого равновесия. Но очень часто между устойчивыми и неустойчивыми состояниями существует значительная область значений термодинамических переменных, в которой критерии устойчивого равновесия не выполняются, но система тем не менее может существовать длительное время, причем ее состояние зависит от бесконечно малых изменений внешних переменных. Это состояние нейтрального (безразличного) равновесия. Любые гетерогенные системы, в которых происходят процессы, не влияющие на состояние ее-щества в гомогенных частях системы, т. е. не изменяющие интенсивных термодинамических характеристик фаз, находятся. по отношению к таким процессам в нейтральном равновесии. Чтобы пояснить особенности этого состояния, рассмотрим устойчивость равновесия гетерогенной системы, состоящей из двух открытых фаз, а и р, с одинаковым химическим составом и плоской межфазной границей. Можно воспользоваться уже выведенными формулами (12.15) — (12.17) или (12.19), если положить в них а = 0 или г = оо. Нетрудно видеть, что в этом случае при постоянных Т, V  [c.119]

Рассмотрим условия устойчивости гомогенной системы относительно бесконечно малых изменений ее состояния, т. е. условия стабильного или метастабильного равновесия. Выделим для этого мысленно внутри системы некоторую ее часть, такую, чтобы масса выделенной подсистемы была существенно меньше массы оставшейся части, и попытаемся выяснить, при каких условиях обе части будут устойчивыми. Это гарантирует, очевидно, и устойчивость всей системы в целом. Имея в виду соотношение масс подсистем, большую часть можно рассматривать как внешнюю среду по отношению к малой части. Свойства внешней среды, как и прежде, будут отмечаться индексом Воспользуемся достаточным критерием устойчивого рав-  [c.120]

Следовательно, при изучении колебаний механической системы необходим критерий устойчивости положения равновесия, около которого происходят колебания системы.  [c.198]

Критерий устойчивости равновесия ме-  [c.198]

Принцип Ле Шателье-Брауна носит совершенно общий характер. Для его доказательства применительно к релаксационным процессам вблизи равновесия используется термодинамический критерий устойчивости в равновесном состоянии.  [c.26]

И если продолжать разговор о трубе, то хочется обратить внимание на пример, когда труба находится под действием протекающего внутри потока жидкости (рис. 96, а). При определенной скорости течения прямолинейная форма равновесия становится неустойчивой. Критерием устойчивости в этом случае является секундный расход массы, т. е. массы, проходящей через сечение трубы в единицу времени.  [c.139]

Если же в стержне возникают пластические деформации, он в исходное состояние равновесия самостоятельно возвратиться заведомо не может. Выходит, что уже по самому определению система неустойчива, коль скоро в ней возникли пластические деформации. Если говорить формально,—то так А по существу—не так Виноват принятый критерий устойчивости. Это противоречие возникло просто потому, что рассматриваемая задача полностью не вписывается в принятый критерий. Устойчивость как раздел механики тем и интересна, что в ней часто встречаются различного рода тонкие невязки, разрешение которых дает неисчерпаемый запас пищи для творческого поиска истины.  [c.157]

Бифуркационный критерий устойчивости, рассмотренный в 4.4, как мы выяснили там, не всегда дает ответ на вопрос об устойчивости или неустойчивости равновесия. Неполнота этого критерия связана с тем, что он устанавливает возможность иди невозможность смежного состояния равновесия, тогда как при потере устойчивости, вообще говоря, может наступить не новое состояние равновесия, а состояние движения системы. Поэтому естественная постановка задачи устойчивости состоит именно в изучении возможных движений механической системы. Возвращаясь к проблеме устойчивости сжатого стержня, напишем уравнение колебаний такого стержня следующим образом  [c.205]


Основным критерием устойчивости, как известно из механики твердого тела, является условие минимума полной потенциальной энергии системы. Например, для шарика, лежащего на дне лунки и занимающего устойчивое положение равновесия, потенциальная энергия будет наименьшей по сравнению со всеми соседними положениями. Если шарик расположен на  [c.510]

КРИТЕРИИ УСТОЙЧИВОСТИ РАВНОВЕСИЯ  [c.20]

Колебания около положения равновесия возникают в случае устойчивого равновесия. В случае неустойчивого равновесия система при малейшем отклонении удаляется от положения равновесия и колебания около этого положения не возникают. Поэтому при изучении малых колебаний механических систем важно знать критерий устойчивости равновесия этих систем.  [c.5]

Укажите критерии устойчивости равновесия консервативной системы с одной и конечным числом степеней свободы.  [c.19]

Суть первого критерия устойчивости заключается в том, что наряду с начальным состоянием равновесия возникают соседние, новые равновесные формы. Такой подход к решению задач устойчивости называют статическим.  [c.411]

Ко второму критерию устойчивости относят энергетический метод. Суть этого критерия заключается в следующем если энергия деформации скажется больше работы внешних сил, то очевидно, что система будет устойчива если энергия деформации окажется меньше работы внешних сил, система будет неустойчива при безразличном равновесии (в линейной постановке задачи) приращение энергии деформации должно быть равно работе внешних сил.  [c.411]

Основным критерием устойчивости, как известно из механики твердого тела, является условие минимума потенциальной энергии системы. Например, для шарика, лежащего на дне лунки и занимающего устойчивое положение равновесия, потенциальная энергия будет наименьшей по сравнению со всеми соседними положениями. Если шарик расположен на вершине выпуклости или на седловине (рис. 435), его положение равновесия будет неустойчивым. Этот критерий применим, естественно, и к упругим системам,— конечно, с учетом потенциальной энергии деформации.  [c.419]

В примерах 2 и 3 устойчивость положения равновесия устанавливалась с помощью конечных уравнений, полученных путем интегрирования дифференциальных уравнений движения системы. Эти конечные уравнения движения давали нам зависимость отклонений и обобщенных скоростей от времени t и начальных данных д°, ql (г = 1, л). В более сложных (в частности, нелинейных) задачах определение этих конечных уравнений движения и их исследование весьма затруднительно. Поэтому представляют интерес критерии устойчивости положения равновесия, не требующие предварительного интегрирования дифференциальных уравнений движения системы.  [c.192]

Еще Торричелли (1644 г.) было известно, что положение системы тел, находящихся под действием сил тяжести, будет устойчивым, если центр тяжести этой системы тел занимает наинизшее из возможных положений. Лагранж обобщил этот принцип Торричелли на случай произвольных потенциальных сил и установил следующий критерий устойчивости положения равновесия консервативной системы  [c.192]

Отметим важный частный случай, когда асимптотическая устойчивость положения равновесия предопределена и нет необходимости прибегать к критериям устойчивости, изложенным в 39.  [c.262]

Это необходимые и достаточные условия существования стационарного движения. Они, очевидно, эквивалентны условиям (5) и получаются из последних исключением величин Pi (i=l, т). Применяя теорему Лагранжа к положению равновесия qi=qi приведенной системы, получаем критерий устойчивости стационарного движения в следующей форме.  [c.289]

Мы уже указали ( 33). что критерий устойчивости для относительного равновесия должен быть несколько изменен. Критерий, данный на стр. 80, в применении к уравнению энергии относительного движения ( 33, (10)] показывает, что для получения устойчивости в этом случае выражение  [c.260]

Если, далее, мы распространим на равновесие голономных систем качественный критерий устойчивости, указанный в п. 18 гл. IX, то увидим, что также и для этих систем конфигурациями устойчивого равновесия являются те, которым соответствует максимальное значение потенциала. Мы вернемся к этому заключению в динамике, где дадим ему более строгое обоснование.  [c.268]

Анализ явления потери устойчивости, выполняемый средствами механики с использованием соответствующего математического аппарата, позволил сформулировать критерии устойчивости формы равновесия деформируемой системы. Следует отметить три таких критерия, носящих названия статический, энергетический и динамический.  [c.287]

Итак определение критической силы для системы с несколькими степенями свободы сводится к математической задаче об определении наименьшего собственного числа матрицы коэффициентов линеаризованной системы уравнений равновесия механической системы в отклоненном от ее первоначальной формы положении. Сформулированное положение является статическим критерием устойчивости.  [c.327]

Для записи энергетического критерия устойчивости в форме Брайана предварительно требуется определить начальные напряжения в упругом теле. При решении некоторых задач устойчивости иногда оказывается удобным записать энергетический критерий в другой форме, не содержащей непосредственно начальных напряжений невозмущенного состояния равновесия [61. Покажем, как это можно сделать.  [c.57]


Устойчивое и неустойчивое равновесие. Критерий устойчивости. Положения равновесия различаются по характеру движения, которое может совершать рассматриваемая система в соседстве с этими положениями. Если система, при достаточно малом начальном отклонении от положения равновесия и при достаточно малой начальной кинетической энергии, во всё время своего последующего движения будет находиться так близко от положения равновесия, как нам угодно, то положение равновесия называется устойчивым, точнее—положением устойчивого равновесия. Всякое же другое положение равновесия, не удовлетворяющее приведённым условиям, называется неустойчивым. Для консервативных систем Лежен-Дирихле (Lejeune-Diri hlet) дал следующее достаточное условие устойчивости если силовая  [c.389]

Теорема Ляпунова об устойчивости линейного приближения сводит задачу об определении того, является ли равновесие асимптотически устойчивым, к чисто алгебраической задаче задано характеристическое уравнение (16) требуется, не решая этого уравнения, определить, все ли его корни расположены слева от мнимой оси, т. е. имеют отрицательные действительные части. Задача такого рода носит название задачи (проблемы) ГурБица ). Существует ряд критериев, позволяющий непосредственно по коэффициентам характеристического уравнения (16), не решая его, ответить на вопрос, все ли корни характеристического уравнения расположены слева от мнимой оси. Полиномы, которые удовлетворяют этому условию, иногда называют гурви-цевыми.  [c.220]

Устойчивость состояния равновесия консервативной системы можно исследовать без составления уравнений движения. Для итого достаточно записать выражение для потенщшльиоп энер-гпи системы в возмущенном движении и истребовать выполнения условий ее минимума в исследуемом положеини равновесия (критерий Лагранжа). Неустохиивость устанавливается с помощью теорем Четаева (см. библиографические ссылки па стр. 268).  [c.269]

Критерии устойчивости, или принципы оценки устойчивости, могут меняться в зависимости от обстоятельств. Поэтому часто, чтобы отвлечься хотя бы терминологически от расчетной схемы, употребляют термин сила выпучивания. Это — сила, при которой возникают заметные отклонения от исходного состояния равновесия. Критическая же сила — это понятие, свойственное избранной расчетной схеме идеального стержня. Даже при чисто упругих деформациях сила выпучивания и критическая-сила — не одно и то же. Ведь в расчете по Эйлеру было принято, что стержень идеален, однороден и не имеет начальной погиби. А в реальных условиях этого нет, сколь бы точно не изготовлялся стержень. Поэтому при испытаниях сжатого стержня фактически измеряется не критическая сила, а сила выпучивания, которая лишь близка по своему значению к критической.  [c.157]

Результаты, полученные в предыдущем параграфе, еще не дают ответа на вопрос об устойчивости в строгом смысле слова, как это было сформулировано в 4.1. Вместо этого мы по существу ввели бифуркационный критерий устойчивости. Вели представить себе процесс нагружения стержня продольной силой как процесс, описываемый кривой (Зависимости некоторого прогиба от сжимающей силы, то на этой кривой получаются разветвления в некоторых точках, называемых иритичесними или точками бифуркации. Так, на рис. 4.4.1 схематически изображен график saBiH HMO TH прогиба, например прогиба б в середине стержня, от сжимающей силы Р пока Р < Р это отрезок оси ординат, 6 = 0. При Р> Р стержень может либо оставаться прямым, либо иоириниться в соответствии с двумя возможными формами равновесия возникает бифуркация, одному и тому же значению силы Р соответствуют два возможных прогиба (точии А -а В). Вопрос о том, какая форма равновесия, прямолинейная  [c.121]

На первый взгляд может показаться, что понятие устойчивости по Ляпунову является естественным обобщением устойчивости, рассматривавшейся нами для положения равновесия (которое можно трактовать как вырожденную характеристику). Но для классической динамики это понятие оказывается не всегда пригодным, поскольку оно связано со слишком сильными требованиями, накладываемыми на систему. Правда, выше мы привели несколько примеров, для которых имеет место устойчивость в указанном мысле, однако дан е для весьма простых систем, для которых интуитивное представление об устойчивости не вызывает сомнений, критерий устойчивости по Ляпунову не выполняется. Рассмотрим, например, частицу, движущуюся прямолинейно в силовом поле. Согласно определению устойчивости по Ляпунову движение в однородном поле неустойчиво это же относится и к обычному либрационному движению (если не считать некоторых тривиальных исключений, таких, как колебания гармонического осциллятора). Если однородное поле имеет направление вдоль оси Ох, то невозмущенной характеристикой, проходящей через начальную точку (а, и), будет  [c.477]

Третий том курса содержит шестой отдел, посвященный динамике (глава XVII) и устойчивости (глава XVIII) деформируемых систем. Такое объединение этих разделов механики стало традиционным. Часто оно основывалось лишь на сходстве математических задач по определению собственных частот и критической силы как собственных чисел матрицы коэффициентов некоторой линеаризованной системы уравнений, относящейся к механической системе с конечным числом степеней свободы, или собственных значений некоторого дифференциального оператора, в случае системы с бесконечным числом степеней свободы (в проблеме, устойчивости интересуются, как правило, минимальным собственным числом (значением)). Еще более органичным сближение указанных выше разделов механики стало в связи с развитием теории динамической устойчивости. Существенным импульсом для дальнейшего такого сближения явились работы В. В. Болотина, способствовавшие осознанию специалистами того факта, что само понятие устойчивости форм равновесия (покоя) следует рассматривать как частный случай понятия устойчивости движения, поскольку само равновесие (покой) является частным случаем движения. Даже обоснование широко используемого статического критерия устойчивости становится строгим лишь при использовании аппарата динамики. В связи со сказанным естественно предпослать обсуждению устойчивости изложение динамики. Именно такая последовательность расположения материала и принята в настоящей книге.  [c.4]

Теория нелинейных импульсных автоматических систем начала развиваться сравнительно недавно. Применяя идеи методов исследования абсолютной устойчивости, основанных на прямом методе А. М. Ляпунова в форме, приданной ему А. И. Лурье, и используя подход В. М. Попова, удалось найти достаточные условия абсолютной устойчивости положения равновесия нелинейных импульсных автоматических систем в виде разрешающей системы квадратных уравнений и частотных критериев устойчивости. Изучение периодических режимов в импульсных и цифровых автоматических системах исторически началось раньше установления критериев устойчивости. Вначале эти исследования основывались на привлечении идей приближенного метода гармонического баланса. Распространение метода гармонического баланса позволило разработать эффективные способы определения режимов с периодом, кратным периоду повторения в нелинейных амплитудно-импульсных и широтно-импульсных сиотемах. Этот подход весьма удобен и оправдан для определения низкочастотных периодических режимов. Для высокочастотных периодических режимов оказалось, что простая замена частотной характеристики непрерывной части на импульсную частотную характеристику позволяет не приближенно, а точно определить существование высокочастотных периодических режимов. Что же касается периодических режимов с периодом, не кратным периоду повторения, а также сложных периодических режимов, то единственная возможность их определения, которая существует в настоящее время, связана с развитием метода гармонического баланса по преобладающей гармонике. Задача исследования устойчивости периодических режимов сводится к задаче определения устойчивости в малом линейной импульсной системы с несколькими импульсными элементами [48].  [c.270]



Смотреть страницы где упоминается термин Равновесие критерии устойчивости : [c.296]    [c.102]    [c.64]    [c.116]    [c.117]    [c.186]    [c.9]    [c.144]    [c.431]   
Основы термодинамики (1987) -- [ c.114 ]



ПОИСК



Другая форма критериев равновесия и устойчивости

Критерии наличия равновесия и его устойчивости

Критерий РаусаВлияние диссипативных и гироскопических сил на устойчивость равновесия консервативной системы

Критерий равновесия

Общие критерии равновесия и устойчивости

Потеря устойчивости первоначальной формы равновесия упругой системы в смысле Эйлера (классический тип потери устойчиво. Статический критерий

Равновесие устойчивое

Устойчивое и неустойчивое равновесия. Критерий устойчивости

Устойчивость положения равновесия. Теорема Лагранжа — Дирихле. Критерий Сильвестра

Устойчивость равновесия

Устойчивость равновесия консервативной системы с конечным числом степеней свободы. Критерий Сильвестра



© 2025 Mash-xxl.info Реклама на сайте