Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Прочность сцепления покрытий

Общие требования к электродам точность размеров, соосность покрытия и стержня, прочность сцепления покрытия с металлическим стержнем (сколы), гарантированные механические свойства наплавленного металла. Каждая партия электродов имеет соответствующий паспорт. На электроды составля-  [c.393]

Поскольку в период отработки оптимальных технологических режимов получения покрытий решающим фактором является прочность сцепления покрытия с подложкой, то в первую очередь проводятся испытания по определению адгезионных и когезионных свойств. Оценка прочностных характеристик является своеобразным отбором пригодных режимов получения покрытий. Покрытия, успешно прошедшие такой отбор, испытывают в условиях, аналогичных эксплуатационным. Существует целый ряд факторов, влияние которых. может привести к потере требуемых качеств или к разрушению покрытия. Чтобы этого не произошло в период эксплуатации, прово,дят комплекс испытаний, для чего создаются условия, имитирующие предполагаемую рабочую среду. Виды испытаний выбирают исходя из конкретных условий эксплуатации.  [c.170]


Механическая прочность сцепления покрытия С подложкой  [c.171]

На рис. 7-2 [140] показано устройство для измерения прочности сцепления покрытия на сдвиг. Образец устанавливают между двумя призма.ми с острыми кромками так, чтобы он выступал над ними на 1,25 мм.. На выступающую часть наносилось покрытие. В процессе испытаний измеряют силу, необходимую для срезания слоя покрытия с металла.  [c.171]

В некоторых случаях прочность сцепления покрытия с подложкой характеризуют сопротивляемостью его ударной нагрузке. Прочность определяется необходимой работой, которая вызывает повреждение покрытия. Работа удара равна произведению веса груза на высоту падения. На рис. 7-5 [142] изображен прибор для испытаний на удар. Установка кольца под образец дает воз.можность  [c.172]

Определение прочности сцепления покрытия с металлом при действии вибрации производят на плоских образцах с покрытием, которые устанавливают на вибростенде, меняя частоту колебаний в различных пределах. После окончания испытаний проводят визуальный осмотр образцов, устанавливая при этом повреждения покрытия.  [c.174]

В ряде случаев о прочности сцепления покрытии судят по потере образцом массы после воздействия истирающих усилий. Этот способ скорее характеризует прочность сцепления между частицами или слоями покрытия, нежели прочность сцепления подложки и нанесенного материала способ очень удобен, так как не требует специального оборудования. Простейшим способом является обработка покрытия струей сухого песка.  [c.175]

Из сказанного выше следует, что прочность сцепления покрытия с подложкой определяется не только адгезией как явлением, характерным для дву -  [c.49]

Нанесение износостойких покрытий - наиболее распространенный и хорошо разработанный метод улучшения триботехнических свойств материалов. На его базе успешно реализованы различные технологические решения, позволяющие существенно улучшить качество поверхностного слоя и повысить прочность сцепления покрытия с подложкой. Конструирование многослойных покрытий является перспективным направлением поверхностной модификации, позволяющим плавно изменять свойство композиции по глубине и исключить отрицательное влияние хрупкого переходного слоя. Материал подслоя выбирают из соображений химической совместимости с основой, а также в целях исключения образующихся в граничной области хрупких интерметаллидных соединений. Идея создания многослойных покрытий реализована для повышения прочности поверхностных слоев, релаксации остаточных напряжений в модифицированных слоях, а также для увеличения вязкости и трещиностойкости.  [c.262]


Повышение адгезионной связи покрытия с основой является более эффективным методом улучшения защитной способности неметаллических покрытий. Высокая прочность сцепления покрытия с металлом обеспечивается за счет хемосорбционной связи при взаимодействии активных функциональных групп как самих пленкообразующих, так и отверди-телей, вулканизаторов, модифицирующих добавок с активными центрами поверхности металла. ПАВ могут служить также применяемые органические растворители толуол, гептан и др.  [c.129]

Методы контроля прочности сцепления покрытий  [c.61]

Методы контроля прочности сцепления покрытий с покрываемым металлом основаны на различии физико-механических свойств металлов покрытия и основного металла. Используют количественные и качественные методы. Большинство методов позволяет получить лишь качественную оценку сцепления покрытия с основой. Методы контроля заключаются в визуальной оценке качества покрытия после его деформации изгибом, кручением, ударом, нанесением царапин, а также  [c.61]

Навивка + + + + + Метод применяют для определения прочности сцепления покрытия на проволоке. Проволоку до 1 мм навивают на стержень утроенного диаметра более I мм — на проволоку того же диаметра, чтоб образовалось 10—15 витков На контролируемой поверхности не должно наблюдаться отслаивания покрытия  [c.63]

Кроме температуры на микротвердость влияет и продолжительность нагрева. Продолжительность нагрева, необходимого для получения максимальной микротвердости, сравнима со временем, необходимым для достижения наибольшей прочности сцепления покрытия с металлом основы [1] Максимальная твердость покрытия обеспечивается часовой термообработкой в инертной атмосфере при 400 С  [c.15]

Поэтому пока еще все суждения о прочности сцепления металлических и оксидных защитных покрытий с металлом основывают либо на качественной оценке, либо на сравнении относительной прочности покрытия при приложении к нему какого-либо внешнего механического воздействия с прочностью сцепления покрытия, принятого за эталон.  [c.42]

Предварительное нанесение слоя грунтовой эмали позволяло создать непроницаемое для газов покрытие, улучшало прочность сцепления покрытия с металлом, причем необходимо отметить, что сцепление получалось наилучшим при расстоянии плазмогене-ратора от металла, равном 100—150 мм. Работа удара, равная 30 дн , не приводила к отслоению окиси алюминия от эмали. При большем расстоянии сцепление получалось слабым. При работе удара, равной 1.2 дж, происходило отслоение окиси алюминия от  [c.208]

Нами изучалось изменение плотности и прочности сцепления покрытия из окиси алюминия с хромом и никелем в зависимости от температуры предварительного подогрева подложки. Напыление производилось дуговой плазмой на стандартной установке УПУ-3 порошком окиси алюминия (смесь а- и у-модификаций) с размером частиц 40—60 мк. Поверхность образцов, на которую наносилось покрытие, шлифовали и затем полировали до 9 класса чистоты обработки. Это исключало какое-либо механическое зацепление покрытия с подложкой. Образцы имели форму цилиндра диаметром 12 мм и длиной 15 мм, их нагрев контролировали термопарой, приваренной к боковой поверхности. Плазмообразующим газом служил аргон с добавкой 3—5% аммиака. Расход газа со-  [c.227]

Рис. 2. Схема испытания образцов на прочность сцепления покрытия с подложкой. Рис. 2. <a href="/info/443676">Схема испытания</a> образцов на прочность сцепления покрытия с подложкой.
Рис. 3. Изменение прочности сцепления покрытия из окиси алюминия с полированной поверхностью подложки (Сг и N1) в зависимости от температуры предварительного подогрева. Рис. 3. Изменение прочности сцепления покрытия из окиси алюминия с <a href="/info/542049">полированной поверхностью</a> подложки (Сг и N1) в зависимости от температуры предварительного подогрева.

Поскольку осколки капель при ударе о поверхность разлетаются в радиальном направлении, то после завершения второй фазы каждая частица приобретает конфигурацию, показанную на рис. 5. Для некоторого уменьшения хрупкого разрушения жидких частиц в момент их удара о покрываемую поверхность и ослабления степени отрицательного влияния этого явления на пористость и прочность сцепления покрытий с металлом необходимо уменьшение коэффициента вязкости частиц, обеспечение оптимальных скоростей полета, снижение краевого угла их взаимного смачивания и смачивания ими металлической подложки, а следовательно, повышение температуры нагрева и снижение скорости их охлаждения.  [c.239]

Нами проводятся исследования по нанесению покрытий на различные углеродные материалы. Термостойкое газоплотное покрытие на основе двуокиси циркония наносится методом аргонодуговой наплавки на графитовую деталь. Каждый циркониевый слой после механической обработки подкисляется с поверхности в среде кислорода. В результате образуется многослойное покрытие, имеющее ряд преимуществ перед аналогичными покрытиями, полученными другими методами оно беспористо, имеет повышенную температуру плавления (2700° С), так как полученная двуокись циркония не стабилизирована всякого рода присадками. Высокая термостойкость определяется металлическими прожилками циркония в двуокиси, а также наличием пластичного металлического промежуточного слоя, демпфирующего напряжения, возникающие в окисной пленке при окислении и эксплуатации. Кроме того, прочность сцепления покрытия с графитом выше прочности графита, а карбидный слой на границе с графитом обладает барьерными свойствами против диффузии углерода в покрытие.  [c.114]

Необходимой характеристикой материала с защитными покрытиями является его связь с подложкой в данном случае исследовалось влияние нагрева подложки, шероховатости и создания промежуточных подслоев на прочность сцепления покрытия с основой. Влияние шероховатости на прочность сцепления плазменного покрытия из окиси алюминия с графитовой подложкой и влияние подслоя показаны на рисунке. Увеличение  [c.115]

Изучение характера разрушения покрытия при испытании прочности сцепления покрытия методом отрыва штифта, проведенное с помощью сканирующей электронной микроскопии, показывает, что на поверхности стального штифта после отрыва остается сплошной слой покрытия. Линии железа в рентгеновском спектре  [c.124]

В работе исследовали влияние температуры предварительного нагрева подложки на качество покрытия. В качестве основных критериев оценки качества были выбраны пористость покрытия, формы и размеры пор, а также характер распределения их по глубине слоя, прочность сцепления покрытия с основным металлом и микроструктура переходного слоя.  [c.231]

Тогда прочность сцепления покрытия с матрицей будет определена как  [c.8]

В настояш ее время нет единого термина, обозначающего силу связи между основным металлом и покрытием отнесенную к единице их общей поверхности. Наиболее часто используются следующие понятия адгезия, адгезионная прочность, прочность сцепления покрытия с основой, адгезионная прочность соединения с основой и др. Такая неопределенность в терминологии для одной из важнейших характеристик покрытия, разумеется, вносит путаницу как в специальной литературе, так и в технологической документации при исследовании свойств покрытий в производственных условиях.  [c.55]

Прочность сцепления покрытия с основой, определенная клеевым методам, 26-i-30 МПа. Общая пористость не превышает 5- 6%. В структуре отсутствуют хрупкие оксидные пленки и слоистость. ВСТ-покрытия в 7- 10 раз снижают общую и питтин1Ч)вую коррозию во многих жидких и газообразных средах.  [c.188]

Для покрытий, характеризующихся отсутствием явно выраженных функциональных групп (полиэтилен, пентопласт, фторопласт), образование хемосорбированной адгезионной связи полимера с металлом может достигаться оптимальным режимом термической обработки, а также за счет химического модифицирования поверхности, приводящего к повьпиению стабильности адгезии в воде и электролитах. Например, термообработка фторлонового покрытия на основе сополимера 32Л приводит к деструкции полимера с образованием реакционноспособных центров, взаимодействующих с активными центрами металла прочность сцепления покрытия с основой достигает 12-20 МПа [47].  [c.130]

Необходимо отметить, что анодированию в фосфорной кислоте кроме алюминия можно подвергать только сравнительно небольшое число сплавов (Д16-АТ АМгЗМ АМг5В АМгб АМц). Это является существенным недостатком этого метода. Казанские исследователи отмечают, что если дополнительно сплавы подвергнуть травлению в 15%-ном растворе соляной кислоты с добавкой фторида натрия (13 г/л), то это позволит увеличить прочность сцепления покрытия с основой.  [c.26]

Палладиевые покрытия находят все большее применение благодаря своей относительно невысокой стоимости и тому, что палладий менее дефицитен из всех остальных платиновых металлов. За последние годы возросло применение палладия для покрытий электрических контактов в радиотехнйчёской аппаратуре, в аппаратуре связи палладием покрывают контакты.переилючрт лей, штепсельных разъемов печатных плат. Применяя палладий, надо,помнить, что он обладает большой каталитической активностью и появляющаяся пленка на поверхности слаботочных контактов может привести к заметному повышению переходного сопротивления, поэтому необходимо очень осторожно подходить к применению палладиевых покрытий в герметизированных системах. Необходимо также учитывать, что палладий легко адсорбирует водород, а это оказывает неблагоприятное действие на прочность сцепления покрытия с основой. Если же контакты. покры,тые палладием, работают при большой силе тока, то образовавшиеся на поверхности детали, пленки не оказывают влияния на электрические характеристики.. Широкому распространению палладия способствуют также новые разработанные технологические процессы получения достаточно толстых покрытий. Палладированный титан в нейтральных и щелочных средах может использоваться в качестве нерастворимых анодов. Толщина палладиевых осадков в зависимости от назначения может изменяться от 3—5 мкм до 20—50 мкм (для контактов и при защите от коррозии). На основе палладия могут быть получены многие сплавы, которые в ряде случаев могут заменять палладиевые покрытия. Такие сплавы, как палладий — никель, палладий— кобальт, палладий — индий, палладий — медь, палладий — олово с успехом могут применяться для покрытия электрических контактов. Свойства палладия во многом зависят от условий получения и состава электролита, из которого он получен.  [c.55]


При содержании до 20 г/л сульфамата аммония на покрытиях толщиной до 20 мкм трещины не появляются при увеличении концентрации сульфамата аммония до 50 г/л покрытия плохо сцепляются с основой. Хорошая прочность сцепления покрытия с основой наблюдается лишь в электролите, содержащем свыше 80 г/л сульфамата аммония. В интервале концентраций сульфамата аммония 80—250 г/л получаются даже зеркально-блестящие покрытия, без трещин и отслаиваний. Катодлый выход по току изменяется при этом мало. При корректировании электролита хлористым палладием в нем накапливаются ноны хлора, которые положительно влияют на качество покрытия при их недостатке покрытия получаются темно-серыми, по мере накопления их до концентрации 250 г/л покрытия получаются зеркально-блестящими, прочно сцепленными с основой даже при толщине покрытия 100 мкм. При насыщении электролита ионами хлора покрытия получаются хорошего качества.  [c.60]

Прочность сцепления покрытия с основным металлом. Прочность сцепления някель фосфорного покрытия с основой непосредственно после осаждения сравнительно невелика На адгезию покрытия влияет не только подготовка поверхности, во и сам раствор Покрытия из щелочного раствора более прочно связаны с основой, чем из кислого Однако даже в оптимальных условиях детали, покрытые химическим никелем, не должны испытывать силовых нагрузок при эксплуатации  [c.10]

Кроме напрялшний, возникающих при приложении внешних усилий разрыва, в большинстве случаев на границе раздела между металлом и покрытием существуют напряжения, возникшие при формировании покрытия вследствие разности коэффициентов термического расширения, также влияющие на прочность сцепления покрытия с металлом. Эти замороженные напряжения могут вызвать (и иногда действительно вызывают) начало разрыва при весьма малых внешних усилиях. Складываясь с напряжениями, возникающими при приложении внешних усилий, они образуют сложное поле распределения напряжений, почти недоступное определению.  [c.40]

Определялось влияние толщины слоя исследуемого керамического покрытия на его адгезионные свойства и термическую стойкость. Прочность сцепления покрытия со сталью Х18Н9Т достигает 140 кг/см при толщине покрытия 0.1 мм, а при толщине по-  [c.219]

Прочность сцепления покрытий (а) определялась при напылении на модельный материал — медный сплав БрХ08, поскольку с медными сплавами напыленные покрытия, как известно, имеют наименее прочную связь (испытания проводились по клеевой методике). Характер зависимости о от дистанции напыления для обоих покрытий аналогичен — с увеличением дистанции а возрастает, однако максимальная прочность сцепления покрытия НА67Л заметно выше и достигается при несколько меньшей дистанции напыления.  [c.113]

Цсмахович Б. Д., Цемахович Д. Б. Усовершенствование штифтового метода определения прочности сцепления покрытий с основой.— В кн. Структуры объемно и поверхностно упрочненной стали. Новосибирск НЭТИ, 1984, с. 95—100,  [c.198]


Смотреть страницы где упоминается термин Прочность сцепления покрытий : [c.35]    [c.95]    [c.174]    [c.52]    [c.4]    [c.337]    [c.96]    [c.102]    [c.102]    [c.116]    [c.131]    [c.160]    [c.189]    [c.198]   
Гальванотехника справочник (1987) -- [ c.601 , c.602 ]



ПОИСК



Покрытия прочность

Прочность сцепления

Сцепление



© 2025 Mash-xxl.info Реклама на сайте