Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Водная коррозия

Коррозионные диаграммы Е — 1-(рис. 1—3) и уравнения (35) и (38) представляют процессы коррозии как в воде, так и на воздухе при условии, что Н3(, поверхности металла присутствует пленка влаги, в которой помимо кислорода растворены сероводород, сернистый и углекислый газы и другие вещества, присутствующие в атмосфере и создающие слабокислотную среду. Влияние ингибиторов на протекание коррозионных процессов можно рассматривать поэтому, используя один и тот же подход при водной, и атмосферной коррозии. Однако требования, предъявляемые к ингибиторам водной коррозии (включая коррозию в кислотах) и к ингибиторам, атмосферной коррозии, не могут быть одинаковыми из-за значительного различия в условиях их применения.  [c.17]


Водородная деполяризация 49 Водная коррозия 132 Водородное охрупчивание 47, 375, 399  [c.492]

Никель — белый металл, по прочности равный стали, имеет высокую стойкость к атмосферной и водной коррозии. Скорость атмосферной коррозии, составляющая 0,02—0,2 мкм в год, с увеличением срока службы покрытия стремится к снижению благодаря пассивации поверхности металла в результате образования инертной окисной пленки. Никель — пластичный металл, однако пластичность никелевого покрытия зависит от метода его нанесения и чистоты. Многие никелевые покрытия, получаемые в процессе электроосаждения (особенно в присутствии органических блескообразователей), могут быть хрупкими и иметь высокие внутренние напряжения. Никелевые покрытия, осаждаемые химическими способами, обладают большой твердостью, хрупкостью и низкими коррозионными характеристиками из-за образования фосфора и бора в осадках (что характерно для осаждения из сложных растворов).  [c.117]

МВт-сут/кг урана и технологических каналов в течение 15—17 лет. К процессам, ограничивающим ресурс работы таких изделий, в первую очередь, относятся водная коррозия и гидрирование в результате взаи-  [c.362]

Механизм влияния воды на снижение контактной усталости, по мнению авторов, состоит в следующем. Поверхностные микротрещины, образованные в условиях контакта при качении, действуют как тонкие капилляры. Смазочный материал заполняет эти капилляры, а растворенная в нем вода, конденсируясь в вершинах трещин, образует богатую водой фазу. Циклические напряжения, сконцентрированные у вершины трещины, водная коррозия и водородное охрупчивание действуют совместно, увеличивая скорость роста трещины. Вода может привести к образованию небольших коррозионных повреждений, которые становятся концентраторами напряжений.  [c.142]

Наконец, фториды магния и стронция употребляются как красители в мастиках для склеивания и окраски, поскольку они замедляют процесс водной коррозии. Царапины, обнажающие металл, затягиваются сами.  [c.51]

Кроме засорения стальных труб продуктами водной коррозии стали, приходится считаться с загрязнениями в трубах или на  [c.74]

Отмеченные недостатки, однако, не снижают ценности книги, сочетающей черты. монографии, руководства и справочника по проблемам водной коррозии и применению ингибиторов для их разрешения.  [c.7]

Поскольку ингибиторы коррозии находят в настоящее время очень широкое и разнообразное применение, объем книги пришлось ограничить определенной областью. В ней совершенно не рассматриваются такие важные вопросы, как применение ингибиторов кислотной коррозии и летучих ингибиторов, поскольку по ним имеется обширная информация. В качестве основного предмета книги было выбрано использование ингибиторов для подавления водной коррозии в некоторых водных и нефтяных системах. Эти системы образуют единое целое и имеют много общего. Кроме того, на многих промышленных предприятиях могут возникнуть в одно и то же время не одна, а несколько коррозионных проблем. Образование накипи, вспенивание или биокоррозия рассматриваются в тех случаях, когда они играют заметную роль в коррозионных процессах или могут влиять на метод их устранения. На практике составы ингибиторов коррозии тщательно подбираются с расчетом, чтобы бороться и с этими явлениями их нельзя игнорировать при изучении ингибиторов.  [c.15]


Водная коррозия происходит от разъедания металла стенок огневой коробки вредными примесями, находящимися в питательной воде. Эти примеси являются также источником котловой накипи.  [c.237]

Наука о коррозии и защите металлов изучает взаимодействие металлов с коррозионной средой, устанавливает механизм этого взаимодействия и его общие закономерности. Своей конечной практической целью учение имеет защиту металлов от коррозионного разрушения при их обработке и эксплуатации металлических конструкций в атмосфере, речной и морской воде, водных растворах кислот, солей и щелочей, грунте, продуктах горения топлива и т. д.  [c.10]

Этот тип коррозии наиболее распространен. Он имеет место при взаимодействии металлов с жидкими электролитами (водой, водными растворами солей, кислот и щелочей, расплавленными солями и щелочами) и является гетерогенной электрохимической реакцией электролитов с металлами. Однако в принципе не исключена возможность и химической коррозии металлов в электролитах, при которой окисление металла и восстановление окислительного компонента (молекул или ионов) электролита происходят в одном акте, скорость которого не зависит от величины электродного потенциала металла, с образованием соединений и их последующим растворением.  [c.148]

С кислородной деполяризацией корродируют металлы, нахо-дяш,иеся в атмосфере (например, ржавление металлического оборудования заводов) металлы, соприкасающиеся с водой и нейтральными водными растворами солей (например, металлическая обшивка речных и морских судов, различные охладительные системы, в том числе охладительные системы доменных, мартеновских и других печей, охлаждаемые водой шейки валков блюмингов) металлы, находящиеся в грунте (например, различные трубопроводы) и др. Коррозия металлов с кислородной деполяризацией является самым распространенным коррозионным процессом.  [c.230]

Для процессов коррозии металлов с кислородной деполяризацией весьма характерна замедленность переноса кислорода к катодным участкам поверхности корродирующего металла. Это обусловлено малой концентрацией кислорода в электролитах вследствие плохой его растворимости в воде (рис. 161) и в водных растворах (рис. 162), медленностью диффузии кислорода через слой электролита, прилегающий к поверхности корродирующего металла, дополнительным затруднением диффузии кислорода часто образующейся на поверхности корродирующего металла пленкой вторичных труднорастворимых продуктов коррозии.  [c.235]

Для защиты металлических конструкций от коррозии с кислородной деполяризацией в нейтральных электролитах (пресной и морской воде, водных растворах солей, грунтах) существуют следующие методы  [c.247]

Соответствующие расчеты показывают, что в атмосфере воздуха и водных растворах электролитов большинство металлов термодинамически неустойчиво. Так, если Ag, Си, РЬ и Hg не подвержены коррозии с водородной деполяризацией (см. табл. 38), то в присутствии кислорода воздуха все они термодинамически неустойчивы, так как возможна их коррозия вследствие кислородной деполяризации (см. табл. 35).  [c.324]

Коррозия большинства металлов в нейтральных растворах (в воде и водных растворах солей) протекает с кислородной деполяризацией и ее скорость сильно зависит от скорости протекания катодной реакции ионизации кислорода и подвода кислорода к корродирующей поверхности металла, в то время как влияние pH растворов в нейтральной области (pH 4- -10) незначительно или даже отсутствует (например, для железа, цинка, свинца и меди 13 интервале pH = 4- -10 7-f-lO 6-4--8 соответственно).  [c.343]

При электрохимической коррозии металлов в неокисляющих кислотах (например, в водных растворах серной или соляной кислот), протекающей с водородной деполяризацией, повышение температуры электролита снижает перенапряжение водорода и  [c.355]

Основные причины ускоряющего влияния давления на электрохимическую коррозию металлов следующие а) изменение растворимости газов, участвующих в коррозионном процессе (см. рис. 161), например ускорение коррозии стали в водных растворах при повышении давления воздуха, кислорода или углекислоты  [c.357]


К электрохимической коррозии, являющейся гетерогенной электрохимической реакцией, относятся коррозионные процессы, протекающие в водных растворах электролитов, влажных газах, расплавленных солях и щелочах. При электрохимической коррозии процесс растворения металла сопровождается появлением электрического тока, т. е. упорядоченным передвижением электронов и ионов от одного участка металла к другому. При этом электрический ток возникает вследствие протекания процесса коррозии металла, а не за счет его подвода от внешнего источника.  [c.6]

Торможением анодного процесса вследствие наступающего явления анодной пассивности объясняется малая скорость коррозии ряда металлов и сплавов и, в частности, нержавеющих сталей, а также алюминия в водных растворах солей ири доступе кислорода воздуха или в азотной кислоте. Образование анодных фазовых пленок на поверхности металла может быть результатом осаждения на поверхности анода труднорастворимых  [c.35]

Скорость коррозии образцов углеродистой стали в зависимости от давления и температуры водной среды  [c.82]

Так как стандартный потенциал меди гораздо положитель-нее стандартного потенциала водородного электрода, коррозия медн с водородной деполяризацией не происходит. В отсутствие окислителей медь обладает хорошей стойкостью в водных растворах II в обычных условиях не вытесняет водород из кислот. Процесс электрохимической коррозии меди протекает в окислительных средах (присутствие в растворе кислорода и других окислителей). Медь обычно корродирует, переходя в раствор в виде двухвалентных ионов Сн +.  [c.247]

Медь обладает достаточной стойкостью в водных растворах щелочей при значении pH 12 коррозия меди практически прекращается. Дальнейшее повышение pH среды до 14 вызывает незначительное увеличение скорости коррозионного процесса (рис. 173).  [c.248]

Рис. 210. Зависимость скорости коррозии стали в нейтральных водных растворах от концентрации Рис. 210. Зависимость <a href="/info/39683">скорости коррозии</a> стали в нейтральных <a href="/info/48027">водных растворах</a> от концентрации
Любая поверхность металла с вкраплениями примесей, так же как в рассмотренном случае с цинком, представляет собой совокупность электродов, замкнутых между собой через основной металл (рис. 2.2). Локальные токи и коррозия не возникают, пока металл остается сухим. Но при погружении металла в воду или водные растворы локальные элементы начинают функционировать, что сопровождается химическим превращением металла в про-  [c.21]

Элементы дифференциальной аэрации часто являются причиной язвенной или щелевой коррозии нержавеющих сталей, алюминия, никеля и других пассивных металлов в водных средах, например в морской воде.  [c.25]

Если принять активность ионов железа равной 0,1, pH водн у катода 7,0, а парциальное давление кислорода на катоде таким же, как и в воздухе (0,2 ат), э. д. с. такого элемента составит 1,27 В. Это значение э. д. с. обеспечивается восстановлением кислорода на катоде и коррозией железа при исчезающе малом токе. На практике э. д. с. не достигает этого значения вследствие большой силы протекающего в системе тока, а также необратимого характера кислородного электрода и образования оксидной пленки на железе, но в целом, э. д. с. будет больше рассчитанной для двух платиновых электродов.  [c.38]

Правильная работа и удачный выбор конструкции парогенераторов с многократной циркуляцией позволяют предотвратить водную коррозию. Теилонеренос и циркуляция должны быть равномерными, а концентрация пара в трубах не должна приближаться к 100%. Всюду, где только можно, надо избегать применения-горизонтальных труб, которые не обеспечивают высокую теплопередачу. Испаритель следует делать из одной длинной трубы, чтобы исключить появление выступов, связанных с наличием-сварных швов. Там, где сварки избежать невозможно, применяемые методы должны обеспечить минимальные выступы (см. гл. 7). Трубы рекомендуется хранить в сухих и чистых помещениях. Поверхности труб должны иметь минимальную окисную пленку.  [c.179]

Присутствие микроорганизмов в земляном грунте, болотах и в морском иле особенно опасно для почвенной и водной коррозии. Жизнедеятельность анаэробных микроорганизмов протекает в отсутствие кислорода и усиливает коррозию, например в воде в 10—20 раз. Эта биокоррозия является следствием способности микробов восстанавливать соли-сульфаты до сульфидов и сероводорода (сульфатредуцирующие бактерии) или нитраты и нитриты до азотной и азотистой кислот (де-  [c.60]

КоррЬзия свальных труб холодильников в воде. При использовании стальных труб для кислотных холодильников приходится считаться также и с коррозией стали в воде. Основной причиной коррозионного действия воды является наличие растворенного в ней кислорода, причем опасность заключается в том, что водная коррозия протекает неравномерно и имеет точечный характер. С повышением температуры увеличиваются и весовые потери.  [c.74]

На поверхностях труб оросительных холодильников наблюдается образование солевых отложений из орошающей воды. Для борьбы с этим явлением и защиты от водной коррозии ВНИИСК (Всесоюзным научно-исследовательским институтом синтетического каучука) разработан и проверен метод защиты рабочей (со стороны воды) поверхности труб путем их покрытия специальным составом (на основе фенолформальдегидной смолы), предохраняющим от коррозии и образований отложений солей, микроорганизмов, водорослей и т. п. (см. инструкцию 2, стр. 214).  [c.75]


Процессы. ко1>р(1 ии подземных и подводных сооружений неразрывно связаны с протеканием электрического тока в окружающей эти сооружения среде — электролите, каким является вода с растворенными в ней веществами (для почвы грунтовая влага). Скорость коррозии определяется количеством электричества, протекающего между анодными 1итод-ными участками сооружения, зависящего в свою очередь от электрического сопротивления окру ющей среды (воды, грунта) и характера процессов, протекающих на катодных и анодных участках сооружения. Следовательно, если, кроме токов, вызванных почвеннной (водной) коррозией сооружение подвергается воздействию какого-либо дополнительного тока (например блуждающих токов), то в местах, где складывается электролитическое действие этих токов с токами гальванических пар, можег произойти резкое усиление коррозк. сооружения.  [c.185]

Металлизационные покрытия, нанесенные способами газоила-менного и плазменного распыления, несмотря на то что являются пористыми и по своим характеристикам во многом уступают исходным материалам, широко применяются во. многих отраслях промышленности и особенно для защиты металлоконструкций от атмосферной и водной коррозии.  [c.119]

Имеются также стали с высокой кавитационной стойко-стью . Обычно это стали с высоким содержанием хрома (для сопротивления коррозии) и структ фно неустойчивым аустени-том. Образование мартенсита при ударе водных струй, как показали опыты И. Н. Бо гачева, весьма положительно влияет на кавитационную стойкость. Примером кавитационной стали может служить сталь марки ЗОХЮГЮ (0,3% С 10%Сг 107о Мп).  [c.507]

Рис. 149. Образование вторичного продукта коррозии цинка в водном растворе Na I а — осадка Zn (OH)g при работе гальванической пары Zn—Си б — пленки Zn (Он) в месте контакта Zn —Си и осадка а — пленки Zn (ОН)г при работе микропар Zn —Си Рис. 149. Образование вторичного <a href="/info/107178">продукта коррозии</a> цинка в <a href="/info/48027">водном растворе</a> Na I а — осадка Zn (OH)g при работе гальванической пары Zn—Си б — пленки Zn (Он) в месте контакта Zn —Си и осадка а — пленки Zn (ОН)г при работе микропар Zn —Си
Для борьбы с атмосферной коррозией металлов в последнее время все больше используют замедлители коррозии контактные (например, NaNOa), наносимые на стальные изделия (обработкой их в водных растворах замедлителей), и летучие (например, нитриты, карбонаты и бензоаты дициклогексиламина и моноэтано-ламина), обладающие высокой упругостью пара, которые применяются для защиты металлических изделий при их хранении и транспортировке в контейнерах или при упаковке в оберточные материалы.  [c.383]

Электрохимическое растворение металлов в расплавах хлористых солей идет в основном (на 60—75% для железа) на анодных участках —границах зерен, а центральные части зерен являются микрокатодами, при этом коррозия по границам зерен при высоких температурах напоминает межкристаллнтную коррозию металлов в водных растворах.  [c.409]

Повышение содержания хрома в стали снижает скорость коррозии в расплаве Na l (табл. 65), особенно резко при увеличении количества хрома до 17%, но наблюдаемый при этом эффект значительно меньше, чем в водных растворах электролитов.  [c.413]

Скорость коррозии металлов в растворах электролитов в значительной степени зависит от характера раствора и протекает по-разному в кислых, щелочных и нейтральных растворах. Характер раствора молгно определить по активности в нем водородных ионов. Вода только в незначительной степени диссоциирована на ионы водорода Н+ и ноны гидроксила ОН . Произведение активностей ионов водорода и ионов гидроксила для воды и водных растворов есть величина постоянная, равная примерно Ю " при 25° С. Активность ионов Н+ в растворе молгно охарактеризовать водородным показателем pH, представляющим собой логарифм актпвпости ионов Н+, взятый с обратным знаком  [c.11]

Силикаты щелочных металлов, главным образод МзгЗЮз, являются замедлителями коррозии стали в нейтральных водных растворах. Защитное действие сн. шката натрия обусловлено образованием на поверхности металла защитной пленки. Уже при небольшой концентрации силиката натрия, как эго видно из рис. 210, скорость коррозии стали снижается более чедг в 5 раз.  [c.313]

Этот тип коррозии наиболее распространен. От имеет место при взаимодействии металлов с хидкиии электролитами (водой, водными растворами содей, кислот и щелочей, расплавами солей и щелочей).  [c.22]

Чаще всего применяют дихромизацию — процесс, в результате которого на поверхности металла образуется устойчивая против коррозии пленка хромовых солей магния. Деталь предварительно обрабатывают холодным 20%-ным раствором хромового ангидрида СгОз с целью удаления окисных пленок. Затем следует электролитическая обработка в ванне с подкисленным водным раствором хромового ангидрида, хромпика КзСгзОт и персульфата аммония (КН4)г304. В заключение поверхность обрабатывают горячим 10%-ным раствором хромового ангидрида.  [c.184]


Смотреть страницы где упоминается термин Водная коррозия : [c.30]    [c.274]    [c.75]    [c.56]    [c.281]    [c.344]    [c.310]    [c.30]   
Катодная защита от коррозии (1984) -- [ c.132 ]



ПОИСК



Защита металла при помощи ингибиторов атмосферной коррозии Защита металла от коррозии водными и загущенными растворами ингибиторов

Защита от коррозии в водных средах (В. А. Орлов)

Ингибиторы коррозии в воде и водных нейтральных растворах солей Амины, амиды, гуанидин и морфолин, их производные и соли

Ингибиторы коррозии в воде и водных растворах солей, ингибиторы атмосферной коррозии

Ингибиторы коррозии в водно-аммиачном растворе

Ингибиторы коррозии в водных растворах кислот

Ингибиторы коррозии в водных растворах щелочей

Ингибиторы коррозии в водных теплоносителях

К о лом б ь е. Некоторые вопросы коррозии нержавеющих сталей в водной среде

КОРРОЗИЯ В ВОДЕ И ВОДЯНОМ ПАРЕ Коррозионная агрессивность водных сред

Контроль коррозии элементов пароводяных котлов в различных водно-химических режимах

Коррозия в водных средах

Коррозия и защита оборудования при работе с горячими водными растворами диметилформамида и ацетонитрила

Коррозия металлических материалов в водных средах

Коррозия термохромированных изделий в водных растворах электролитов

НЕКОТОРЫЕ ВОПРОСЫ КОРРОЗИИ МЕТАЛЛА ЭЛЕМЕНТОВ ПАРОГЕНЕРАТОРОВ В ВОДНЫХ СРЕДАХ И СТОЯНОЧНОЙ КОРРОЗИИ

Неорганические ингибиторы коррозии в воде и водных растворах солей

Ниобий Коррозия в водных растворах

Органические ингибиторы коррозии в нейтральных водных растворах

Основные закономерности кислородной коррозии углеродистой стали в химически обработанных и необработанных водных средах

Предупреждение внутрикотловой коррозии улучшением водно-химического режима

Применение ингибиторов для защиты металлов от коррозии в водных средах

Применение ингибиторов коррозии для защиты промыслового оборудования в коррозионно-агрессивных водных и двухфазных средах



© 2025 Mash-xxl.info Реклама на сайте