Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Атомные решетки

Зерна большинства металлов состоят из ряда элементарных кубиков с размерами сторон 3 — 6 10 см. Кубики, в свою очередь, состоят из системы взаимодействующих между собой атомов, расположенных в строго определенном для данного материала порядке, образуя так называемую пространственную атомную решетку. Форма и размеры элементов последней зависят от сил взаимодействия атомов и определяют характерные свойства данного вещества.  [c.590]

Деформация материала обычно связана с искажением кристаллической решетки и изменением межатомных расстояний. При этом в случае небольших напряжений взаимодействие между атомами не нарушается и при последующих разгрузках указанные искажения решетки исчезают. Если же напряжения большие, то в кристаллических зернах пластичных материалов по некоторым плоскостям, которые называются плоскостями скольжения кристаллита, происходят необратимые сдвиги. Сдвинутые относительно друг друга группы атомов уже не образуют единой атомной решетки. Получившееся при этом новое образование оказывается более прочным в результате усиления плоскостей скольжения внутри отдельных зерен. Теперь для его разрушения требуется большее усилие.  [c.590]


Теорию колебаний одномерной цепочки можно обобщить на трехмерный случай, что позволяет определить функцию распределения частот спектра колебаний атомной решетки.  [c.200]

Технические полупроводники могут быть разбиты на четыре группы 1) кристаллы с атомной решеткой (графит, кремний, германий) и с молекулярной решеткой (селен, теллур, сурьма, мышьяк, фосфор) 2) различные окислы меди, цинка, кадмия, титана, молибдена, вольфрама, никеля и др. 3) сульфиды (сернистые соединения), селениды (соединения с селеном), теллуриды (соединения с теллуром) свинца, меди, кадмия и др. 4) химические соединения некоторых элементов третьей группы периодической таблицы элементов (алюминий, галий, индий) с элементами пятой группы (фосфор, сурьма, мышьяк) и др. К числу полупроводников относятся некоторые органические материалы, в частности полимеры, имеющие соответствующую полупроводникам по ширине запрещенную энергетическую зону. Особенности свойств некоторых органических полупроводников, как гибкость, возможность получения пленок при достаточно большой механической прочности, заставляют считать их перспективными.  [c.276]

Подвижность носителей в ионных кристаллах. Взаимодействие носителей заряда с колеблющимися ионами в ионных кристаллах гораздо сильнее, чем их взаимодействие с нейтральными атомами в материалах с атомной решеткой. Поэтому рассеяние носителей заряда в результате тепловых колебаний ионов гораздо интенсивнее, и подвижность носителей у этой группы полупроводников в большинстве случаев более низкая. Качественно характеристика температурной зависимости подвижности в ионных кристаллах такая же, как и в атомных кристаллах.  [c.242]

Температурная зависимость удельной проводимости полупроводников. Рассмотрев влияние температуры на концентрацию и подвижность носителей заряда, можно представить и характер изменения удельной проводимости при изменении температуры. В полупроводниках С атомной решеткой (а также в ионных кристаллах при повышенных температурах) подвижность меняется при изменении температуры сравнительно слабо (по степенному закону), а концентрация — очень сильно (по экспоненциальному закону). Поэтому температурная зависимость удельной проводимости подобна  [c.242]

Вакансии представляют собой узлы атомной решетки, в которых нет атомов.  [c.44]


В идеальной атомной решетке, свободной от приложенных или остаточных напряжений, атомы находятся в равновесном состоянии под действием внутренних сил. Однако реальная атомная решетка металлов геометрически несовершенна из-за наличия в ней местных дислокаций. Приложенные внешние силы приводят к перемещению атомов в новые положения, что вызывает пластическую деформацию и наклеп. Увеличение пластической деформации за предел текучести приводит к возникновению и развитию трещин. Масло, попадаемое в трещину, играет роль гидравлического клина, ускоряющего процесс развития трещины.  [c.68]

Искажения атомной решетки в зависимости от их геометрии подразделяются на точечные, линейные и поверхностные.  [c.11]

Основными нарушениями в строении атомной решетки реальных металлов являются вакансии и дислокации.  [c.12]

Скопление большого количества дислокаций в межзеренных граничных слоях вызывает многочисленные искажения атомной решетки, а это порождает напряжения 3-го рода. Наряду с этим граничный слой — зона силового взаимодействия между отдельными зернами, которое создает поле микронапряжений, охватывающих всю повер хность зерна.  [c.60]

Пластическая деформация увеличивает количество несовершенств в металле поверхностного слоя. Макронеоднородность деформации в металле создает макронеоднородность в распределении дефектов в кристаллической решетке. Следует полагать, что и возникновение макронапряжений в процессе механической обработки связано с дефектами атомной решетки и прежде всего с дислокациями.  [c.128]

В табл. 4.1 показаны типы кристаллических решеток важнейших металлов, используемых в технике в качестве материалов или их составных частей. На рис. 4.1 показаны все три элементарные ячейки, представленные в табл. 4.1. На рис. 4.2 изображены слои атомной решетки, из которых состоят указанные три типа решеток, при этом надо иметь в виду, что в двух соседних слоях позиции  [c.226]

Несовершенства (дефекты) строения реальных кристаллов металла. Описанная в предыдущем разделе кристаллическая решетка является идеальной. На основе физики твердого тела теоретически найдены механические характеристики, которые должны быть у кристаллов строго идеальной структуры. Сопоставление этих характеристик с обнаруживаемыми в опыте показывает значительное (в десятки и даже в сотни раз) превышение теоретическими значениями опытных. Последнее расхождение объясняется тем, что в реальных кристаллах всегда имеются отклонения от идеального характера атомной решетки, называемые несовершенствами или дефектами строения кристаллов ). Известны различные типы дефектов классификация их дана в табл. 4.3.  [c.233]

ЛОВ, расположенных по разные от нее стороны. Такая плоскость называется плоскостью скольжения. Скольжение имеет место в каком-то направлении, располагающемся в указанной плоскости, которое называется направлением скольжения. Плоскостью скольжения оказывается плоскость, разделяющая два слоя атомной решетки с наиболее плотно упакованными в них атомами. В слое атомов, параллельном плоскости скольжения, можно найти наиболее плотно упакованные ряды. Проекция линии, расположенной между этими рядами, на плоскость скольжения и является направлением скольжения.  [c.239]

Напряжения III рода уравновешиваются в еще меньших объемах (группа атомов) и связаны с дефектами атомной решетки в окрестности дислокаций, как линейных, так и винтовых, и другими дефектами. Напряжения I, II и III родов исследуются рентгеновским методом ).  [c.261]

Следует отметить, что коэффициент пропорциональности у мал, поэтому величина теплоемкости электронного газа мала по сравнению с теплоемкостью атомной решетки.  [c.116]

Пластическое деформирование сопровождается увеличением числа линейных несовершенств атомной решетки или так называемых дислокаций, которые характеризуются смещением атомов. Плотность дислокаций (число линий дислокаций на 1 см поверхности) в исходном металле составляет примерно 10, а скольжение в процессе пластического деформирования приводит к увеличению плотности дислокаций до 10 ... Ю . Увеличение плотности дислокаций к появление зазубрин измельченных зерен и блоков металла повышает сопротивление дальнейшему скольжению, что объясняет увеличение прочности пластически деформированного металла. Разумеется, рост плотности дислокаций и повышение прочности не может быть беспредельным и зависит от вязкости металла. Следовательно, чем более вязкая сталь, тем большие возможности имеются для увеличения ее прочности путем пластического деформирования.  [c.15]


Твердые растворы внедрения, естественно, образуются, если величина атомов растворенного компонента гораздо меньше размера атомов растворителя. Очевидно, что широкая область твердых растворов замещения имеется только в тех случаях, когда атомные диаметры двух металлов между собой близки. Первичный твердый раствор имеет ту же атомную решетку, что и основной металл , а зависимость физических свойств твердого раствора от состава всегда выражается непрерывной  [c.10]

Т1 — это металл, обладающий небольшой плотностью (4,5 кг1м ) и значительной температурой плавления (1665° С), существует в двух полиморфных модификациях, различающихся по структуре атомной решетки. Ниже температуры полиморфного превращения (882° С) Т1 существует в виде модификации а с кристаллической решеткой Г12, а выше этой температуры — в виде модификации 8 с решеткой К8.  [c.191]

Из многочисленных работ, принадлежащих к обобщенной механике сплошной среды, мы сосредоточим внимание на исследованиях Е. Кренера, наиболее близких к содержанию настоящей книги. Работы Е. Кренера относятся к механике поликри-сталлических тел с различными дефектами в кристаллических атомных решетках. Наиболее часто эти дефекты связаны с дислокациями ). Поэтому теория Е. Кренера входит в комплекс работ по континуальной теории дислокаций.  [c.534]

В 1913 г. Вин [23] писал Данные теории излучения и новейшая теория теплоемкости доказали, что электронная теория металлов должна быть построена па существенно новой основе . Вин установил ряд важных положений, которые и в иастояш,ее время существенны для понимания электронной проводимости, и показал, что говорить о наличии эффективно свободных электронов в атомной решетке моншо только в том случае, если эти элс1 троны обладают скоростью V, которая не зависит от температуры и остается неизменной вплоть до абсолютного нуля. На основании опытов Камерлинг-Оннеса при очень низких температурах Вин пришел к выводу, что если структура решетки полностью регулярна, то проводимость металла должна быть бесконечно большой. При более высокой температуре колебания атомов металл должны нарушать периодичность решетки и приводить к столкновениям атомов с электронами проводимости. Основываясь па уравнении Друде  [c.157]

Хаустон использовал незадолго перед тем развитую теорию рассеяния света атомной решеткой (см. также работу Френкеля и Миролюбова [29]). Для вычисления рассеяния, вызываемого единичными центрами, он применил теорию Венцеля [30], относящуюся к случаю рассеяния заряженных частиц атомами. Согласно теории Вентцеля, потенциал V вблизи одиночного атома с зарядом ядра Z равен причем величину h надо рас-  [c.160]

Почти одновременно с работой Дебая появилась работа Борна и Кармана, в которой они, исходя из констант межатомных сил, произвели точный динамический анализ собственных колебаний атомной решетки. Однако вследствие простоты и общности модели Дебая, анализ Борна и Кармана только в последние годы был продолжен и развит со вниманием, которого он заслу-  [c.186]

Недавно Уилкинсон и др. [221] изморили когерентное и некогерентное рассеяние нейтронов на электронах ванадия, свинца и ниобия выше и ниже Т0ЧК11 перехода. Ни в одном из этих случаев не было обнаружено изменения когерентного рассеяния или диффузного фона. Этот результат показывает, что при переходе в сверхпроводящее состояние не нронсходпт зал1етных изменении электронного распределения. Исследование рассеяния Нейтронов на ядрах в свинце и ниобии показало, что при переходе не происходит резко выраженного изменения колебаний атомной решетки ). Эти же авторы показали, что полное сечение для тепловых нейтронов у олова в нормальном и сверхпроводяш,ем состояниях одинаково в пределах 1 %.  [c.672]

В неорганической химии молекулы являются типичной формой существования химического соединения в паро- и газообразном состоянии. Поэтому во всех рассмотренных структурах нельзя выделить обособленные молекулы в кристаллической рещетке. Такие кристаллические рещетки, в которых отсутствуют дискретные молекулы, называются координационными. К ним относятся ионные, металлические и атомные решетки. К ионным принадлежит решетка ЫаС1, к металлическим — решетка натрия, к атомным — решетки кремния и сульфида цинка. На,рис. 10 для сравнения приведена элементарная ячейка молекулярной решетки кристалла йода.  [c.16]

Если считать, что силы взаимодействия между атомами направлены по прямым, соединяющим их центры (гипотеза центральных сил), то в уравнениях равновесия атомной решетки будут фигурировать только координаты атомов, но не утлы их собственных вращений. Считая число атомов очень большим, а расстояния между ними очень малыми, мы можем получить отсюда закон упругости для сплошной среды, притом для среды, соответствующей класспческой модели. Такие вычисления действительно производились, однако точные законы междуатомного взаимодействия неизвестны н непосредственно установить их нельзя. Поэтому в основу анализа приходится полагать более или менее правдоподобные гипотезы.  [c.23]

В последние десятилетия наряду с традиционными материалами появились новые искусственные материалы — так называемые композиты. Строго говоря, термин композитный материал или композит следовало бы относить ко всем гетерогенным материалам, состоящим из двух или большего числа фаз. Сюда относятся практически все сплавы, применяемые для изготовления элементов конструкций, несущих нагрузку. Соединение хаотически ориентированных зерен пластичного металла и второй более прочной, но хрупкой фазы позволяет в известной мере регулировать свойства конечного продукта, т. е. получать материал с необходимой прочностью и достаточной пластичностью. Усилиями металлургов созданы прочные сплавы на основе железа, алюминия, титана, содержащие различные. тегирующие добавки. Достигнутый к настоящему времени предел прочности составляет примерно 150 кгс/мм для сталей, 50 кгс/мм для алюминиевых сплавов, 100 кгс/мм для титановых сплавов. Эти цифры относятся к материалам, из которых можно путем механической обработки получать изделия разнообразной формы. Теоретический предел прочности атомной решетки металла, представляющий собою верхнюю границу того, к чему можно в идеале стремиться, по разным моделям оценивается по-разному, в среднем это 1/10—1/15 от модуля упругости материала. Так, для железа теоретическая прочность оценивается значением примерно 1400 кгс/мм что в десять раз выше названной для сплава на железной основе цифры. В настоящее время существуют способы получепия тонкой металлической проволоки или ленты с прочностью порядка 400—500 кгс/мм , что составляет около одной трети теоретической прочности. Однако применение таких проволок пли лент в конструктивных элементах неизбежным образом ограничено.  [c.683]


Средний угол разориентации составляет у хорошего волокна 8—10°. Поэтому модуль упругости при растяжении волокна оказывается в 2,5—5 раз меньше, чем модуль при растяжении в плоскости атомной решетки. При одинаковой степени разориен-тации материалы, полученные по разной технологии, обнаруживают разные значения модуля. Это связано, по-видимому, с тем, что пучки атомных плоскостей объединяются в слегка искривленные фибриллы, видимые под электронным микроскопом. Межфибриллярные связи, определяющие эффективньсй модуль сдвига, могут быть более сильными и менее сильными. Соответственно и характер разрушения моноволокна при разрыве может быть различным, при слабых межфибриллярных связах волокно рассыпается при разрыве в пыль, при сильных — разделяется на две части более или менее гладкой поверхностью.  [c.688]

Сверхпроводники и криопроводники. Явление сверхпроводимости было открыто нидерландским физиком X. Камерлинг-Оннесом в 1911 г. Согласно современной теории, основные положения которой были развиты в работах Д. Бардина, Л. Купера, Дж. Шриф-фера (теория БКШ), явление сверхпроводимости металлов можно объяснить следующим образом. При температурах, близких к абсолютному нулю, меняется характер взаимодействия электронов между собой и атомной решеткой, так что становится возможным притягивание одноименно заряженных электронов и образование так называемых электронных (куперовских) пар. Поскольку куперовские пары в состоянии сверхпроводимости обладают большой энергией связи, обмена энергетическими импульсами между ними и решеткой не наблюдается. При этом сопротивление металла становится практически равным нулю. С увеличением температуры некоторая часть электронов термически возбуждается и переходит в одиночное состояние, характерное для обычных металлов. При достижении критической температуры (Т ) все куперовские пары распадаются и состояние сверхпроводимости исчезает. Аналогичный результат наблюдается при определенном значении магнитного поля (критической напряженности Я р или критической индукции Акр), которое может быть создано как собственным током, так и посторонними источниками. Критическая температура и критическаяс напряженность магнитного поля являются взаимосвязанными величинами. Эта зависимость для чистых металлов может быЪ приближенно представлена следующим выражением  [c.122]

Температурная зависимость проводимости. Отличительной особенностью полупроводников является рост их проводимости с температурой. Повышение, температуры полупроводника с атомной решеткой сравнительно слабо сказывается на подвижности и, но оказывает сильное влияние на концентрацию носителей. Значе1н1я энергии ионизации доноров и акцепторов значительно ниже энергии запрещенной зоны Fo, поэтому при невысоких температурах проводимость  [c.174]

Подвижность носителей в полупроводниках с атомной решеткой. В полупроводниках с атомной решеткой рассеяние носителей заряда происходит на тепловых колебаниях решетки и на ионизированных примесях. Эти два механизма рассеяния приводят к появлению двух участков в температурной зависимости подвижности. При рассеянии носителей на тепловых колебаниях решетки средняя длина свободного пробега одинакова для носителей заряда с различными скоростями и обратно []роиорциональна абсолютной температуре полупроводника. Это следует из того, что рассеяние носителей заряда должно быть прямо пропорционально поперечному сечению того объема, в котором шлеблется атом, а оно пропорционально квадрату амплитуды колебания атома, определяющему энергию решетки, которая с температурой растет, как известно, по линейному закону. Поэтому, так кап 3 формуле (8-11) /ср 1/7 , а УТ, то  [c.241]

На практике эта зависимость не всегда соблюдается. Имеются случаи и более резкой зависимости подвижности от температуры, вплоть до и 1/Т . При низких температурах тепловое рассеяние, согласно (8-12), становится незначительным и в материалах с атомными решетками преобладающим оказывается резерфордовский механизм рассеяния носителей на ионизированных примесях. Дли лтого механизма характерно уменьшение рассеяния движущихся г аряженных частиц при увеличении скорости, так как они находятся меньшее время под влиянием поля рассеивающих заряженных примесных атомов. Поэтому длина свободного пробега носителя заряда растет с увеличением температуры в соответствии с выражением  [c.241]

Некоторые физические системы имеют ограниченное движение, состоящее из малых перемещений относительно положения устойчивого равновесия. Примером такого движения является механическое колебание атомной решетки, как это имеет место в кристалле. Это движение сложное, но может быть представлено в виде суммы конечного числа простых гармонических колебаний. В общем случае каждое слагаемое, т. е. простое гармоническое колебание, соответствует движению всей рещетки. Эти простейщие слагаемые называются главными или нормальными колебаниями системы.  [c.48]

Ранее нами было показано [3], что для железа при наложении определенных условий (кубическая неплотноупа-кованная кристаллическая решетка, хрупкое разрушение и др.) и с учетом активационного объема квант разрушения (минимально возможный прирост длины трещины за один цикл) равен примерно 4а (а — радиус атомной решетки), т. е. 5 10 мм. Следовательно, до пороговой скорости роста трещины 5 10 мм/цикл по мере накопления предельной запасенной энергии у вершины трещины в течение определенного интервала циклов нагрузки трещина не продвигается, а затем за один цикл осуществляет проскок на длину, равную кванту разрушения ад (рис. 1). В момент достижения пороговой скорости 5 10 мм/цикл (рис. 1, точка д) для проскока не требуется предварительного количества циклов нагружения, поскольку для накопления предельной энергии достаточно одного цикла нагрузки, и проскок трещины на длину а, происходит за один цикл. Далее (выше точки д, см. рис. 1) проскок трещины усталости будет осуществляться за каждый цикл нагружения на длину, кратную кванту ад. Подтвердить подобную схему распространения трещины трудно, так как для фрактографического исследования, например, понадобились бы увеличения порядка 10"—10 .  [c.252]

Зависимость сопротивления деформированию и разрушению от числа искажений в кристаллической решетке. Атомная решетка реального кристаллического тела имеет разнообразные искажения (дефекты), оказывающие влияние на его прочность. К таким дефектам кристаллического строения металлов и сплавов относятся вакансии, атомы примесей, дислокации, границы зерен и блоков мозаики и микродефекты структуры. Решающая роль в процессах пластической деформацтг тг разрушештя--ттртгадлежит ди юка- -циям.  [c.9]

Рис. 4.2. Слои атомной решетки а) кубическая объемноцентрированная решетка б) ку бнческая грапецентрированная решетка в) гексагональная плотноупакованная решетка Рис. 4.2. Слои атомной решетки а) <a href="/info/336627">кубическая объемноцентрированная решетка</a> б) ку бнческая грапецентрированная решетка в) гексагональная плотноупакованная решетка
В процессе закалки на мартенсит происходит резкое нарушение регулярности атомной решетки, в пределах одного зерна образуется ряд тоиких пластин (мартенситная структура), каждая из которых имеет мозаичное строение. Этим резко увеличивается суммарная удельная поверхность раздела, что влечет за собой резкое увеличение прочности. Наряду с этим упрочняющее, в пределах каждого блока, влияние оказывают внедренные атомы углерода в пересыщенном растворе. Хрупкий после закалки мартенсит используют лишь после отпуска, уменьшающего неравновесность структуры. При этом уменьшается прочность, но повышается пластичность и ударная вязкость.  [c.268]


Химические свойства. В большинстве химических соединений с другими элементами титан четырехвалентен, реже трехвалентен. Имеются и неустойчивые двухвалентные соединения титана, например, с галоидами. Химическая активность титана с повышением температуры возрастает. При наличии активированной поверхности титан может поглощать водород из окружающей среды при 20° С, а при 300° С скорость поглощения водорода достигает максимума. Водород вызывает охрупчивание титана, главной причиной чего является образование гидридов и микросегрегация водорода в дефектных местах атомной решетки. Растворимость водорода в титане является обратимой, поэтому можно почти полностью удалить эту вредную примесь путем вакуумного отжига.  [c.171]

Относительно этих фактов высказывалось предположение, что уменьшение теплопроводности углеродистых сталей после закалки вызывается увеличением содержания примесей в твердом растворе (в который они переходят при закалке), а теплопроводность аустенита низка потому, что "1--железо обладает большей способностью растворять примесные элементы, чем а-железо. Однако теплопроводность и чистого железа зависит от строения атомной решетки железа. Согласно ряду достоверных исследований, теплопроводность чистого железа имеет минимум в области превращения а- в у-железо (900°), т. е. для объемноцентрирован-ной решетки железа характерно уменьшение теплопроводности с температурой, а для плотной гранецентрированной упаковки атомов железа характерен положительный температурный коэффициент теплопроводности. Таким образом, для чистого железа, влияние на теплопроводность которого различной растворимости примесей в модификациях решетки вряд ли следует принимать во внимание, заметна связь между температурным коэффициентом теплопроводности и строением кристаллической решетки железа.  [c.122]

Таким образом, имеется много возможностей для согласованных обозначений фаз на диаграммах равновесия. Пока нужно стараться не создавать дополнительных трудностей для читателя. Если, например, в ранее неизвестной системе Си — X была найдена только одна промежуточная фаза со структурой гамма-латуни, то не следует обозначать ее символом р, даже если бы она была второй фазой встречающейся при движении от медного угла диаграммы. Способ обозначения фаз последовательно буквами греческого алфавита т> — (по расположению в диаграмме )нельзя считать удач>ным, если известны соответствующие атомные решетки. Это неминуемо приводит к тому, что один и тот же символ в различных системах будет относиться к различным атомным решеткам. Там, где фазы фиксированы или почти фиксированы, для обозначения состава удобно применять химические формулы, соответствующие атомному соотношению. Например, в системе Mg — Si лучше обозначать образующееся соединение как Mg2Si, чем буквой Е состав фазы указывается автором диаграммы.  [c.383]


Смотреть страницы где упоминается термин Атомные решетки : [c.50]    [c.216]    [c.18]    [c.12]    [c.54]    [c.228]    [c.242]    [c.821]   
Пластичность и разрушение твердых тел Том1 (1954) -- [ c.52 ]



ПОИСК



Атомная структура периоды решетки

Атомно-кристаллическое строение металлов и сплаКристаллические решетки металлов

Атомно-кристаллическое строение металлов. Основные типы кристаллических решеток

Атомные плоскости соответствие с векторами обратной решетки

Атомный вес

Дефект атомной решетки

Дефект атомной решетки Френкеля

Дефект атомной решетки двумерный

Дефект атомной решетки дислокационный

Дефект атомной решетки линейный

Дефект атомной решетки точечный

Дефект атомной решетки трехмерный

КОЛЕБАНИЯ РЕШЕТКИ И АТОМНЫЕ СВОЙСТВА Метод силовых постоянных

Определение обратной решетки 96 Обратная решетка как решетка Брав 97 Решетка, обратная к обратной 97 Важные примеры 98 Объем элементарной ячейки обратной решетки 98 Первая зона Бриллюэна 99 Атомные плоскости Индексы Миллера атомных плоскостей Некоторые правила обозначения направлений Задачи Определение кристаллических структур с помощью дифракции рентгеновских лучей

Решетка атомная кристаллическая

Решетка атомная кристаллическая идеальная

Решетка атомная объемноцентрнрованиая

Решетка атомная плоткоупакованная



© 2025 Mash-xxl.info Реклама на сайте