Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уплотнения испытаний

Наиболее простой метод заключается в уплотнении испытаний по времени — в сокращении холостых ходов и простоев, в круглосуточной непрерывной работе изделия и т. п. Однако использовать этот простой метод ускорения испытаний можно только после анализа влияния перерывов в работе изделия на интенсивность процесса разрушения. Здесь могут встретиться различные случаи. Например, увеличение частоты циклов нагрузки при усталостных разрушениях в большинстве случаев не влияет на конечный результат, в то время как при изнашивании деталей наличие перерывов в работе может как увеличивать износ (например, при  [c.502]


Уплотнение испытаний по времени не искажает в большинстве случаев процесса потери изделием работоспособности, но дает заметный эффект лишь для тех изделий или их элементов, которые мало загружены в процессе нормальной эксплуатации. Например, механизм загрузки станка-автомата работает после обработки каждой детали, что занимает незначительную долю в балансе рабочего времени станка. Шасси самолета выпускается при каждой посадке, а во время полета не функционирует. Переключение скоростей у станка-автомата занимает незначительную долю в общем времени эксплуатации машины и т. п.  [c.504]

Уплотнительное резиновое кольцо 4 закреплялось неподвижно. а корпусе 2 и также являлось сменным в зависимости от диаметра уплотнения. Испытание уплотнений производилось с перфорированным подкладным кольцом 3 и без него.  [c.79]

В стандарте изложены требования к испытанию сварщиков пластмасс, занятых сваркой, склеиванием или горячим формованием термопластов, а также соединением различных деталей, в том числе труб со сформованными раструбами и эластичными уплотнениями. Испытания на классы I и 11 проводятся с учетом нагрузок, воспринимаемых сварными конструкциями (рабочее давление и рабочая среда), функциональной пригодности и безопасности эксплуатации данной конструкции.  [c.80]

Участки поверхности сопла и дефлектора, на которые действует возмущенный поток, имеют сложные очертания, что обусловлено влиянием краевых эффектов. Для точного их воспроизведения следует использовать экспериментальные данные, полученные по дренажным испытаниям, а также наблюдениям за следом течения на поверхности сопла и дефлектора. В первом приближении можно считать, что рассматриваемые поверхности ограничены коническими скачками уплотнения с прямолинейными образующими А А и ВВ и с осями симметрии, расположенными соответственно на стенках сопла и дефлектора.  [c.329]

Величина давления в месте подвода рабочей жидкости неизвестна (если не было проведено расчета) и меняется с режимом работы, поэтому Ар и Ло следует определить опытным путем. Для этого необходимо провести испытания при нескольких давлениях питания. Такие испытания позволяют также исключить влияние сопротивлений осевому перемещению в уплотнениях и подшипниках.  [c.312]

Для определения и изучения механических свойств материалов в малых объемах перспективными и порой единственно возможными являются методы исследования твердости, микротвердости, испытания малых образцов на растяжение. Условно эти испытания могут быть отнесены к микромеханическим методам исследования свойств материалов [121, 128, 166, 205]. Развитие методов изучения прочности тугоплавких металлов при температурах, в 2—3 раза превышающих освоенный в испытательной технике уровень (до 1300 К), явилось весьма сложной задачей, решение которой потребовало преодоления больших конструкторских и методических трудностей. Было осуществлено создание комплекса новых специальных высокотемпературных установок повышенной точности, исключающих влияние на испытываемые образцы вредных побочных явлений испарения и окисления материалов, трения в направляющих и в уплотнениях микромашин, нагрева силоизмерительных устройств, вибрации частей установок и здания, а также многих других факторов.  [c.4]


При изучении влияния солнечной радиации на коррозию необходимо учитывать начальные и стационарные стадии коррозии. Тщательно отполированные образцы под влиянием влаги и солнечной радиации в начальный период испытания подвергаются интенсивной коррозии и покрываются продуктами коррозии. Солнечная радиация способствует испарению сконденсировавшейся влаги и уплотнению продуктов коррозии. Кроме того, следует учесть, что под влиянием ультрафиолетовых лучей солнца из молекулярного кислорода образуется озон  [c.22]

Наименьшая скорость коррозии стали наблюдалась в мае на атмосферной площадке, что объясняется отсутствием частого смачивания. Длительные (примерно в течение 3 лет) испытания стали на воздухе показали, что значительное влияние на ускорение процесса коррозии металла оказывают небольшие осадки в начале эксперимента. В течение 15 сут после начала проведения опыта скорость коррозии возросла, после чего началось постепенное замедление, что объясняется накоплением продуктов коррозии и действием солнечной радиации (182 ч), способствующей уплотнению про-  [c.65]

Оценка надежности уплотнения заднего моста трактора тягового колеса по результатам незавершенных испытаний  [c.160]

На установке ИМАШ-10-68 возможно также проведение испытаний в защитных газовых средах (например, в очищенном аргоне или гелии) при избыточном давлении 0,2 ати. Газ в рабочую камеру установки может быть введен через отверстие для напуска воздуха для отвода защитного газа предназначено вакуумное уплотнение одной из манометрических ламп.  [c.147]

Нагружающая система. На установке ИМАШ-10-68 можно проводить испытания образцов при циклическом нагружении с частотами 3 и 3000 циклов в минуту. Система нагружения выполнена следующим образом. Один конец образца 1 (см. рис. 80) жестко прикрепляется к неподвижной опоре 14, размещенной внутри рабочей вакуумной камеры, а второй соединяется с подвижным захватом рычага 15, при перемещении которого образец изгибается. Качание рычага 15 происходит при поочередном повороте вала 16, опирающегося на подшипники. Для герметизации камеры при повороте вала 16 служит вакуумное уплотнение, представляющее собой отрезок шланга из вакуумной резины концы шланга жестко прикреплены к валу 16 и фланцу на корпусе рабочей камеры. Рычаг 17 соединен шатуном 18 с эксцентриком. В зависимости от условий испытания шатун можно устанавливать на любом расстоянии от оси эксцентрика величина эксцентриситета регулируется с помощью специального устройства, не показанного на схеме. Вращение эксцентрика осуществляется асинхронным трехфазным электродвигателем (при нагружении образца с частотой 3000 циклов в минуту) или от исполнительного механизма типа ПР-Ш (при малоцикловых испытаниях с частотой 3 цикла в минуту). Для снижения вибраций 147 10  [c.147]

В настоящее время проведена широкая экспериментальная проверка расчетных соотношений (1.7) и (1.8) как на лабораторных образцах, так и па натурных деталях машин, испытанных на стендах и в условиях эксплуатации. Сопоставление расчетных и экспериментальных данных по интенсивности износа показало [43], что корреляция значений Д с коэффициентом пропорциональности, близким к единице, имеет место в интервале Расхождение между экспериментальной и расчетной интенсивностями износа с вероятностью 95% не превышает трех раз и лишь в отдельных случаях достигает десяти раз. Аналитическая оценка интенсивности износа, основанная на представлении об усталостном разрушении поверхностей, была применена к самым различным классам материалов резинам, резино-металлическим уплотнениям, работающим всухую, полимерам, металлам, графитам, самосмазывающимся материалам. Эта теория была распространена для расчета износа при наличии свободного абразива в контакте [52]. Интересно отметить, что понятие усталостного износа как вида разрушения, при котором материал подвергается повторному действию сил, приводящих к накоплению в нем повреждений, в настоящее время используется и для анализа процесса, который классифицируется как адгезионный износ [53]. Это свидетельствует об известной общности представления об усталостном разрушении поверхностей трения.  [c.20]


Примером прямой линейной корреляции между скоростью изнашивания, рассчитанной по эмпирической формуле, связывающей износ с коэффициентом трения и механическими свойствами материала, и полученной на лабораторной установке, является график на рис. 76. Он заимствован из работы [50], проведенной для исследования изнашивания в отсутствие смазки керамических материалов торцевых уплотнений. К плоскости вращавшегося диска из керамического материала прижимались три неподвижных образца (материал образцов — окись магния, окись бериллия, окись алюминия). Давление при испытании повышалось ступенями от 0,35 до 3,5 кгс/см, а скорость диска была 0,5 и 1 м/с.  [c.104]

Трубчатая тяга свинчивается с подвижной траверсой машины, снабженной встроенной месдозой. Между верхней крышкой и сосудом Дьюара, а также около трубчатой тяги имеются кольцевые уплотнения. Предусмотрена возможность откачки воздуха из внут-ренного объема и сосуда Дьюара. Деформация оценивается с помощью пропорционального дифференциального преобразователя. Смещение, которое регистрируется этим прибором, представляет собой суммарную деформацию образца и элементов конструкции устройства для испытания.  [c.371]

Полимерные материалы представляют значительный интерес для морской технологии, так как могут быть использованы для изготовления оболочек кабелей подводных линий связи, швартовых тросов, уплотнений, прокладок и различных деталей конструкций. Полимеры сочетают хорошие электрические свойства с высокой стойкостью к общему разрушению и коррозии в воде, а также к разрушающему воздействию биологических факторов. Для получения общей информации о поведении полимерных материалов в океанских средах и для изучения их эксплуатационных свойств был проведен ряд продолжительных натурных испытаний.  [c.459]

Основным из них является сложность выполнения надежных уплотнений между поршнями и цилиндрами, тем более что в процессе работы плотность их уменьшается вследствие износа уплотняющих материалов. Обследование работы гидравлических приводов в кранах и экскаваторах позволяет сделать вывод, что даже наиболее совершенные конструкции поршневых цилиндров не избавлены от утечки рабочей жидкости, причем, как показали испытания, проведенные во ВНИИПТМАШе, плотность в начале работы увеличивается, так как уплотняющие манжеты прирабатываются к зеркалу цилиндров, а затем по мере износа прогрессирующе уменьшается. Кроме того, при возникновении неплотностей в соединениях трубопровода рабочая жидкость вытекает и в гидросистему может проникнуть воздух, нарушающий нормальную работу гидроуправления или даже совсем выводящий его из строя при работе в условиях низких температур возможно замерзание жидкости в трубопроводах.  [c.169]

В этом случае отпадает необходимость в уплотнениях и в дренажной трубке. Однако при испытаниях латунных сильфонов обнаружилось, что при тех давлениях и ходах, которые имели место в крановых тормозах (давление от 10 до 15 ат, ход от 4 до 8 мм), металл сильфона оказывается недостаточно выносливыми через 10—14 тыс. включений в нем появляются усталостные трещины, приводящие к последующему быстрому разрушению цилиндра.  [c.491]

Отличительной особенностью конструкции стенда является применение динамической (с непрерывной подкачкой) системы обеспечения высокого давления жидкости. Благодаря этому появление незначительных утечек жидкости (в деталях уплотнения или в местах непровара контролируемых трубок) ни в коей мере не нарушают качества и надежности испытания.  [c.319]

Испытания данной системы позволили изучить влияние различных технологических и конструктивных факторов на долговечность узлов трения и определить оптимальные варианты взаимного расположения уплотнений и направляющих втулок. Кроме того, в данной системе проведена проверка работы уплотнений с полимерными линзами в условиях высоких циклических напряжений.  [c.30]

За критерий надежности металлопластмассового клапана в процессе этих испытаний следует принимать определенное количество циклов, при котором разрушение уплотняющей поверхности пластмассового уплотнителя не происходит. При всех испытаниях металлопластмассовые клапаны следует устанавливать в корпус той конструкции, для которой выбирается материал и тем самым исключить влияние конструктивного исполнения арматуры на работоспособность уплотнений. Например, для проверки работоспособности уплотнителя в запорном вентиле можно рекомендовать стенд, схема которого изображена на рис. 34.  [c.78]

Применение загрязненного воздуха существенного влияния на стойкость клапанов не оказывает. При испытаниях под одни клапаны подавался чистый воздух, под другие воздух, загрязненный песком (мелкий сухой песок в количестве примерно 0,25 X X 10 м засыпался в трубопровод перед испытаниями клапанов)., В остальном условия были одинаковыми. В результате испытаний клапаны показали их одинаковую эксплуатационную стойкость. Осмотрев клапаны после испытаний загрязненным воздухом, установили, что песчинки проникают в материал уплотнения и прочно в нем удерживаются. Есть основание предположить, что в дальнейшем при эксплуатации такого клапана происходит постепенный отрыв отдельных песчинок, в местах отрыва образуются очаги вымывания материала уплотнителя, а в дальнейшем это ведет к выходу клапана из строя. Но процесс этот длительный, и клапаны, несмотря на большое количество песка, выходили из строя примерно через такое же количество циклов, что и клапан, под который подавался чистый воздух. С другой стороны, проникновение в вентиль песка и пыли будет отрицательно сказываться на состоянии седла вентиля, что, как показали исследования, несколько снижает продолжительность работы клапана.  [c.80]

Исследование влияния состояния седла вентиля на работоспособность клапана показало, что дефекты седла отрицательно влияют на стойкость клапанов. Клапаны, испытанные в вентиле с дефектным седлом, выдержали в четыре раза меньше циклов, чем клапаны, испытываемые в вентилях с нормальным седлом. Происходит это потому, что в местах рисок, а также таких дефектов, как сколы и вмятины на седле, ухудшаются условия уплотнения, начинается неравномерная деформация уплотнителя и направленное просачивание воз-  [c.81]


Наконец, необходимо знать, как влияют температурные условия на релаксацию полимеров. С этой целью при испытаниях центральная часть стенда (рис. 41) помещалась в одном случае в специальную ванну с сухим льдом, в другом — нагревалась электронагревателем. В результате испытаний было установлено, что пониженная температура значительно уменьшает интенсивность релаксации внутреннего напряжения в уплотнении, особенно на первом этапе. Повышение температуры оказывает обратное действие. С повышением температуры интенсивность релаксации значительно увеличивается. Для линз из капролактама интенсивность релаксации при 323 К в 2,5 раза выше, чем при 223 К применительно к начальному периоду релаксации. Явления, описанные выше, объясняются структурой полимера повышенные температуры увеличивают пластичность полимера, а следовательно, и скорость релаксации. При теплосменах внутреннее напряжение в полимерных линзах значительно меняется. Прекращение процесса охлаждения соединения увеличивает напряжения в линзе.  [c.95]

Жесткость сварных сильфонов в 3-5 раза больше, чем цельнотянутых, поэтому необходимо осторожно относиться к осевым перемещениям пары трения осевое перемещение в пределах 1—2 мм вызывает появление усилия, сжимающего пару, порядка (1-2) 10 Н. Сварной сильфон имеет достаточную жесткость на скручивание, что позволяет ему воспринимать момент трения без дополнительных деталей. Сильфон в уплотнении работает в условиях многоциклового нагружения, и поэтому его долговечность определяет в конечном итоге долговечность самого уплотнения. Испытания сварных сильфонов на долговечность показали их высокую циклическую прочность. Испытьшали сильфоны с внутренними диаметрами от 55 до 95 мм. В сильфоны подавалось давление 2,2 МПа верхний торец сильфона был закреплен, а нижний совершал колебательные движения по окружности с эксцентриситетом 2,5 мм и частотой 8,9 с . Сильфо-  [c.24]

В верхней части корпуса размещена термокамера 3, изготовленная из нержавеющей стали. Ее конструкция позволяет проводить испытания как в газообразных, так и в жидких средах. Для подключения датчиков и аппаратуры предусмотрены разъемы. Крыщка 4 с помощью уплотнений 5 и замков 8 обеспечивает герметизацию термокамеры. Ручки 6 и упоры 7 позволяют открывать крыщку и фиксировать ее. Для перемещения термостата в горизонтальной плоскости предусмотрены ручки 9 и колеса 12. Глушитель 10 размещен в нижней части корпуса и обеспечивает снижение щума до санитарных норм. Ко дну корпуса крепится спирально-трубчатый или компактный теплообменный аппарат  [c.249]

Важнейшей задачей при создании Единой автоматизированной сети связи (ЕАСС) является стандартизация требований на аппаратуру вторичного уплотнения, телеграфные и фототелеграфные каналы, нормы, общие технические требования и методы испытаний комплекса оборудования ЕАСС и его составных частей. В числе стандартов, утвержденных в последние годы, можно назвать ГОСТ 22348—77 Единая автоматизированная система связи. Термины и определения , ГОСТ 21656—76 Единая автоматизированная сеть связи. Каналы тонального телеграфирования с частотной модуляцией. Типы и основные электрические параметры , ГОСТ 22933—78 Единая автоматизированная сеть связи. Установки оконечные телеграфной связи и передачи данных. Требования по взаимодействию с сетями АТ-50 и ПД-200 и др.  [c.18]

Для оценки состояния шпилек из фланцевого соединения, имеющего пропуски в уплотнении, отбирают 1—3 шпильки, а в случае четкого выявления зоны прямого воздействия среды отбирают не менее 7з числа шпилек этой зоны. Оценивать можно по испытаниям либо самой шпильки, либо — образцов из нее по конкретным отбраковочным критериям. Это может быть величина удельной работы пластической деформации, израсходованной на образование шейки, или изменение относительного сужения, определяемое с высокой точностью. Отбраковочные критерии получают в результате модельных испытаний в лабораторных СЛ0ВИЯХ.  [c.176]

Механизм бескресто-винного типа с передним сервомотором без днища (рис. V. 11, а) является разновидностью описанного выше механизма. Впервые он был предложен Л. Н. Петровым и Л. Д. Есиным и разработан на ЛМЗ. Здесь стаканы заменены проушинами 6, закрепленными непосредственно на поршне 7 сервомотора и соединенными с серьгами 5 и рычагами 12. Лопасти J4 отлиты заодно с цапфами. Корпус 3 выполнен с нижним днищем, а его полость 4, в которой расположен механизм поворота, одновременно является нижней полостью сервомотора и нагружается полным рабочим давлением масла. При этом также нагружаются уплотнения 16 лопастей. Для того чтобы их разгрузить, в цапфе лопасти просверлены радиальные 13 и осевые 15 отверстия, по которым масло, проникающее через зазор между лопастью и втулкой, отводится в полость корпуса / и по трубке 2 через шток 9 — в полость вала 8 и далее на слив. При такой разгрузке неизбежны утечки масла, которые, как показали испытания при температуре 20° С fn давлении масла 1,5 МПа, составляют  [c.148]

Такой же результат показали и испытания, которые проводились на опытном полупромышленном пароперегревателе пылесланцевого котла ТП-17, а также эксплуатационный опыт ширмовых пароперегревателей котлов ТП-17 и ТП-67. В ходе эксплуатации этих котлов ускоряющего действия виброочистки на интенсивность износа не было замечено. Однако при этом наблюдалось существенное уплотнение золовых отложений.  [c.226]

По данным рентгенофазового анализа, спеченный материал представлен фазами АШ, 2А15012 (иттрий-алюминиевый гранат) и ЗЮ2 по микроструктуре — зернами и волокнами нитрида алюминия, распределенными в матричной фазе на основе 2А15012-Проведенные испытания позволили заключить, что введение добавки 20з способствует уплотнению материала при спекании, введение же добавки 8102 влияет на образование волокон АШ,  [c.132]

Стойкость против окисления образцов, сплицировапных в порошковых смесях, после 20 ч испытаний при 1073 К оказалась почти в три раза выше по сравнению со стойкостью непокрытых образцов (рис. 2). При дальнейших испытаниях образцы без покрытий разрушаются. У силицированных же образцов наибольшая скорость окисления наблюдается в первые 20—30 ч испытаний, после чего наблюдается снижение скорости окисления. Это, по-видимому, связано с формированием пленки двуокиси кремния в поверхностной зоне образцов и ее уплотнением. После 30-часового окисления пленка эффективно защищает углеродистую сталь. Формирование в поверх-  [c.195]

Деформации сдвига в плоскости адгезионной связи измеряются путем определения величины относительного поворота кольцевых частей образца с помощью рычажного механизма. Рычаг 18 своей кольцевой частью закреплен на наружной неподвижной штанге, а рычаг 19 установлен на выступающей части подвижной внутренней штанги Относительное перемещение рычагов измеряется инди катором 20, снабженным тензометрическими датчиками 21 Электросигналы датчика после усиления поступают на коор динату X потенциометра ПДС-021. Таким образом, результа ты испытания регистрируются в виде диаграммы Р — Д5 Для исследования прочности и деформативности адгезионной связи при высоких температурах предусмотрен нагрев образца электрическим радиационным нагревателем 22 трубчатого типа. Электропитание нагревателя осуществляется от сети однофазного тока. Нагрев образца регулируется терморегулятором ВРТ-3, подключенным к понижающему трансформатору ОСУ-20. Шины понижающего трансформатора соединены с водоохлаждающими токоподводами 23, которые через герметичные уплотнения входят в камеру. Нагрев контролируется хромельалюмелевой термопарой 24, которая через герметичное уплотнение выводится за пределы камеры ЭДС термопары измеряется потенциометром КСП-4.  [c.165]


Миллер 172] испытывал электрогидравлическую систему управления полетом в течение 380 ч при 93° С и давлении до 211 кг см . Доза облучения составляла 5-10 эрг/г. В этой системе использовали гидравлическую жидкость Оронайт)) 8200 ( Oronite 8200) на основе низкомолекулярного полиизобутилена и уплотнительные кольца из Вайтона А и нитрильного каучука. Кольца из Вайтона А хорошо герметизировали в статических уплотнениях, хотя и подвергались заметной остаточной деформации сжатия. В динамических уплотнениях с Вайтоном А наблюдалась некоторая утечка на конечной стадии испытания. Физические свойства колец из нитрильного каучука изменились меньше, чем кольца из Вайтона А.  [c.105]

Для использования в системах с гидравлической жидкостью MLO-8200, работающих при 93° С, оказался пригодным Вайтон А с асбестовым наполнителем [72]. В этом случае доза облучения составляла 8,77 X X 10 эрг/г. При последующем испытании опорные кольца, изготовленные из Вайтона А с асбестовым наполнителем, тефлона и кожи и используемые в предохранительном клапане, удовлетворительно работали в электрогидравлическом контуре системы регулирования с гидравлической жидкостью на основе низкомолекулярного нолиизобутилена ( Оронайт 8515) при 135° С и давлении 211 кг см . -Доза облучения составляла (l,3- -4,9)-10 эрг/г в зависимости от места расположения деталей в системе. Кольца из тефлона стали хрупкими, но герметичность уплотнений не нарушилась. Опорные кольца из тефлона и Вайтона А оказались настолько прочно связанными с уплотнительными кольцами, что их невозможно было отделить, не повредив.  [c.105]

При контроле индикаторный газ под некоторым давлением из расходной емкости (баллон, кислородная медицинская подушка и т. п.) через резиновый шланг подается к соплу обдува, откуда выходит регулируемая струя гелия. Наблюдая за показаниями выходного прибора, контролер направляет струю гелия на те места конструкции, где наиболее вероятно появление натекания. Обдувание следует начинать с верхних частей конструкции (так как гелий легче воздуха) и с частей ее, расположенных ближе к течеиска-телю. В первую очередь следует испытывать сварные и клепаные швы, места пайки, уплотнения и тому подобное и только затем в случае необходимости переходить к последовательному обдуванию всей поверхности. На первой стадии испытаний целесообразно устанавливать сильную струю гелия, покрывающую сразу большую поверхность, с тем, чтобы определить, в каком месте имеется неплотность. Затем можно уменьшить струю гелия и произвести точное определение места неплотности, медленно перемещая обдуватель сверху вниз в направлении увеличения отсчета, пока последний не достигнет наибольшего значения. Слишком быстрое перемещение обдувателя снижает чувствительность испытаний. Оптимальной является скорость перемещения в 1 см/с. Труднодоступные места контролируемых объектов следует обдувать более продолжительное время.  [c.96]

Рис. 2. Криостат для испытаний на двухосное растяжение а —продольное сечение б — вид сверху / — теплоизоляция 2 — узел соединения с тягой 3 —кран образца 4 — нижний край образца 5 — верхний край образца-о — предохранительный клапан 7 — крышка из стирофома S — вакуумный кран-9 — кольцевое уплотнение Рис. 2. Криостат для испытаний на <a href="/info/25666">двухосное растяжение</a> а —продольное сечение б — вид сверху / — теплоизоляция 2 — <a href="/info/444450">узел соединения</a> с тягой 3 —кран образца 4 — нижний край образца 5 — верхний край образца-о — <a href="/info/29373">предохранительный клапан</a> 7 — крышка из стирофома S — <a href="/info/115187">вакуумный кран</a>-9 — кольцевое уплотнение
Для изготовления металлостеклянных и металлокерамических уплотнений (переходов) обычно применяются аустенитные тройные сплавы Ре—N1— Со, имеющие коэффициенты термического расширения, близкие к соответствующим параметрам стекла или керамики. В работе [117] было исследовано поведение в условиях на-водороживания и высокого давления водорода (69 МПа) двух таких сплавов Ре—29 N1—17 Со (ковар) и Ре— 27 N1—25 Со (керамвар), пределы текучести которых после отжига составили 320 МПа. Данные для второго сплава представлены на рис. 20. Оба сплава полностью сохраняли пластичность при испытаниях в водороде [117]. Их структура представлена довольно стабильным аустенитом и не должна проявлять склонность к непланарному скольжению. Этот вопрос следует исследовать в рамках общей проблемы корреляции между типом скольжения и стойкостью к индуцированному водородом охрупчиванию.  [c.78]

Для получения действительной и возможно более полной картины работы управляемых тормозов во ВНИИПТМАШе было проведено испытание разработанных им тормозных систем с гидравлическим управлением. Задачей испытания являлось установление степени плавности и точности остановки обслуживаемого ими механизма и выявление требуемых усилий. Кроме того, проверялась герметичность всех элементов управления. Испытания проводились как в лабораторных, так и в эксплуатационных условиях. Напорный цилиндр соединялся с рабочим цилиндром трубопроводом из стальной трубки, имеющей внутренний диаметр 6 мм и длину около 20 м. Рабочие цилиндры имели различные диаметры и различное уплотнение (кожаное и севани-товое), что позволило выявить наиболее благоприятные соотношения диаметров и качество уплотнения. Проведенные испытания показали полную работоспособность тормоза в условиях кранового режима.  [c.167]

В химическом машиностроении под руководством НИИХиммаша выполнен ряд ценных исследований разработаны метод и технология получения беспористых графитов путем пропитки фенольно-формальдегидной смолой, совместно с Новочеркасским электродным заводом созданы конструкции и налажен выпуск теплообменной, реакционной и колонной аппаратуры из этих графитов установлена применимость различных видов стеклопластиков на фуриловой, эпоксидной, фенольной и полиэфирных смолах в химическом машиностроении и разработана технология изготовления фильтровального оборудования (рам и плит фильтрпрессов), которая внедряется на заводе стеклопластиков (Северодонецк) разработана технология изготовления емкостной аппаратуры из стеклопластиков, плакированных полиэтиленом (опытные аппараты прошли производственные испытания на Рубежанском химкомбинате) создана технология получения листов, плакированных полиэтиленом суммарной толщиной 6—8 мм, из которых изготовлены опытные аппараты емкостью до 100 л разработана технология изготовления уплотнений на основе фторопласта с наполнителями для компрессоров без смазки, пропитки графитов кислотощелочестойкой смолой ФЛ-2, изделий из капролона (на Уралхиммаше построена установка, позволяющая получить отливки весом до 40—45 кг и освоено изготовление большой номенклатуры машиностроительных деталей). В УКРНИИХиммаше исследованы защитные покрытия химической аппаратуры полимерными материалами, разработана технология и создана специальная установка для защиты емкостей методом напыления, освоена защита листовым полиэтиленом и фторопластом-3 путем накатки  [c.218]

Тем не менее применение полимеров в гидросистемах еще тормозится, так как недостаточно их производство, отсутствуют расчетные данные для создания тех или иных конструкций, не разработаны методики проектирования уплотнений из пластмасс. В настоящее время совершенно отсутствуют нормативные данные по применению пластмасс в машиностроении. Поэтому проектирование пластмассовых уплотнений необходимо производить, используя практические данные многих исследований. Целесообразно проектирование осуществлять на o HOi e испытаний, проводимых при тех условиях, в которых будет работать уплотнение. Причем представляется более правильным принимать в расчет те параметры, которые по своим качествам давали основание сделать принципиальное заключение о возможности использования выбранного материала в качестве уплотняющего элемента в системах высокого давления.  [c.63]

Следующим этапом были испытания при наличии в соединении рабочей среды под давлением. Проводились они на той же установке (рис. 41) путем подвода масла АМГ-10 во внутреннюю полость центральной части стенда. Все испытываемые уплотнения выдержали давление рабочей среды (350-н400) 10 Н/м с полной  [c.94]


Смотреть страницы где упоминается термин Уплотнения испытаний : [c.503]    [c.280]    [c.30]    [c.130]    [c.105]    [c.41]    [c.222]    [c.86]    [c.62]   
Машиностроение Энциклопедия Т IV-3 (1998) -- [ c.355 ]



ПОИСК



Испытание торцовых уплотнений

Контроль, испытания и надежность клапанных уплотнений

Сборка и испытания уплотнения вала

Уплотнения цилиндров и методы их испытания



© 2025 Mash-xxl.info Реклама на сайте