Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Режим работы при испытаниях

Режим работы при испытании иа электровозах, электропоездах и электросекциях — при нормальном напряжении в сети, на тепловозах и дизель поездах — при работе двигателя на нулевой позиции контроллера  [c.296]

Вычислительная машина может по специальной программе задать испытываемому изделию определенный режим работы (при тестовых испытаниях), сравнить показания датчиков с эталонными значениями, хранящимися в ее памяти, выбрать результат диагноза в виде специальных карт, в которых, кроме указания поврежденных деталей содержатся инструкции по их ремонту 1136].  [c.562]


ДЛЯ цельнотканых. При перекрестной передаче, шкивах с ребордами, ступенчатых шкивах и при наличии отводок ремни обоих типов применять нецелесообразно ввиду их быстрого износа. Свойства ремней всех типов приведены в табл. 76. Во всех стандартах, перечисленных в таблице, изложены типовые расчеты передач текстильными ремнями, области применения, расчетные данные, диаметры шкивов, углы обхвата, сведения о натяжном ролике, необходимой ширине ремня, допускаемых нагрузках и поправках на угол обхвата и режим работы. Методики испытаний приводных текстильных ремней даны в стандартах на их изготовление.  [c.360]

Основная трудность выбора режима испытаний сложных многокомпонентных машин обусловлена необходимостью обеспечить достаточно длительную работу каждого изучаемого узла или агрегата в условиях, необходимых для выявления го ресурса и уровня отказов. Но каждому элементу машины присущ свой оптимальный режим работы, при котором надежность элемента выявляется наиболее четко и в кратчайший срок.  [c.137]

Заключительным этапом стендовых испытаний является испытание турбопередачи в режиме работы машины, для которой она предназначена. В этом случае необходимо, чтобы нагрузочное устройство имитировало характер изменения момента сопротивления рабочей машины и цикличность ее работы. При испытаниях изучается влияние турбопередачи на режим работы машины и изменение силового режима, а также кинематика и динамика системы. По этим данным можно сделать предварительные выводы о целесообразности установки турбопередачи в привод машины. Окончательное суждение можно сделать только после промышленных испытаний привода.  [c.110]

При динамических испытаниях гидропередач исследуется не только амплитудно-частотная характеристика, но и режим работы при импульсной нагрузке, а также быстром возрастании и падении нагрузки. Для исследования режима работы гидропередачи при импульсной нагрузке может быть применено устройство, показанное на рис. 123. На валу 2 испытываемой гидропередачи устанавливается ударник 1, который приводится во вращение. Гидропередача нагружается заданным моментом и затем под ударник при помощи электромагнита 4 мгновенно подается  [c.231]

Так, при испытаниях коробок передач ЗИЛ на стенде с замкнутым контуром замочные кольца шестерен вторичного вала работали без поломок, тогда как в эксплуатации были случаи выхода их из строя. Это объясняется тем, что во время работы коробки передач на стенде шестерни не переключаются и отсутствует имитация движения автомобиля накатом. Вследствие этого нагрузочный режим колец при испытании агрегата на стенде существенно отличается от нагрузочного режима в эксплуатации. Исследование долговечности таких деталей удобнее производить при испытании агрегата на специальных стендах.  [c.121]


Как уже указывалось, зависимости момента и мощности гидротормоза от скорости, размеров и плотности жидкости аналогичны зависимостям для лопастных гидромашин. Режим работы гидротормозов соответствует скольжению, равному единице. Следовательно, у характеристики гидромуфты ось абсцисс в режиме гидротормоза при заданных скорости ротора насоса и регулировании является линией изменения тормозного момента. В процессе работы и испытаний скорость ротора гидротормоза изменяется. Тормозные моменты будут меняться пропорционально квадрату скорости, а мощности — кубу скорости. Тормозные характеристики существенно уменьшаются с уменьшением скорости ротора. Тормозной момент при заданной скорости изменяется регулированием.  [c.290]

Выбор режима нагружения. Поскольку сопротивление материала различным воздействиям зависит от их вида и уровня, при испытании стойкости материала необходимо выбрать режим нагружения образца, т. е. весь комплекс силовых, тепловых и иных воздействий, влияющих на интенсивность данного процесса разрушения (старения). Материал изделий при работе машины в различных эксплуатационных условиях подвергается, как правило, широкому диапазону воздействий, что во многом определяет вероятностную природу протекания процесса разрушения или старения и должно быть учтено при испытаниях. Обычно практику ин-  [c.488]

Гораздо большее влияние на форму цикла воспроизводимых напряжений и соответственно на максимальное действующее напряжение оказывает нестабильность сдвига фаз между слагаемыми гармониками во времени. Это объясняется тем, что значение е, определяющее наблюдаемый фазовый сдвиг, зависит как от фазового сдвига q " между пульсаторами, так и от параметров динамической схемы установки. Особое влияние оказывают так называемые приведенные массы [9] при наличии сил вязкого сопротивления. Значительная зависимость вязкости масла от температуры сказывается соответственно на силах вязкого сопротивления и, как следствие этого, на сдвиге фаз между высоко- и низкочастотным компонентами напряжения. Это значительно усложняет методику испытаний, так как возникает необходимость периодически вносить соответствующую коррекцию в режим работы пульсаторов, что связано с полной остановкой и разгрузкой машины.  [c.141]

Цилиндр 1 с укрепленными на нем деталями имитирует приведенную массу руки ( 10 кг). Жесткость регулировочной пружины 13 составляет 3-10 Н/м. Упругий элемент 3, имитирующий жесткость руки, имеет нелинейную характеристику восстанавливающей силы. Электромагнитный демпфер с коэффициентом демпфирования порядка 80 Н-с/м имитирует вязкое трение руки человека. При испытаниях ручного инструмента имитатор прижимают к стенду, при этом цилиндр 1 перемещается на шариках И до совмещения указателя 12 с риской на цилиндре 1. Пружина 13 сжимается, а замкнутое кольцо 6 входит в магнитное поле демпфера. Ручной инструмент возбуждает колебания подвижных частей имитатора. Режим работы ручного инструмента с данным имитатором эквивалентен режиму работы инструмента в реальных производственных условиях.  [c.392]

При снятии кавитационных характеристик на натурном ГЦН необходимо, учитывая его конструкционные особенности, обеспечивать такие условия проведения испытаний, чтобы при достижении кавитационных режимов, приводящих к снижению напора, не допустить аварии испытываемого ГЦН. Например, если испытываемый насос имеет гидростатические подшипники, питаемые водой с нагнетания его рабочего колеса, следует учитывать тот факт, что при достижении развитой кавитации напор может снизиться настолько, что ГСП при этом окажется уже неработоспособным. Это усугубляется тем, что в режиме кавитации могут увеличиться радиальные гидродинамические силы, что также создает еще более неблагоприятный режим работы ГСП, который в ряде случаев можно исключить, если при кавитационных испытаниях организовать питание ГСП от постороннего источника.  [c.218]


Различие между испытаниями 1-й, 2-й и 3-й категорий видно из примера, относящегося к испытанию на изнашивание деталей автомобильных двигателей. При работе в действительной эксплоатации (1-я категория) значительное влияние на износ оказывают такие факторы, как характер использования машины, её загрузка, режим работы, уход, профилактика и т. д., которые во многих случаях трудно учесть и воспроизвести. При специальных испытаниях (2-я категория) автомобилей на изнашивание пробегом (например легковых автомобилей под мёртвым грузом) вся совокупность действительных условий эксплоатации не может быть точно воспроизведена, соответственно чему машина работает в несколько иных условиях и поэтому результаты испытания на износ могут отличаться от износа в эксплоатации. Лабораторное испытание автомобильного двигателя на стенде (3-я категория) даёт ещё большее отдаление условий работы от эксплоатационных, соответственно чему износ деталей получает значительное отличие от износа в эксплоатации за тот же период работы  [c.198]

В верхних и нижних точках магистральных трубопроводов, максимально удаленных от источника подачи рабочей жидкости (насоса, аккумулятора), необходимо устанавливать сливные и воздухо-спускные пробки для предотвращения образования воздушных подушек (при заполнении трубопроводов рабочей жидкостью), затрудняющих гидравлические испытания трубопровода и настройку системы на нормальный режим работы,  [c.177]

В струях стендовых ракетных двигателей воспроизводятся величины энтальпий торможения h до 6000—8000 кДж/кг и скорости потока порядка 3000 м/с. В настоящее время эти установки являются по существу единственными, в которых при сравнительно высокой температуре можно в течение длительного периода времени получать турбулентный режим обтекания испытываемых моделей. Серьезным недостатком испытаний материалов в струях стендовых ракетных двигателей является то, что химический состав потока не соответствует, как правило, реальным условиям работы материалов. Это обстоятельство затрудняет изучение механизма разрушения материалов, для которых химические реакции при разрушении играют определяющую роль. Кроме того, при испытаниях в струях ракетных двигателей материалов с высокой температурой разрушения, порядка 3000 К, вследствие малости перепадов энтальпий (/е—/ш) поперек пограничного слоя неизбежно появляются большие погрешности в определении величины теплового потока к разрушающейся поверхности.  [c.312]

Топочный режим парогенераторов на жидком и газовом топливах надежно стабилизируется по топливу и воздуху. Автоматика подачи топлива в этом случае отключается. Что касается системы регулирования турбины, то ее можно оставить в работе. Регуляторы воздуха и тяги также целесообразно отключить, ибо они могут создавать самопроизвольные возмущения режима. Вместе с тем чувствительность и точность их датчиков ниже, чем чувствительность применяемых при испытаниях специальных средств измерения. При сжигании твердого топлива регулятор по теплу стабилизирует расход топлива лучше, чем это можно сделать вручную, и его целесообразно оставить в работе. Все сказанное о стабилизации горения относится к исследованиям топочных процессов, аэро- и газодинамики, шлакования, наружной коррозии и т. п.  [c.136]

При выполнении замеров самое серьезное внимание должно быть обращено на гидравлический и тепловой режим отопительной системы. Так как отопительные системы от местных котельных обычно работают на постоянном расходе воды, то при испытаниях должен быть установлен именно этот режим.  [c.140]

Согласно ПТЭ ( 345) каждая турбинная установка, включая систему регулирования, должна в течение первого года экспло-атации подвергаться испытанию I класса точности по программе, обеспечиваюш,ей получение исчерпывающих характеристик при всех возможных режимах. Дальнейшие испытания должны производиться по II классу точности а) периодически, не реже чем через 15 ООО час. работы б) после внесения конструктивных изменений в установку или в ее схему. Полученными при испытаниях характеристиками необходимо, в частности, руководствоваться при выборе наивыгоднейшего распределения нагрузок между работающими турбогенераторами.  [c.117]

Значительно труднее выбрать метод и режим ускоренных испытаний какой-либо машины, предназначенной для выполнения разнообразных операций, отличающихся существенно различными условиями нагружения. В таком случае задача сводится к выявлению нагруженности компонентов машины в различных условиях эксплуатации, количественной оценке эксплуатационных воздействий, оказывающих наибольшее разрушающее влияние, и к учащенному их воспроизведению при испытаниях. При этом учитывается имеющийся опыт испытаний и эксплуатации машин. Известно, например, что при не-установившемся режиме работы автотракторного двигателя износ цилиндров ускоряется в 3—5 раз по сравнению с работой на постоянном режиме, эквивалентном по расходу топлива [1]. Движение транспортной машины с частыми троганиями и остановками ускоряет износ двигателя, сцепления, трансмиссии и тормозов. Регулируя продолжительность цикла включения муфты сцепления, можно не только влиять на нагрев и износ ее элементов, но и изменять величину всплесков крутящего момента, воспринимаемых трансмиссией, и т. д.  [c.137]

Рассмотрим некоторые методические особенности использования полученного спектра нагрузок при построении методики обычных и ускоренных испытаний автосцепок новой конструкции. Необходимо учитывать возможность случайного чередования нагрузок по величине и знаку при сохранении закономерности самого спектра нагрузок. Это обстоятельство является одной из причин значительного рассеяния времени безотказной работы, особенно при испытании на малоцикловую усталость, где результаты особенно сильно зависят от чередования нагрузок. Если спектр распределения нагрузок представлен в виде программных блоков и все образцы испытывают, прикладывая нагрузки в одинаковом порядке, то в этом случае не будет учтена одна из причин, приводящих к рассеянию долговечности. Для каждого изделия так же, как в эксплуатации, необходимо реализовать свой случайный режим нагрузок (с помощью датчика случайных чисел) в пределах общей статистической закономерности. Форсирование режима испытаний по нагрузкам в рассматриваемом случае приведет к искажению процессов повреждения.  [c.171]


На рис. 5.11 приведена конструкция погружного насоса, рассчитанного с помощью приведенной выше расчетной схемы. Испытания насоса показали, что в таких размерах насос устойчиво обеспечивает расход 31 т/ч и давление нагнетания от 0,16 до 0,47 МПа при изменении давления рабочего пара от 0,3 до 0,8 МПа. Режим работы, близкий к расчетному, был реализован при ро = 0,3 МПа, при этом насос обеспечил коэффициент инжекции и = 80. Объемное соотношение фаз в смеси было близким к его оптимальному значению.  [c.115]

Режим работы котлоагрегата должен осуществляться в строгом соответствии с режимной картой, составленной на основе испытаний. При работе котлоагрегата должны соблюдаться тепловые режимы, обеспечивающие поддержание в каждой ступени и каждом потоке первичного и вторичного пароперегревателей допустимой температуры пара. За металлом труб поверхностей нагрева, коллекторов, сепараторов, паропроводов, работающих при температуре 450°С и выше, должно производиться систематическое наблюдение в соответствии с Инструкцией по контролю и наблюдению за металлом паропроводов и пароперегревателей .  [c.285]

Длительность испытания с определением к. п. д. по обратному балансу 3— 4 ч, по прямому —не менее 8 ч (при жидком и газообразном топливе—не менее 4 ч). Большая длительность испытания необходима, если не удается обеспечить достаточно постоянный режим работы.  [c.283]

Испытания золоуловителей проводятся при нормальных эксплуатационных условиях работы котлоагрегата. Опыты рекомендуется проводить при трех нагрузках котлоагрегата, равных 100, 85 и 70% номинальной, при установившемся режиме работы котлоагрегата. Допускаемые колебания в паропроизводительности котлоагрегата не должны превышать 2—3% заданной величины. Оптимальный режим работы золоуловителей следует увязать с оптимальным режимом работы котлоагрегата по коэффициенту избытка воздуха, температуре уходящих газов, содержанию горючих в уносе и крупности помола топлива. На протяжении всего опыта следует поддерживать неизменный газовоздушный режим, что обычно достигается путем перевода тяги и дутья на ручное управление. Записи показаний всех приборов производятся через каждые 10— 15 мин. Длительность каждого опыта — не менее 2,5—3 ч. До начала основных опытов следует провести два-три прикидочных опыта с целью проверки работы измерительных приборов, обучения наблюдателей, выявления дефектов в работе оборудования, особенностей режима и т. п.  [c.109]

Для проведения экспериментов был спроектирован стенд (рис. 7.17), позволявший в широком диапазоне давлений (до 160 МПа), линейных размеров колец (до 240 мм), частот вращения (до 3000 об/мин) и температур среды исследовать конструкции торцовых уплотнений. Испытываемый узел размещается на вертикальном валу, который вращается в двух опорах. Нижняя опора, представляющая собой блок самоустанавливающегося радиально-осевого подшипника скольжения, вынесена из рабочей камеры стенда и смазывается минеральной смазкой с помощью циркуляционной масляной системы. Верхняя опора (радиальный подшипник скольжения) размещена в рабочей полости стенда и смазывается водой. Испытания уплотнений начались после экспериментального подбора коэффициента нагруженности К. Перепад давления на уплотнении был постепенно доведен до рабочего (8—9 МПа) при номинальной частоте вращения вала насоса (1000 об/мин). Протечки через уплотнения при указанных параметрах составляли несколько литров в час. После того как было выявлено, что конструкции и выбранные материалы без доработок обеспечивают принципиальную работоспособность уплотнений (безызносный режим работы при заданных параметрах), на следующих этапах испытаний было показано, что уплотнения сохраняют работоспособность в течение длительного срока (10—> 12 тыс, ч).  [c.239]

В результате анализа этих кривых можно составить полное представление о работе насоса и произвести подбор насоса для конкретных условий. Произведя испытания насоса при разных числах оборотов, устанавливают наибольший возможный для данного насоса к. п. д. Режим работы насоса при наибольшем возможном к. п. д. называется оптимальным. При эксплуатации центробел<ных насосов нужно стремиться к тому, чтобы --------  [c.248]

Изоляционные пленки на основе полиэфиров достаточно стойки к действию растворителей, выдерживают испытание на термопластичность при 200 °С, отличаются повышенной электрической прочностью, но механические характеристики их ниже, чем у поливинил-ацеталевых пленок. Основным недостатком этих проводов является низкая стойкость к тепловому удару, т. е. кратковременному воздействию высоких температур, что обусловлено химической природой полимера. В связи с этим провода марки ПЭТВ не рекомендуется использовать в электрооборудовании, режим работы которого предполагает наличие токовых перегрузок.  [c.250]

Нам представляется, что в качестве наиболее объективных показателей степени разложения следует принимать изменения во времени теплофизических свойств (особенно вязкости), а критерием термической стойкости считать воспроизводимость свойств до и после нагрева-иия. В этом случае предельная температура применения теплоносителя должна определяться исходя из условий надежной работы теплообменных аппаратов в межреге-нерационный период. В свою очередь этот период должен определяться допустимой степенью разложения теплоносителя, при которой продукты разложения практически не влияют на эксплуатационный режим работы. Однако для получения четкого критерия допустимой степени разложения необходимо рааполагать экспериментальными данными по теплофизическим свойствам частично разложившихся теплоносителей, а поэтому актуальность постановки подобных исследований не вызывает сомнений. Окончательное заключение о термической стойкости любого теплоносителя должно даваться на основании опытов в условиях циркуляционных термических испытаний. Для этого необходимо испытать теплоноситель в циркуляционном контуре при различных температурах греющей стенки и исследовать  [c.31]

Запорные бессальниковые клапаны Dy = 15 40 мм с электромагнитным приводом. Условное обозначение Б 26107 (рис. 3.22, табл. 3.18). Предназначены для воздуха с агрессивными парами рабочей температурой от —10 до +90° С, используются для отбора проб воздуха из помещений. Температура окружающего воздуха от —10 до +50° С. Рабочее давление среды рр = 0,15 МПа для клапанов исполнения Б 26107.01, Клапаны устанавливаются на горизонтальном трубопроводе электромагнитным приводом вертикально вверх и присоединяются при помощи штуцеров. Рабочая среда подается на золотник, золотник гуммирован вакуумной резиной. Основные детали изготовляются из следующих материалов корпус, ниппель — коррозионно-стойкая сталь 12Х18Н9Т, золотник — сталь 14Х17Н2. Клапаны управляются электромагнитным приводом с магнитом переменного тока на напряжение 220 В мощностью 575 Вт, режим работы ПВ повторно-кратковременный, не более 15 циклов в час. Имеется ручной дублер управления. Сигнализация крайних положений золотника осуществляется микропереключателем МИ-ЗА, встроенным в конструкцию электромагнита. Электрическая схема привода приведена на рис. 3.23. Клапаны изготовляются и поставляются по ТУ 26-07-1056—72. Герметичность запорного органа обеспечивается по 1-му классу ГОСТ 9544—75. Гидравлическое испытание клапанов на прочность проводится при пробном давлении 0,25 МПа.  [c.114]


Холостое опробование лебедки производят до навешивания цепей и канатов, прокручивая ее в течение 3—4 часов и периодически изменяя направление вращения. Следует указать, что лебедка управления конусами рассчитана на кратковпеме.нный режим работы, и сильный нагрев подшипников при длительном испытании не может служить браковочным признаком. Барабаны на главном валу должны  [c.325]

После проверки подшипники вновь собирают и приступают к кспытани 1М под нагрузкой. Для этого машину запускают указанным способом без нагрузки, а когда машина войдет в установившийся режим работы, открывают главную задвижку и постепенно нагружают испытываемую машину до полной мошно-сгн. При испытании под нагрузкой производится наладка системы регулирования машины. Большинство турбовоздуходувок и турбокомпрессоров имеет две системы регулирования в области устойчивой работы и в области неустойчивой работы.  [c.481]

Отработка торцовых уплотнений для ГЦН с контролируемыми протечками. Методика отработки гидростатических и гидродинамических торцовых уплотнений достаточно полно изложена в [38, 42, гл. 3]. Здесь остановимся лищь на некоторых особенностях отработки гидродинамического торцового уплотнения с малыми протечками (не более 0,05 м ч). Главной проблемой при конструировании такого уплотнения, как уже упоминалось ранее, является обеспечение во всех режимах работы стабильной жидкостной смазывающей пленки в уплотняющем подвижном контакте, что гарантирует безызносный режим трения. Это оказалось непосредственно связано со стабильностью макрогеометрии уплотняющих поверхностей, независимо от применяемых материалов [9, 10]. Задача стабилизации макрогеометрии оказалась чрезвычайно трудной потому, что основу работоспособности торцовых уплотнений составляет контактирование оптически плоских поверхностей. При этом значение рабочего зазора лежит в пределах от долей микрона до нескольких микрон, и нарушение макрогеометрии даже на несколько микрон приводит к существенному изменению характеристики уплотнения. При достижении некоторого предела это нарущение вызывает выход уплотнения из строя. Между тем термические и силовые деформации деталей, образующие контактирующие поверхности, и деталей, соприкасающихся с ними, в условиях высоких давлений и переменных температур, а также больщих диаметров, характерных для уплотнения ГЦН АЭС, составляют сотни микрон, т. е. превышает рабочий зазор в сотни и даже в тысячи раз. Таким образом, конструкция уплотнений должна быть такой, чтобы эти гигантские по сравнению с рабочим зазором перемещения деталей не приводили к искажению рабочих поверхностей даже на несколько микрон. Выяснение указанных обстоятельств предопределило принципиальный подход к методике отработки уплотнения вала (см. рис. 3.34) для модернизированного насоса реактора РБМК. При выборе материала для рабочих колец, образующих уплотняющие поверхности, было учтено, что лучшие результаты при испытаниях и эксплуатации показывали силицированные графиты, несколько модификаций которых прошли испытания на первом этапе на спе-  [c.238]

Характерной особенностью пробеговых испытаний является то, что программой работы узла трения (тормоз, сцепление) устанавливается не частота его включений, а определенный километраж пробега автомобиля по заданным маршрутам. При выборе маршрута в первую очередь учитывают температурный режим работы узла трения. Поэтому километраж пробега автомобиля на мар-  [c.139]

Характерной особенностью про-беговых испытаний является то, что программой работы узла трения (тормоз, сцепление) устанавливается не частота его включений, а определенный километраж пробега автомобиля по заданным маршрутам. При выборе маршрута в первую очередь учитывают температурный режим работы узла трения. Поэтому километраж пробега автомоб.чля на маршрутах легкого, среднего и тяжелого режимов устанавливают пропорционально соотношению тепловых режимов работы трения узла в типовых условиях эксплуатации. Маршрут, соответствующий определенному режиму эксплуатации, выбирают специально оборудованные автомобили, позволяющие регистрировать число торможений и включений сцепления, температуру и другие параметры работы накладок. При наличии выверенных маршрутов для проведения пробеговых испытаний могут быть использованы автомобили, не имеющие какой-либо дополнительной измерительной аппаратуры, что значительно упрощает организацию такого вида испытаний. Основным показателем, определяемым при ускоренных эксплуатационных испытаниях, является средний ресурс.  [c.221]

Таким образом, для оценки материалов Б тормозах и муфтах, работающих со смазкой, необходимо иметь зависимость коэ4х )ициента трения и интенсивности изнашивания от температуры для пар трения при работе их со смазкой. Такие зависимости могут быть получены, например, по стандартной методике испытаний на фрикционную теплостойкость [55 ] с подачей смазочного материала на контакт на машинах трения УМТ-1 и ИМ-58. При этих испытаниях, проводимых при постоянном для заданного режима Ра, нагрев осуществляется в результате трения и меняется при изменении скорости скольжения. Продолжительность испытаний на каждой ступени скорости обеспечивает выход на стационарный температурный режим. При этом продолжительность испытаний берется такой, чтобы обеспечить требуемый износ для его точного измерения. Так как при испытаниях со смазкой износ значительно меньше, чем при трении без смазки, то продолжительность испытаний на каждой ступени увеличивают.  [c.301]

Пар от парогенератора высокого давления с ТЭЦ № 9 Мосэнерго по паропроводу попадает в верхний пакет. Пар во входном пакете предварительно подогревается и поступает в ннжний опытный пакет, где испытываются трубы из новых марок стали. Топка стенда имеет две горелки, напразлепные павстречу друг другу. В ней сжигается природный таз, поступающий из городской газовой сети. При испытаниях на стенде обычно имитируется базовой режим работы парогенератора, но можно воспроизводить и пере.чодные режимы работы.  [c.98]

Двигателям внутреннего сгорания более, чем другим машинам, присуще взаимное влияние и связанность отдельных факторов. Например, скоростной режим двигателя не может однозначно определить скорости и характер перемещений даже деталей кривошипно-шатунного механизма, так как осевые перемещения и вращение поршневого пальца в расточках поршня и шатуна зависят от температуры поршня и гильзы. Не более четко определяет механические нагрузки на эти детали и совокупность главных показателей режимов работы двигателя частота вращения коленчатого вала и загрузка. Неравномерность подачи топлива и воздуха, процесс сгорания топлива и масла в цилиндрах значительно изменяют механические нагрузки не только на детали кривошипно-шатунной и гильзо-поршневой групп, но и на детали клапанного механизма, блока цилиндров, распределительные шестерни и др. Износ деталей при испытаниях двигателей в эксплуатации приводит к изменению влияния практически всех перечисленных факторов на работу деталей, что наряду с нестабильностью  [c.42]

Автоматическое или ручное управление. Испытательное оборудование можно также классифицировать по способу управления или программирования его действия, т. е. в зависимости от того, управляется ли оно вручную или автоматически. Как правило, оборудование с ручным управлением требует меньших первоначальных затрат и стоимости обслуживания, но работа с ним сложнее и обходится дороже, так как требует постоянного внимания оператора. Лоти при проведении некоторых испытаний всегда требуется участие оператора (например, при испытаниях на этапе разработки, когда каждый следующий испытательный режим должен определяться на основе результатов предшествующего), в большинстве  [c.227]

Нам представляется в свете развитых общих соображений, что при оценке маслянистости необходим отход от метода моделирования как неосуществимого, и следует итти по линии рассмотрения в первую очередь тех условий, которые обеспечивают воспроизводство режима граничной смазки, т. е. смазки достаточно тонкой пленкой, в чистом виде. Это, конечно, не означает, что выбф5 таких величин, характеризующих режим смазки, как скорость и удельная нагрузка, является несущественным. Выбор этих величин важно производить с учетом условий работы того узла трения, смазка которого нас интересует. Однако основным и общим при испытании маслянистости остается требование малой толщины смазочной пленки. Это требование нуждается в пояснении. Не является необходимым, чтобы смазочная прослойка между скользящими поверхностями всюду имела малую толщину, соответствующую граничной смазке. Важно, однако, чтобы слагаемое, вносимое в результирующую силу (или, лучше, работу в единицу времени) трения толстыми частями смазочной пленки, было мало по сравнению с этой результирующей, чтобы, таким образом, выделение тепла трения было в основном сконцентрировано в тонких граничных масляных слоях, прилегающих к трущимся поверхностям, что, конечно, связано и с соответствующим распределением нагрузки.  [c.78]


Соотношение (5) и (11) можно рассматривать как теоретр[-ческие рекомендации по выбору форсированного режима. В ранних работах, посвященных вопросам ускоренных испытаний, обычно считалось, что форсированный режим не должен нарушать некоторые условия автомодельности процесса износа изделий. Однако эти условия формулировались нечетко. Согласно (5) и (11) под форсированным режимом, не нарушающим автомодельность процесса износа, следует понимать такой режим е, при котором существует функциональная зависимость (5) между моментами отказов (ео) и Цг ) одного изделия.  [c.14]

Неполное горение, с дымлением и большим уносом, часто происходит при сжигании в камерных топках пыли с подсвечиванием мазутом подсвечивание производится обычно при малой нагрузке или при работе на топливе плохого качества, когда затруднительно установить устойчивое и экономичное горение. Периоды та-,<ого подсвечивания в эксплуатации надо всемерно сокращать перераспределением нагрузки между котлами, тем чтобы каждому из них обеспечивалась паропроиз-одительность, при которой работа топки вполне устойчива и не требует подсвечивания мазутом. С той же целью в периоды пониженной нагрузки котла можно улучшить тонкость размола до величины, не требуемой при нормальной нагрузке котла эксплуатационными наблюдениями и специальными испытаниями выявляют наиболее целесообразный режим горения при малой нагрузке и соответственно инструктируют персонал.  [c.187]

Несколько иная картина горения слоя (рис. 7-27) выявлена управлением Энергоналадка при испытаниях топки системы ВТИ-Комега с длиной решетки 6500 мм под котлом паропроизводитель н о -стью 16 т1ч на печорском угле марки ПЖ. Режим работы топочного устройства Q// = = 870 тыс. ккал (м ч), скорость решетки  [c.198]


Смотреть страницы где упоминается термин Режим работы при испытаниях : [c.550]    [c.513]    [c.148]    [c.260]    [c.140]    [c.251]    [c.59]    [c.174]   
Электрические машины и электрооборудование тепловозов Издание 3 (1981) -- [ c.66 ]



ПОИСК



Режим испытаний



© 2025 Mash-xxl.info Реклама на сайте