Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электрохимическая активность

Скорость коррозии электрохимически активных металлов в кислых растворах часто можно представить, по данным А. Я. Шаталова, уравнением  [c.343]

Величину а назовем электрохимической активностью [2], поскольку  [c.8]

Выражая (9) через концентрацию с = alf, определим коэффициент электрохимической активности  [c.8]

Поэтому в отличие от коэффициента активности в обычном смысле целесообразно ввести коэффициент активности, обусловленный также внешним воздействием, в данном случае коэффициент электрохимической активности, связанный с внешним электрическим полем.  [c.8]


Для электрохимической активности ионов металла в электролите получаем  [c.12]

Хром. Данные о его влиянии на КР аустенитных коррозионно-стойких сталей противоречивы. По-видимому, это связано с тем, что увеличение содержания хрома приводит, с одной стороны, к улучшению пассивирующих свойств, а следовательно, к повыщению стойкости к КР, с другой — к повышению электрохимической активности сталей, а также к снижению энергии дефектов упаковки к плоскостному расположению дислокаций, способствующим более быстрому возникновению и развитию трещин КР.  [c.72]

Марганец. Дополнительное введение марганца в аустенитные хромоникелевые стали, как правило, снижает их стойкость против КР. Отрицательное влияние марганца может быть связано с высокой электрохимической активностью этого элемента при относительно слабой пассивируемости. В отдельных случаях  [c.72]

Способность твердого соединения защищать металл зависит, конечно, от его растворимости в окружающей среде, адгезии с поверхностью металла, сцепления кристаллов и др. Различные системы металл — среда образуют слои твердых соединений, различающиеся по степени защиты, которую они сообщают металлу. Такие металлы, как Ni, Сг, А1, Ti, и нержавеющие стали во многих средах обладают способностью образовывать тонкие невидимые пленки окислов (толщиной I—3 нм). Несмотря на электрохимическую активность этих металлов пленки оказывают значительное влияние на скорость реакции. Способность металла образовывать защитную пленку, так называемое пассивирование, является одним из самых важных средств противокоррозионной защиты. Одни металлы пассивны в разных условиях окружающей среды, другие — только в определенных условиях. Так, тантал пассивен в большинстве кислот, включая соляную кислоту, а железо — лишь в дымящейся азотной кислоте.  [c.30]

В пассивном состоянии электронный потенциал хрома положителен по отношению к никелю. Из этого следует, что он взаимодействует со слоем никеля тем интенсивнее, чем больше электрохимическая активность блестящего никеля (рис. 1.18, й). За последние два десятилетия множество усовершенствований внесено в процесс нанесения никелевого и хромового покрытий. В частности, однослойные покрытия никелем и хромом заменены многослойными. Применительно к никелю основное усовершенствование связано с использованием двойной схемы покрытий на поверхность слоя полублестящего никеля, свободного от серы, наносится блестящее никелевое покрытие, содержащее серу, в отношении 70—80% полублестящего и 20— 30% блестящего покрытия. Вслед за этим наносят обычное или сложное декоративное хромовое покрытие (рис. 1.18, б).  [c.47]


Таким образом, систему металл — покрытие — электролит следует рассматривать как электрохимически активную, имеющую специфические свойства, связанные с наличием на поверхности металла пленки лакокрасочного покрытия, изменяющего характер диффузии реагирующих веществ и кинетику электрохимических реакций. Эта система, следовательно, может описываться стационарными потенциалами, поляризационными характеристиками, омическим сопротивлением, емкостью, скоростью диффузии и т. п.  [c.104]

Защитные свойства полимерных покрытий определяются их электрохимической активностью, зависящей в значительной степени от структуры и природы функциональных групп, ионной проводимости, способности покрытий к избирательной проводи-  [c.124]

При распаде пересыщенных твердых растворов снижается сопротивляемость сплава коррозии. Частицы выделяющейся новой фазы, отличающиеся по составу и структуре от основного твердого раствора, приобретают аномальную электрохимическую активность вследствие разницы в потенциалах растворения. Если частицы выделений — анодные, то они стремятся раствориться в присутствии электролита если катодные, то они защищены от коррозии, но матрица стремится раствориться вокруг них.  [c.14]

Присутствие в маслах различных кислот, воды и серы усиливает их электрохимическую активность, на что указывает сдвиг электродного потенциала металла в отрицательную сторону на 120—400 мВ.  [c.156]

Как показано выше, характер изменения электрохимических свойств сталей, циклически деформируемых в коррозионной среде, взаимосвязан с определенными этапами развития коррозионно-усталостных повреждений. Данные об изменении электрохимических свойств при усталости позволяют интерпретировать развитие разрушений в зависимости от амплитуды напряжении и количества циклов нагружения. Они позволяют также описать процесс разрушения с количественной стороны, так как на их основе можно установить, в какой области и после какого числа циклов происходит развитие сдвигообразований, микротрещин, магистральной трещины и как при этом повышается электрохимическая активность металлической поверхности, Данные об электрохимических свойствах металлов в условиях коррозионно-усталостного разрушения позволяют обоснованно выбрать для них параметры катодной защиты.  [c.177]

Реагенты. Реагенты, применяемые в ТЭ, должны удовлетворять требованиям высокой электрохимической активности, возможности непрерывно-  [c.528]

Среди окислительно-восстановительных электродов выделяют газовые электроды. Газовый электрод состоит из инертного металла (часто платины), к которому подводится электрохимически активный газ. Молекулы газа адсорбируются на поверхности металла, распадаясь при этом на атомы, а адсорбированные атомы участвуют уже непосредственно в электродной реакции. При записи реакции промежуточное состояние часто опускают. Примером газового электрода служит водородный электрод, на поверхности которого устанавливается равновесие (кислая среда)  [c.294]

Рис. 13. Иллюстрация электрохимической активности некоторых металлов Рис. 13. Иллюстрация электрохимической активности некоторых металлов
Скорость коррозии для электрохимически активных металлов в кислых растворах часто иодчниястся уравнению  [c.72]

За многие тысячелетия развития человеческого общества и технического прогресса накоплен некоторый опыт по предотвращению или снижению коррозии используемых изделий и устройств. В предшествующие столетия отсутствовало научно обоснованное истолкование коррозионных процессов, работоспособность и долговечность объекта защиты предопределялись правильностью выбора конструкционного материала или защитного покрыли на основе накопленного опыта. В наши дни происходит становление науки Химическое сопротивление материалов , предложены и экспериментально подтверждены механизмы коррозионных разрушений, разработаны и продолжают совершенствоваться активные методы электрохимической и ингибторной защиты, да и традиционные защитные покрытия рассматриваются уже не как инертные барьеры, изолирующие коррозионную среду от поверхности изделия, а как физически и электрохимически активные слои веществ, изменяющие механизм возможной коррозии на границе раздела фаз.  [c.3]


Уменьшение тока на I участке связано с образованием спабозащит-ного слоя оксида железа. Рост тока на II участке вр времени обусловлен уменьшением толщины слоя электролита и более легким доступом кислорода к металлической поверхности. На участке III происходит полное высыхание поверхностного слоя электролита и ток падает до очень малой величины электрохимическая активность модели поддерживается еще некоторое время только за счет внутренней влаги, удерживаемой сформировавшимся оксидом железа.  [c.16]

Из определения понятия электрохимической активности [2] следует, что в состоянии равновесия (электрохимическая активность ионов в металле сохраняет постоянное значение при постоянстве концентрации ионов в электролите) любые изменения-активности твердого металла, в частности вследствие механического воздействия, сопровождаются компенсируюш,им изменением электродного потени,иала по формуле, аналогичной формуле Нернста  [c.92]

Кроме того, за счет действия хемомеханического эффекта как у стали 12Х18Н10Т, так и у сплава 12Х25Н60В15 в электрохимически активной среде одна и та же степень деформации достигается при более низких нагрузках, чем при деформации на воздухе. Следовательно при одинаковой степени деформации в электрохимически активной среде в металле возникают напряжения ниже, чем при деформации на воздухе, что положительно сказывается на эксплуатационных характеристиках изделий, особенно при их работе в условиях действия коррозионных сред.  [c.136]

Электрокинетический потенциал определяется химической природой твердой фазы, составом и коцентрацией раствора и характеризует электрохимическую активность лакокрасочных пленок. Рассчитанные значения потенциала приведены в табл. 7.2.  [c.124]

Коррозионно-усталостный процесс в 3 %-ном растворе Na I более интенсивен, чем в дистиллированной воде. Электродный потенциал стали 45 в соляном растворе в ненапряженном состоянии в начальные 3—5 мин незначительно повышается от —440 до —433 мВ, затем после 2—3 мин стабилизации начинает устойчиво понижаться и через 30 мин достигает -500 мВ. Через сутки потенциал доходит до -650 мВ, что указывает на высокую электрохимическую активность стали 45 в этой среде. В дистиллированной воде электродный потенциал стали 45 в начальные 3— 5 мин понижается с —240 до—247 мВ, а затем начинает монотонно уве-  [c.82]

Ионизирующее излучение, воздействуя на окисную пленку, образующуюся на поверхности металла, может изменять ее электропроводность, защитные свойства и в соответствии с этим коррозионную стойкость металла. И. Л. Розенфельд и Е. К. Оше [1,29] показали, что ток пар цирконий — алюминий, цирконий — железо в движущемся растворе трехпроцентного хлористого натрия значительно возрастает при облучении катода (цирконий) потоком электронов большой энергии (0,8 Меё) с интенсивностью 15 мка/см . После начала облучения сила тока возрастала в 15—20 раз, а затем в течение всего опыта (1 час) оставалась постоянной. По окончании облучения величина тока уменьшалась почти до исходного значения. При облучении анода исследуемых гальванических пар сила тока не увеличивалась. Изменение электрохимической активности циркониевого электрода под действием облучения связано с изменением физических свойств окисной пленки на циркониевом катоде. Окисная пленка на катоде (2гОг) рассматривается как полупроводник. Электрические свойства полупроводников могут существенно изменяться под влиянием облучения, которое в большинстве случаев вызывает резкое увеличение электропроводности полупроводников. Величина тока исследуемых пар определяется скоростью катодной реакции восстановления кислорода. Если допустить, что скорость этой реакции лимитируется высоким сопротивлением пленки-полупроводника на катоде, облучение, уменьшая сопротивление пленки окиси циркония, должно ускорить катодную реакцию и привести к резкому увеличению тока коррозионной пары.  [c.37]

Из изложенного следует, что для наступления коррозионного растрескивания необходимо совместное воздействие на металл меха-нйческих напряжений и коррозионной среды. Коррозионная среда должна вызывать селективное разрушение поверхности металла [111,83]. Этому условию отвечают, в частности, растворы, содержащие ионы галогенов. По мнению Д. Д. Харвуда [111,75], механические напряжения способствуют в ряде случаев локализации коррозии, увеличению электрохимической активности металла, нарушению защитной пленки, изменению фазового состава сплава. Д. В. Ментер [111,84] считает, что в присутствии ионов хлора окис-ная пленка разрушается в первую очередь на тех участках металла, где имела место пластическая деформация.  [c.141]

Для понижения расхода электроэнергии при электрохимическом обессоливании воды необходимо в первую очередь упорядочить движение ионов из обессоливаемой воды, направив к аноду только анионы, а к катоду — только катионы. Для этой цели применяют электрохимически активные диафрагмы из ионнообменных смол, связанных нерастворимым в воде инертным материалом — матрицей. Применение этих смол повышает величину  [c.417]

Электрохимическую активность металлов в СССР принято характеризовать положением элемента в ряду напряжений, т. е. величиной его нормального электрохимического потенциала. Каждый более электроположительный элемент (расположенный в ряду напряжений левее) будет более благородным по сравнению со своим соседом справа, имеющим более электроотрицательный потендазл и являк>щимся менее благородными. Пр1ш. ред.  [c.340]

Пока коррозионный элемент разомкнут, на анодных и катодных участках реакции в прямом и обратном направлениях идут с одинаковой скоростью — обратимо. Обратимые электродные потенциалы металлов Уобр зависят от характера электролита и температуры. Их рассчитывают по термодинамическим функциям. Для сравнительной оценки электрохимической активности металлов используют стандартный обратимый электродный потенциал V ogp, рассчитанный для температуры 25 °С и активности (концентрации) собственных ионов в водном растворе, равной единице. Значения для ионов некоторых металлов приведены ниже  [c.471]



Смотреть страницы где упоминается термин Электрохимическая активность : [c.84]    [c.2]    [c.126]    [c.141]    [c.47]    [c.101]    [c.80]    [c.564]    [c.40]    [c.388]    [c.340]    [c.479]    [c.340]    [c.479]    [c.91]   
Металлургия и материаловедение (1982) -- [ c.340 ]



ПОИСК



ИНЖЕНЕРНЫЕ ИЗЫСКАНИЯ ПРИ ПРОЕКТИРОВАНИИ ЭЛЕКТРОХИМИЧЕСКОЙ ЗАЩИТЫ Определение коррозионной активности грунтов, грунтовых и других вод по отношению к подземным металлическим сооружениям

Металлы активные Сварка листовые — Производство электрохимическое

Растрепан и И. Я. Клинов. Исследование электрохимической коррозии конструкционной углеродистой стали в производстве активной сажи

Химическая и электрохимическая активность расплавов

Электрохимический



© 2025 Mash-xxl.info Реклама на сайте