Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поверхности Покрытие металлом — Характеристики

Покрытия являются неметаллическими соединениями и обладают значительно большим термическим сопротивлением, чем основной материал (различные металлы), что приводит к ухудшению теплоотдачи. Чтобы учесть степень влияния термического сопротивления покрытия на тепловые характеристики излучающей поверхности и произвести-точный расчет интенсивности тепло.  [c.120]


Результаты исследований влияния разных покрытий на механические характеристики конструкционных материалов приведены в работах [И, 20—211. По современным представлениям о разрушении металла предполагается, что покрытие, препятствуя выходу дислокаций на поверхность, может в одних случаях упрочнять основу, а в других — разупрочнять. Эффект влияния покрытий на основной материал будет зависеть от условий, определяющих динамику дислокаций на поверхности раздела [22]. Результат же взаимодействия дислокаций с границей раздела основа — покрытие связан с двумя типами источников дислокаций — объемными и поверхностными. Объяснение роли покрытий в упрочнении сплавов с позиций дислокационных представлений об изменениях в структуре поверхностных слоев в процессе деформации дается и в работах [23, 24].  [c.21]

Оценивая направления развития методики усталостных испытаний, следует отметить, что для образцов с покрытиями не всегда удается обеспечить соответствие условий испытания условиям эксплуатации, так как в образце трудно создать такие же, как и в детали уровень и распределение остаточных напряжений, масштабные соответствия, изменение структуры в направлении от поверхности покрытия к основному металлу и т. д. Кроме того, при испытаниях образцов с покрытиями обычно наблюдается значительный разброс полученных результатов, поэтому самые достоверные и точные характеристики сопротивления усталости можно получить, испытывая непосредственно деталь с покрытием, максимально приблизив условия эксперимента к условиям эксплуатации.  [c.33]

Нам не представляется возможным автоматически переносить результаты взаимодействия металлов с углеграфитовыми материалами на углеродные волокна из-за специфичности структуры последних мелкие кристаллиты, в которых базисные плоскости вдоль границы волокна разделены узкими порами (параллельно оси волокна) и границами наклона, или кручения (перпендикулярно ей). При указанной структуре прочность волокна должна определяться прочностью границ кристаллитов и быть чувствительной к любым изменениям их состояния. Наличие металла на поверхности углеродного волокна может влиять на состояние и свойства волокон, так как при этом возможно протекание таких процессов, как химическое взаимодействие, диффузия, частичное и, в предельном случае, полное растворение волокна. Таким образом, изучение влияния покрытия на свойства углеродного волокна необходимо для того, чтобы знать, насколько покрытие может ухудшать характеристики как армирующего компонента, так и композиционного материала в целом.  [c.129]


Качество защитных покрытий на высокотемпературных материалах, получаемых в результате взаимодействия жидкости с поверхностью твердого тела, определяется характеристиками смачивания и растекания жидкого металла по этой поверхности. Особый  [c.137]

Наряду с влиянием металлов с различными исходными характеристиками на закономерности развития процессов схватывания первого и второго рода значительно влияют, как показали результаты лабораторных испытаний, методы обработки металлов (механическое упрочнение, закалка, химико-термическая обработка, электролитическое покрытие поверхностей трения металлами, диффузионное упрочнение поверхностных слоев металла различными элементами при совместном пластическом деформировании при трении, повышение теплоустойчивости металлов путем легирования редкими металлами и т. п.).  [c.85]

Для определения отдельных характеристик лакокрасочного покрытия (прочности приставания, эластичности, твердости и др.) в настоящее время имеется ряд качественных и количественных методов . Однако основной недостаток этих методов заключается в том, что большинство из них не позволяет оценивать качество покрытий непосредственно на деталях. Применяя эти методы, определение производят обычно на специальных образцах-пластинках. Однако при нанесении исследуемого покрытия на пластинку весьма трудно обеспечить полную аналогию с условиями образования лакокрасочной пленки на деталях, предусмотренными установленной технологией, как по микрогеометрии поверхности основного металла, так и по условиям нанесения и сушки покрытия. Поэтому при изготовлении образцов для испытаний необходимо предельное соблюдение всех требований технологии.  [c.547]

Весовой метод широко используется при измерении коррозии металлов в чистых расплавах галогенидов, в которых продуктами коррозии являются галогениды корродирующих металлов, хорошо растворимые в солевых средах [6—19]. Однако и в этом случае могут быть существенные ошибки в определении истинной величины коррозии, если исходная поверхность образцов покрыта окисными пленками. В условиях одних опытов они могут полностью подтравливаться и механически удаляться с поверхности, в условиях других — частично оставаться. Поэтому для получения воспроизводимых результатов поверхность исследуемых металлов подвергается механической или химической обработке, чтобы снять окис-ные пленки и возможные загрязнения, которые могут сказаться на величине коррозии. Результаты весового метода не могут быть однозначной характеристикой процессов коррозии в тех расплавах, в которых продукты коррозии частично или полностью нерастворимы. Даже при сильной коррозии вес образца может меняться незначительно, иногда убывая, иногда возрастая [Ю, 20—22]. Это>, в первую очередь, относится к кислородсодержащим расплавам (нитратам [20,23],карбонатам [22, 24—31], фосфатам [32—34], сульфатам [35, 36]  [c.173]

В брошюре приведены краткие сведения об основах процессов очистки поверхности различных металлов и сплавов как методе декоративной отделки и подготовки деталей перед нанесением гальванических и химических покрытий. Даны характеристики отдельных способов механической подготовки, обезжиривания, травления, химического и электрохимического полирования. Приведены схемы технологических процессов очистки и отделки деталей из различных материалов.  [c.2]

В отечественной промышленности применяется электрохимическое полирование труб, пружин, некоторых деталей, работающих в условиях трения, деталей электровакуумного производства. Этот процесс незаменим при обработке полупроводников, так как позволяет получить поверхность со стабильными электрофизическими характеристиками. Благодаря сочетанию электрополирования с последующим анодированием и адсорбционным окрашиванием получают имитацию отделки алюминиевых деталей под золото. Электрополированию подвергают сверла, хирургический инструмент, детали перед нанесением на них гальванических покрытий. В последнем случае повышается прочность сцепления покрытия с основным металлом, увеличивается стойкость против коррозии.  [c.88]


Коэффициент использования металла при распылении. Коэффициент, использования металла при распылении Г1, хотя и не оказывает прямого влияния на свойства покрытий, является важной характеристикой процесса, определяющей его экономическую эффективность. По данным работы [9], в себестоимость покрытия, без учета стоимости подготовки поверхности, при использовании высокопроизводительной аппаратуры в механизированном производстве в основном входит стоимость распыленного металла (75—85% при распылении алюминия и 90—95% при распылении цинка). Поэтому на себестоимость покрытия в большей степени могут оказать влияние потери металла при распылении, чем, например, разница в стоимости газов и электроэнергии при газопламенной и электродуговой металлизации.  [c.222]

Существенной характеристикой серебряных покрытий является прочность сцепления их с основным металлом. Для хорошего сцепления необходимо, чтобы поверхность основного металла была свободна от посторонних веществ. Если сила сцепления мала, то осадок может уже во время электролиза нли вскоре после него отслоиться от основы. Отслаивание осадка происходит иногда при нагревании и при определенных условиях лишь после продолжительного хранения на складах. Часто играют роль в этом внутренние напряжения в осадках.  [c.53]

Таким образом, энергия связи тонкого слоя смазки или отдельных ее компонентов с поверхностью защищаемого металла может оказаться существенным фактором в характеристике защитных свойств покрытия. Эта энергия определяет возможность  [c.422]

Электроискровую обработку применяют для упрочнения поверхностного слоя металлов деталей машин, пресс-форм, режущего инструмента. Упрочнение состоит в том, что на поверхность изделий наносят тонкий слой какого-либо металла, сплава или композиционного материала. Подобные покрытия повышают твердость, износостойкость, жаростойкость, эрозионную стойкость и другие характеристики изделий.  [c.403]

Для рассматриваемых нами покрытий основным критерием при выборе оптимальной толщины является фактор, обеспечивающий полное излучение через поверхность излучает тело, поверхность же является разделом двух сред, имеющих различные оптические характеристики [3]. Под оптическими характеристиками среды понимаются, как известно, показатель поглощения показатель преломления и диэлектрическая проницаемость ц. Частицы вещества, находящиеся в поверхностном слое (или с другой стороны границы раздела), испускают электромагнитную энергию в направлении границы между двумя средами. Излучение, проходящее через эту границу, распространяется в граничной среде. Уравнение плоской электромагнитной волны, распространяющейся в глубь металла вдоль оси х, будет  [c.116]

Ингибирование лакокрасочных покрытий, значительно повышая антикоррозионные характеристики, не ухудшает физико-механических свойств покрытий и может усиливать эффект гидрофобизации металла, что позволяет наносить лакокрасочные материалы на влажные металлические поверхности изделий.  [c.176]

Толщина покрытия — характеристика, от которой зависят его защитные свойства, ее выбирают из условий получения надежной защиты поверхности металла, экономической целесообразности, а также определяется технической документацией на изделие, оговаривается государственными стандартами и нормалями для типовых изделий.  [c.53]

Толщина покрытия — важнейшая характеристика, от которой зависят его защитные свойства, выбирают ее из условий получения надежной защиты поверхности металла и экономической целесообразности. Толщина слоя покрытия может определяться неразрушающими (табл. 33) и разрушающими (табл. 34) методами.  [c.53]

Обследование состояния защитных покрытий и их адгезионных качеств в конце 1973 г., т. е. более чем через 8 лет, показало, что как поверхность защитных покрытий, так и адгезия между покрытием и металлом сохранились хорошо, почти не утратив первоначальных характеристик (рис. 18, 19).  [c.87]

В настояш ее время нет единого термина, обозначающего силу связи между основным металлом и покрытием отнесенную к единице их общей поверхности. Наиболее часто используются следующие понятия адгезия, адгезионная прочность, прочность сцепления покрытия с основой, адгезионная прочность соединения с основой и др. Такая неопределенность в терминологии для одной из важнейших характеристик покрытия, разумеется, вносит путаницу как в специальной литературе, так и в технологической документации при исследовании свойств покрытий в производственных условиях.  [c.55]

На практике сроки защитного действия антикоррозионной упаковочной бумаги колеблются в зависимости от вида металлоизделия, его характерных особенностей, требований, предъявляемых к его внешнему виду, покрытиям, эксплуатационным характеристикам (электрическим, оптическим и т. д.). Так, наибольшие сроки защитного действия антикоррозионной упаковочной бумаги марки УНИ достигнуты для консервации изделий из черных металлов с простыми формами и поверхностями, например листов, лент, прутков, уголков. Эффективна антикоррозионная бумага УНИ для консервации изделий небольших размеров.  [c.109]

Глава начинается с обсуждения основных термодинамических свойств металлов и окислов, причем основное внимание уделено тем окислам, которые могут быть использованы в виде волокон и покрытий. Затем рассмотрено применение методов термодинамики твердых растворов для оценки стабильности композитов. В обзорном плане изложены обширные литературные данные о взаимодействии жидких металлов с окислами, полученные при изучении процессов изготовления керметов и пропитки усов расплавом. Цель этого обзора —обобщить имеющуюся информацию о смачивании окислов жидкими металлами и вывести основные закономерности. Далее проанализировано соотношение между смачиванием и формированием связи в композитах. Применительно к режимам изготовления и условиям службы композитов рассматриваются диффузионная сварка и твердофазные реакции, причем более подробно— кинетика реакций металл — окисел и характеристики поверхности раздела. Глава завершается анализом имеющихся литературных данных о механических свойствах, чувствительных к состоянию поверхностей раздела. Этот анализ ограничен несколькими металлическими системами, упрочненными окислами, которые изучены в настоящее время.  [c.308]


Никель — белый металл, по прочности равный стали, имеет высокую стойкость к атмосферной и водной коррозии. Скорость атмосферной коррозии, составляющая 0,02—0,2 мкм в год, с увеличением срока службы покрытия стремится к снижению благодаря пассивации поверхности металла в результате образования инертной окисной пленки. Никель — пластичный металл, однако пластичность никелевого покрытия зависит от метода его нанесения и чистоты. Многие никелевые покрытия, получаемые в процессе электроосаждения (особенно в присутствии органических блескообразователей), могут быть хрупкими и иметь высокие внутренние напряжения. Никелевые покрытия, осаждаемые химическими способами, обладают большой твердостью, хрупкостью и низкими коррозионными характеристиками из-за образования фосфора и бора в осадках (что характерно для осаждения из сложных растворов).  [c.117]

Ударная волна создается в результате мгновенного импульсного воздействия на поверхность материала, вследствие чего тонкий поверхностный слой быстро испаряется. Давление этой волны и интенсивность механического воздействия определяются плотностью мощности лазерного излучения и теплофизическими характеристиками материала поверхностного покрытия (отражательной способностью, энергией сублимации и ионизации обрабатываемого материала). Облучению подвергали образцы без покрытий, с прозрачным кварцевым покрытием, с покрытием в виде свинцовой фольги, а также с комбинированным покрытием кварцем и свинцом. При воздействии излучения на свинцовое покрытие из-за низкой энергии сублимации свинца это покрытие испаряется раньше, чем слой железа (подложка), вследствие чего увеличивается импульс отдачи, а следовательно, и давление ударной волны. Покрытие кварцем способствует ограничению испарения металла.  [c.24]

Таким образом, систему металл — покрытие — электролит следует рассматривать как электрохимически активную, имеющую специфические свойства, связанные с наличием на поверхности металла пленки лакокрасочного покрытия, изменяющего характер диффузии реагирующих веществ и кинетику электрохимических реакций. Эта система, следовательно, может описываться стационарными потенциалами, поляризационными характеристиками, омическим сопротивлением, емкостью, скоростью диффузии и т. п.  [c.104]

Эксплуатационные характеристики и срок службы лакокрасочных покрытий во многом зависят от способа и чистоты подготовки поверхности. Цель подготовки — удаление с поверхности любых загрязнений и наслоений, мешающих непосредственному контакту покрытия с металлом. К ним относятся оксиды (окалина, ржавчина), масляные, жировые и механические загрязнения, старые полимерные покрытия.  [c.208]

Плазменное напыление покрытий имеет ряд преимуществ по сравнению с защитными покрытиями других видов сверхвысокие температуры плазменного напыления позволяют расплавлять и наносить различные материалы с высокой температурой их плавления поток плазмообразующего газа, не содержащего кислорода, позволяет напылять материалы без их разложения, не допуская окисления поверхности обрабатываемого изделия поток плазмы дает возможность получать сплавы различных материалов, в том числе тугоплавких, теплостойких, и наносить многослойные покрытия высокая скорость потока газа позволяет увеличить плотность покрытия до 98% и достичь прочного сцепления с основным металлом заготовки покрываемая поверхность заготовки нагревается до температуры не выше 200° С, что исключает коробление деталей и позволяет наносить материал на дерево, пластмассы и т. п. энергетические характеристики потока плазмы легко регулировать в зависимости от требований технологии, что неосуществимо при газопламенном методе напыления.  [c.327]

Рабочая поверхность подшипников, залитых свинцовистой бронзой, после обработки покрывается тонким слоем мягкого металла, улучшающего антифрикционные характеристики бронзы. Рекомендуется электролитическое покрытие слоем свинца толщиной 20—25 мк и олова толщиной 4—5 мк.  [c.238]

Покрытие поверхностей металлом — Характеристики 380  [c.451]

Толщина покрытия — кратчайшее расстояние между поверхностями покрытия в данной точке и основного металла [132]. Являясь технологической характеристикой, толщина влияет на такое важное эксплуатационное свойство, как прочность соединения с основным металлом. Увеличение толщины покрытия выше оптималь-  [c.81]

В данной работе определялись эмиссионные характеристики образцов с рениевым покрытием. Измерение эмиссионных характеристик осуществлялось на установке ВНИИТ. Катодами служили трубки из тугоплавких металлов без покрытий и с покрытиями с длиной рабочей части 35 мм и диаметром 6—7 мм, толщиной 0,3 мм. Трубки имели гладкую поверхность, испытания проводились при межэлектродном зазоре б = 0,75 мм при различных температурах и различной концентрации цезия.  [c.107]

Такой перенос наблюдается, по мнению этих авторов, в том случае, когда прочность адгезионной связи на поверхности контакта твердых тел оказывалась выше когезионной прочности одного из контактирующих материалов. Модель Боудена и Тейбора подверглась серьезной критике по ряду причин. Во-первых, использование ее расчетов приводило к явному завышению данных по фрикционным характеристикам, наблюдаемым в экспериментах. Во-вторых, в результате физико-химических исследований установлено, что поверхность реального металла покрыта прочными адсорбированными и хемосорбированными пленками, разрушение которых маловероятно на пятнах касания, несущих нагрузку, вплоть до ее значений, приводящих к схватыванию поверхностей. Поэтому данная модель изнашивания в ее первоначальной трактовке могла быть использована в основном в таких случаях, как трение в инертной атмосфере или в вакууме, а также при трении таких резко отличающихся по свойствам материалов, как металлы и полимеры.  [c.36]

Следует специально указывать, если это требуется, наносимые на поверхность материалы (металлы, керамику, мастики, подслои палублого покрытия, пластики, облицовки из армированного пластика, шпатлевки, цементы, наполнители, противошумовые мастики, противоконденсатные составы, заливочные компаунды, резиновые обкладки, облицовки с металлическим наполнением), которые служат для защиты соответствующих поверхностей (например, от кавитации гребных винтов, гильз цилиндров, насосов, крыльчаток и т. п.), для достройки поверхности до одинакового уровня, создания оптимального профиля поверхности (например, для стекания, улучшения конфигурации, обтекаемости, внешнего вида) либо для заполнения участков, которые иным способом не могут быть защищены. Должна быть указана такЖе характеристика шероховатости поверхности специальных пористых покрытий с развитой поверхностью.  [c.267]

При этой форме коррозии на поверхности незащищенного металла или под слоем защитного покрытия образуются неразвет-вляющиеся канавки, заполненные продуктами коррозии. Такая коррозия нечувствительна к структуре материала и в большей степени воздействует на внешний вид, чем на прочностные характеристики, хотя тонкая фольга может быть разрушена насквозь, а повреждение покрытия тонких плакированных листов (например, используемых в авиационных конструкциях) может обнажить менее коррозионностойкий алюминиевый сплав основы. Нитевидная коррозия алюминия встречается не очень часто. Это находит отражение и в том, что в обзорах ей придается небольшое значение [ ШТ.  [c.82]


Большинство нержавеющий сталей могут подвергаться распылению, но следует использовать только материалы, стабилизированные против межкристаллитной коррозии, поскольку в процессе распыления частицы нержавеющей стали проходят через кристаллическую область температур. Покрытия из нержавеющей стали пористы, следовательно, металлизировать распылением емкости экономически не выгодно, так как поверхность покрытия необходимо затем тщательно полировать с целью устранения несплошностей. В настоящее время распылением стали покрывают и восстанавливают насосные штанги, оси, валики, причем при этом наносят очень толстые осадки (несколько миллиметров), которые затем шлифуют и полируют. В этом случае нержавеющие стали показывают хорошие эксплуатационные характеристики. Сказанное полностью относится к покрытиям из никеля и мопель-металла. Эти покрытия дают хорошие результаты для штанг прн условии проведения шлифовки и полировки.  [c.383]

При расчете напряжений жесткостью эмалевого покрытия пренебрегают, т. к. толщина покрытия 8цк мала по сравнению с толщиной покрываемого металла м (отношение 5пк/ 0,1 0,2). Соответствующая погрешность располагается в запас расчета и не превышает 20%. Характеристикой прочности эмалевого покрытия обычно служит предел упругости эмалированной стали сго,оо5, зависящий от материала покрытия, технологии эмалирования, марки стали и рабочей температуры сосуда (табл. 18). ДО -стижение напряжениями в эмалированной стали предела упругости отвечает началу разрушения эмалевого покрытия. Образующиеся при этом в пограничном слое металла полосы Чернова — Людерса представляют собой как бы дефекты на внутренней поверхности покрытия, вызывающие концентрацию напряжений, и как следствие этого исчерпание когезионной прочности покрытия,  [c.91]

Бартч и Ньюджинс [132] провели исследования с целью выработки рекомендаций по покрытиям для тугоплавких сплавов ниобия, тантала и молибдена, являющихся наиболее перспективными конструкционными материалами, например для теплозащитных узлов возвращаемых ступеней космических аппаратов или для двигательных установок последних. Обладая достаточно высокими прочностными характеристиками при температуре 1660 К и выше, они очень быстро окисляются в атмосфере, если не защищены специальными покрытиями. Жизнеспособность этих покрытий уменьшается с ростом температуры и уменьшением давления. Поэтому необходимо держать систему металл — покрытие как можно при более низкой температуре. Этого можно достигнуть, увеличив излучательную способность наружной поверхности.  [c.206]

Основанием для использования непрерывной модели могут служить рассмотренные выше физико-химические процессы при трении. Принимая во внимание, что долговечность трибосистемы определяется характеристиками трения и изнашивания при установивн1емся режиме трения (режиме работы узла трения), ниже обосновывается и рассматривается модель, дающая описание процесса в установившемся режиме трения, т.е. в стационарном термодинамическом состоянии. При установившемся режиме трения, как было показано выше, поверхность металлической детали покрыта полимерной пленкой фрикционного переноса, которая прочно удерживается силами адгезионного взаимодействия. Образование физических и химических связей между полимером и металлом способствует реализации термодинамических процессов переноса энергии и вещества между этими двумя фазами одной термодинамичес-  [c.114]

В практике известны двухслойные и многослойные никелевые покрытия с дифференцированными электрохимическими характеристиками в различных слоях, что позволяет повысить коррозионную стойкость системы по сравнению с однослойными при одинаковой толщине слоя. Наиболее высокими защитными свойствами обладают двухслойные покрытия при соотношении толщин слоев 90 10 %. На практике используются покрытия с соотношениями слоев 70 30 и 60 40 %. Слой покрытия, примьпсающий непосредственно к основному металлу, должен отличаться высокой плотностью, низким уровнем внутренних напряжений и иметь потенциал поверхности более положительный, чем последующие слои.  [c.108]

Палладиевые покрытия находят все большее применение благодаря своей относительно невысокой стоимости и тому, что палладий менее дефицитен из всех остальных платиновых металлов. За последние годы возросло применение палладия для покрытий электрических контактов в радиотехнйчёской аппаратуре, в аппаратуре связи палладием покрывают контакты.переилючрт лей, штепсельных разъемов печатных плат. Применяя палладий, надо,помнить, что он обладает большой каталитической активностью и появляющаяся пленка на поверхности слаботочных контактов может привести к заметному повышению переходного сопротивления, поэтому необходимо очень осторожно подходить к применению палладиевых покрытий в герметизированных системах. Необходимо также учитывать, что палладий легко адсорбирует водород, а это оказывает неблагоприятное действие на прочность сцепления покрытия с основой. Если же контакты. покры,тые палладием, работают при большой силе тока, то образовавшиеся на поверхности детали, пленки не оказывают влияния на электрические характеристики.. Широкому распространению палладия способствуют также новые разработанные технологические процессы получения достаточно толстых покрытий. Палладированный титан в нейтральных и щелочных средах может использоваться в качестве нерастворимых анодов. Толщина палладиевых осадков в зависимости от назначения может изменяться от 3—5 мкм до 20—50 мкм (для контактов и при защите от коррозии). На основе палладия могут быть получены многие сплавы, которые в ряде случаев могут заменять палладиевые покрытия. Такие сплавы, как палладий — никель, палладий— кобальт, палладий — индий, палладий — медь, палладий — олово с успехом могут применяться для покрытия электрических контактов. Свойства палладия во многом зависят от условий получения и состава электролита, из которого он получен.  [c.55]

Одним из основных способов определения прочности соединения покрытия с основным металлом является штифтовый метод. Образцом служит шайба, в отверстие которой устанавливается цилиндрический штифт таким образом, что его торцевая поверхность находится заподлицо с плоскостью основания шайбы. На общую поверхность торца штифта и шайбы после соответствующей подготовки наносится покрытие. Испытания проводят путем вытягивания штифта из шайбы с записью усилия. После отрыва штифта от покрытия определяют отношение максимальной нагрузки к площади торца штифта. Это отношение является количественной характеристикой прочности соединения покрытия с основой. Данный способ находит все более ограниченное применение и в настоящее время используется практически только для оценки гальванических покрытий (метод Е. Олларда).  [c.57]

Влиянию ионного внедрения шести различных элементов в поверхностные слои стали 45 на триботехнические характеристики при фреттинг-процессе посвящена работа [181]. Авторы рассматривают ионную имплантацию как технологию, позволяющую получать пленку-покрытие, своеобразный поверхностный сплав с переменным составом, постепенно переходящий в основной металл. Результаты испытания на изнашивание при фреттинг-коррозии показали, что образцы после имплантации изнашиваются меньше. Так, при внедрении ионов бария фреттинг-усталостная прочность при базе 10 — 10 циклов повышается более чем на 30%. Это происходит вследствие того, что во-первых, на поверхности образца образуется плотная, прочная и пластичная окисная пленка ВаТЮз, во-вторых, отсутствует явление схватывания, в-третьих, в поверхностных слоях наводятся весьма значительные напряжения сжатия. Нанесенные пленки уменьшают коэффициент трения на 10—17% и сохраняют его в течение длительного времени испытаний, причем изнашивается в основном неупрочненный контробразец.  [c.106]

Современное понимание зарождения усталостных трещин в армированных волокнами металлах можно резюмирова1ь следующим образом. Зарождение усталостных трещин в композитах отличается от зарождения усталостных трещин в металлах только тем, что, кроме свободных поверхностей, играющих роль мест зарождения трещин, новым источником усталостных трещин в композитах служат разорванные волокна. Эта проблема, естественно, является более острой для случая хрупких волокон, наличия хрупких покрытий на волокнах или хрупких продуктов реакций на поверхностях раздела. Важно, что зарождение трещин происходит во внутренних точках и не без труда поддается наблюдениям или контролю методами неразрушающих испытаний. Будут ли усталостные трещины зарождаться на самом деле у разорванных волокон или нет, зависит от величины соответствующего коэффициента интенсивности напряжений, который пропорционален диаметру волокна (длине начальной трещины) и амплитуде напряжений. Последующий рост трещин определяется упругими свойствами, пределом текучести и характеристиками механического упрочнения компонентов, а также прочностью границы раздела волокна и матрицы и ее микроструктурой.  [c.410]


Характеристики вязкости смазки и температура ее десорбции определяют закономерности износа в зоне контакта. При этом смазочная среда предохраняет поверхности трения от непосредственного контакта. При добавлении в смазку химически активных веществ (сера и фосфоросодержащие вещества) процессы периодического разрушения и восстановления окис-ной пленки заменяются процессом образования и периодического разрушения пленок другого химического состава, структура и свойства которых зависят от компонентов химически активных добавок и могут изменяться в весьма широких пределах.. Износ при, ,этом остается механико-химическим, т. е. связанным с пластической деформацией, образованием и разрушением вторичных защитных структур на основе взаимодействия металла с химически активными добавками, но по интенсивности может изменяться как в сторону уменьшения, так и увеличения. Стойкость против задира резко увеличивается. Тонкие слои антифрикционных металлов на телах качения защищают поверхность стали от взаимодействия с кислородом воздуха, Т. е. играют роль смазочной среды. Поэтому покрытие рабочих поверхностей подшипников качения тонким слоем антифрикционных металлов предотвращает интенсивное окисление поверхностей трения и снижает скорость окислительного износа. Тонкие пленки увеличивают также площади фактического контакта при соприкосновении тел качения,  [c.105]

Для контроля основной характеристики защитных лакокрасочных покрытий — сплошности лакокрасочной пленки — в настоящее время рекомендуется метод Якубовича и Соловьева Этот. метод заключается в том, что по окрашенной поверхности металла проводят кистью, смоченной в 1%-ном растворе поваренной соли. Кисть закреплена металлической манжетой, соединенной с батареей от карманного фонаря. С другим полюсом источника тока испытываемую деталь соединяют через гальванометр. При прохождении кисти над мельчайшим оголенным участком поверхности металла ток проходит через гальванометр, по отклонению стрелки которого определяют наличие пор. Основное неудобство этого метода заключается в том, что при контроле необходимо обеспечить электрический контакт детали с гальванометром. Поэтому метод применим лишь к деталям, на которых имеются неокрашиваемые участки поверхности. При полностью окрашиваемых деталях этот метод допускает лишь выборочный контроль, так как для его применения приходится зачищать покрытие на небольшом участке.  [c.547]


Смотреть страницы где упоминается термин Поверхности Покрытие металлом — Характеристики : [c.102]    [c.247]    [c.507]    [c.50]    [c.66]    [c.77]   
Справочник машиностроителя Том 5 Книга 2 Изд.3 (1964) -- [ c.380 ]



ПОИСК



Металлы характеристика

ПОВЕРХНОСТИ Покрытие сплавами и металлами Характеристика

Поверхность металла

Покрытие поверхности

Покрытия металлами

Характеристика поверхности металла



© 2025 Mash-xxl.info Реклама на сайте