Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Характеристики поверхностей раздела

Итак, все термодинамические характеристики поверхности раздела фаз с помощью соотношений (2.1а)—(2.4) выражаются через удельную свободную поверхностную энергию а и ее температур-da  [c.81]

Специалисты по технологии производства композитов с алюминиевой матрицей придерживаются общей точки зрения относительно оптимальных условий изготовления композита. Если поддерживать, постоянство двух из трех параметров технологического процесса— температуры, давления и продолжительности обработки, то с ростом значения третьего параметра прочность при растяжении вначале растет, затем проходит через максимум и потом снижается. Эти данные согласуются с моделью, предполагающей, чтО на поверхности раздела имеется окисная пленка. Рост прочности при растяжении объясняют уменьшением пористости и улучшением окисной связи между матрицей и волокнами. Снижение прочности при растяжении с увеличением давления, температуры или продолжительности процесса происходит из-за общего разрушения окисной связи и излишнего развития реакции. Оптимальное значение параметров отвечает равновесию между завершением процесса образования связи и началом развития локальной реакции на участках разрушения пленки. При повышенной температуре или продолжительности процесса прессования разрушение пленки может происходить по механизму сфероидизации, а при повышенном давлении — механическим путем вследствие сдвига. Однако наличие оптимальных значений параметров процесса приводит к заметным изменениям состава и строения поверхности раздела. Эти изменения имеют место как в пределах одного образца композита, так и от одной партии горячепрессованного композита к другой, поскольку трудно тщательно контролировать состояние поверхности компонентов, технологические циклы и все остальные параметры, определяющие характеристики поверхности раздела.  [c.170]


Описанную модель вряд ли следует обсуждать более детально, так как пока отсутствуют работы, связывающие характеристики поверхности раздела с механическими свойствами и пара-  [c.170]

Характеристики поверхности раздела  [c.178]

Характеристики поверхности раздела и субструктуры матрицы позволяют оценить взаимодействие между матрицей и волокном и возможные отклонения от условия равенства деформаций.  [c.263]

Глава начинается с обсуждения основных термодинамических свойств металлов и окислов, причем основное внимание уделено тем окислам, которые могут быть использованы в виде волокон и покрытий. Затем рассмотрено применение методов термодинамики твердых растворов для оценки стабильности композитов. В обзорном плане изложены обширные литературные данные о взаимодействии жидких металлов с окислами, полученные при изучении процессов изготовления керметов и пропитки усов расплавом. Цель этого обзора —обобщить имеющуюся информацию о смачивании окислов жидкими металлами и вывести основные закономерности. Далее проанализировано соотношение между смачиванием и формированием связи в композитах. Применительно к режимам изготовления и условиям службы композитов рассматриваются диффузионная сварка и твердофазные реакции, причем более подробно— кинетика реакций металл — окисел и характеристики поверхности раздела. Глава завершается анализом имеющихся литературных данных о механических свойствах, чувствительных к состоянию поверхностей раздела. Этот анализ ограничен несколькими металлическими системами, упрочненными окислами, которые изучены в настоящее время.  [c.308]

II. Характеристика поверхностей раздела в эвтектиках  [c.354]

Характеристики поверхности волокон бора и графита были приведены в разд. I. Ниже рассматриваются некоторые химические и физические характеристики поверхности раздела волокно — смола, а также их связь с механическими свойствами композитов.  [c.256]

Хотя данные рис. 2.3, б дают лишь приблизительную оценку, поскольку получены с использованием грубых моделей, но, в принципе, они правильно характеризуют долю поверхностей раздела в структуре наноматериалов. Рост этой доли с уменьшением размера зерен — один из факторов, определяющих неравновесное состояние наноматериалов за счет увеличения избыточной свободной поверхностной энергии. Отметим также, что значения межфазной и граничной поверхностной энергии наноматериалов могут отличаться от таковых для обычных крупнокристаллических материалов. Надежные опытные данные об энергетических характеристиках поверхностей раздела в наноматериалах практически отсутствуют.  [c.15]

Теоретически и экспериментально проблема влияния кривизны кристаллитов наноматериалов на энергетические характеристики поверхностей раздела не получила пока однозначного толкования и природа изменения значений с уменьшением размера зерен остается предметом обсуждения. Здесь полезно коротко изложить существующие представления о термодинамике изолированных наночастиц. По мнению А. И. Русанова [22], для частиц размером примерно более 10 нм традиционные понятия о поверхностной энергии вполне приемлемы. При диаметре менее 1 нм практически вся частица может приобретать свойства поверхностного слоя, т.е. особого состояния, по сравнению с объемной  [c.51]


ХАРАКТЕРИСТИКИ ПОВЕРХНОСТЕЙ РАЗДЕЛА  [c.87]

ЩИХ из двух или большего числа фаз с сильно различающимися физическими свойствами, нельзя судить по соотношению долей объема, занимаемых отдельными компонентами — свойства системы в целом оказываются очень чувствительными к геометрическим и топологическим характеристикам поверхностей раздела между различными фазами. К сожалению, невозможно каким-либо простым образом связать параметры, задающие вид типичных граничных поверхностей в случайной смеси , с корреляционными функциями низших порядков для отдельных компонент ( 3.2). Таким образом, математическая постановка задачи об определении глобальных свойств системы оказывается далеко не полной. Поведение подобных систем обычно изучают в рамках модели гауссова случайного поля, достоинство которой состоит в том, что она позволяет в известной мере продвинуться в аналитическом исследовании ( 3.4), основанном на учете топографических особенностей системы.  [c.571]

Очень часто закрученные течения, особенно в каналах представляют собой свободно-вынужденный вихрь. Граница между ними для осесимметричных каналов представляет собой также осесимметричную условную поверхность раздела вихрей. В зарубежной научно-технической литературе такой составной закрученный поток принято называть вихрем Рэнкина. Разделительная фаница для вихря Рэнкина определяется радиусом разделения вихрей Tj. Для Tj <г< г, движение газа подчиняется закону потенциального вихря, а для области О < г < — закону движения вынужденного вихря. В 1 л. 1.2 приведены общие характеристики вихрей [44].  [c.24]

Отметим, что в отличие от систем жидкость—твердое тело, газ—твердое тело в рассматриваемых газожидкостных системах сама поверхность раздела фаз (г, I) является величиной, изменяющейся во времени и пространстве. Поскольку процессы массо-переноса протекают в обеих фазах, в математическую постановку задачи массопереноса в системах газ—жидкость включаются уравнения переноса в обеих фазах с нелинейными граничными условиями. Изменение поверхности раздела фаз в процессе массопереноса влечет за собой изменение гидродинамических характеристик системы, а именно поля скоростей V (г, 1) вблизи межфазной поверхности. Однако, как это видно из уравнения конвективной диффузии, вектор поля скорости входит в левую часть (1. 4.. 3), следовательно, изменение скорости V вызовет и изменение распределения концентрации целевого компонента с (г, I) вблизи поверхности. Таким образом, в общем случае необходимо решать самосогласованную задачу тепломассопереноса и гидродинамики.  [c.15]

Совокупность зависимостей (6.2.1)-н(6.2.9) можно рассматривать как систему уравнений, используемую для определения давления рд, скорости У , а также геометрических характеристик dj, /у, dp х, а, g. Решение этой системы осуществляется методом последовательных приближений. Вначале задаются ожидаемой величиной угла s на который поворачивается струйный слой при встрече с поверхностью тела. При этом для упрощения расчета можно исходить из плоской схемы обтекания поверхности, включая зону присоединения. Принимается также, что в месте, где передняя сферическая часть поверхности раздела переходит в коническую, толщина пограничного слоя пренебрежимо мала.  [c.398]

Результаты исследований влияния разных покрытий на механические характеристики конструкционных материалов приведены в работах [И, 20—211. По современным представлениям о разрушении металла предполагается, что покрытие, препятствуя выходу дислокаций на поверхность, может в одних случаях упрочнять основу, а в других — разупрочнять. Эффект влияния покрытий на основной материал будет зависеть от условий, определяющих динамику дислокаций на поверхности раздела [22]. Результат же взаимодействия дислокаций с границей раздела основа — покрытие связан с двумя типами источников дислокаций — объемными и поверхностными. Объяснение роли покрытий в упрочнении сплавов с позиций дислокационных представлений об изменениях в структуре поверхностных слоев в процессе деформации дается и в работах [23, 24].  [c.21]


В реальных композитах редко выполняются все эти условия. Не всегда осуществляется жесткая связь по всей поверхности раздела включения и матрицы. Упругие характеристики включений, будь то частицы или волокна, отклоняются от своих средних значений. Может оказаться, что характеристики включений гранулированного композита существенно отличаются от средних значений, полученных для большого объема того же веще-  [c.92]

Быстро растущий в последнее время интерес к поверхностям раздела станет понятным, если проследить историю развития композитов с металлической матрицей. Ранние работы по композитным материалам были направлены на выявление принципов, определяющих их эксплуатационные характеристики. Для этой цели, были удобны простые модельные системы. При выборе модельных систем руководствовались в основном совместимостью упрочните-ля и матрицы модельные системы состояли из матриц (нанример,. серебра или меди), химически малоактивных но отношению к упрочнителям (например, вольфраму или окиси алюминия). Хотя в этих работах и признавалась важная роль поверхностей раздела, модельные системы позволяли сравнительно легко получать тип поверхности, обеспечивающий необходимую передачу нагрузки от одного компонента композита к другому. В системах, представляющих большой практический интерес, матрицами служат обычные конструкционные материалы, такие, как алюминий, титан,, железо, никель они обладают большими реакционной способностью и прочностью, чем матрицы модельных систем. Повышенная реакционная способность затрудняет управление состоянием поверхности раздела, а для передачи больших нагрузок требуется более высокая прочность этой поверхности. Таким образом, состояние поверхности раздела становилось все более важным фактором по мере того, как интересы исследователей перемещались от модельных систем к перспективным инженерным материалам.  [c.12]

Независимо от уже имевшихся количественных оценок некоторые исследователи указывали, что свойства композитных материалов должны зависеть от того, насколько поверхности раздела отличаются по свойствам от матрицы и волокна. Купер и Келли [13], например, делят характеристики композитного материала на те, которые определяются в основном прочностью поверхности раздела при растяжении о , и те, которые определяются сдвиговой прочностью Тг. В числе характеристик, определяемых прочностью поверхности раздела при растяжении, авторы называют поперечную прочность, прочность на сжатие и сопротивление распространению трещины в процессе расслаивания при испытании на растяжение. К характеристикам, которые определяются в основном сдвиговой прочностью, относятся критическая длина волокна (длина передачи нагрузки), характер разрушения при вытягивании волокон и деформация матрицы в изломе. Теория Купера и Келли будет рассмотрена ниже.  [c.19]

Общий результат взаимодействия между матрицей и волокном будет зависеть от влияния данной реакции на характер разрушения волокна, отслаивание, прочность поверхности раздела при сдвиге и многие другие характеристики. Неудивительно поэтому, что пока роль этих многочисленных факторов полностью не выяснена ни для одной конкретной композитной системы.  [c.27]

Любой многофазный материал представляет собой механический континуум, в интегральные характеристики которого каждая из фаз со своими механическими свойствами вносит определенный вклад. Кроме того, при внешнем нагружении композитного материала заметное влияние на поддающиеся измерению свойства вносят реологические взаимодействия на межфазных поверхностях раздела, возникающие из-за различия упругих и пластических характеристик фаз. Взаимодействия такого типа в одних случаях желательны, в других — нет.  [c.43]

Таблица 2.1. Термодинамические характеристики поверхности раздела фаз вода—водиной нар Таблица 2.1. Термодинамические характеристики поверхности раздела фаз вода—водиной нар
Существующие классификации способов получения покрытий недостаточно полно охватывают все разнообразие пзвестных технологии. Решение этой проблемы возможно при использовании представлений теории формообразования [1, 2]. Возможны три основн1.1Х случая формообразования покрытий 1) путем преобразования (насыщения) поверхностных слоев основного матерпа.ча изделия, когда продвижение границы покрытия происходит в глубь основного материала 2) путем наращивания слоев материала покрытия на заготовку из основного материала 3) совмещением наращивания слоев покрытия п преобразования поверхностных слоев. Однако в любом случае основным признаком формообразования является возникновение твердого тела с определенными геометрическими характеристиками поверхностей раздела его частей из разнородных материалов. Возникновение новой конфигурации твердого тела является необязательным, хотя и может быть совмещено с процессом получения покрытия.  [c.34]

Исследование способов, позволяющих замедлить рост зоны взаимодействия, является очень важным аспектом проблемы разработки практически ценных композитов. Как указывалось выше, матрицы, представляющие иаибольший практический интерес, обычно более реакционноспособны, чем матрицы, на примере которых демонстрировали справедливость теорий композитов. Проблема дополнительно осложняется тем обстоятельством, что композиты с металлической матрицей особенно нужны для эксплуатации при повышенных температурах. Исследование кинетики диффузионных процессов и выяснение механизмов диффузии являются основными условиями для построения строгой теории поверхностей раздела и для решения с ее помощью проблемы получения требуемых характеристик поверхности раздела. Исследование процессов и механизмов диффузии необходимо проводить применительно к той области толщин реакционной зоны, которая характерна для практически ценных композитов часто это означает, что объектом исследования должны стать зоны толщиной менее 1 мкм. Рост реакционной зоны, особенно в характерных для композита условиях стеснения, нередко приводит к изменению механизма диффузии. Рэтлифф и Пауэлл [30], например, наблюдали изменение механизма диффузии при взаимодействии между титановыми сплавами и карбидом кремния при толщине зоны 10 мкм и связали его с появлением новых продуктов реакции. Хотя столь большая толщина находится за пределами интересующей нас области, эти данные подтверждают изменение механизма диффузии на поздних стадиях роста реакционной зоны. Впрочем, могут иметь место и более тонкие изменения, обусловленные увеличением концентрации вакансий.  [c.29]


Способ изготовления композита заметно влияет на характеристики поверхности раздела. Композиты алюминий — бор, полученные путем пропитки расплавленным алюминием, принадлежат к третьему классу им присущи неравномерная коррозия волокна и неравномерный рост борида алюминия (рис. 6). Напротив, в композитах, изготовленных по оптимальной технологии диффузионной сварки, не происходит реакции на поверхности раздела на рис. 7 виден лишь один случайный кристалл борида. Для выяснения причин этого различия следует рассмотреть механизм диффузионной сварки. Такое рассмотрение послужит поводом для более общего анализа влияния технологии изготовления- 1 омиозита на характеристики поверхности раздела.  [c.30]

Таким образом, теория прочности композитов при внеосном растягивающем нагружении развита для случаев, когда либо разрушение происходит не по поверхности раздела, либо разрушение по поверхности раздела учитывается лишь косвенно. При решении более сложной задачи — прямого анализа влияния поверхности раздела на прочность при внеосном нагружении — достигнуто меньше успехов, хотя определенные возможности представляет метод конечных элементов [1]. С помощью теорий, рассматривающих непосредственно поверхность раздела, были предсказаны разумные величины верхнего и нижнего предельных значений поперечной прочности, однако они пока не подтверждены экспериментально. Задача разработки более соверщенного подхода, который позволил бы количественно оценить влияние поверхности раздела на прочность при внеосном нагружении, пока не решена. Ряд проблем возникает из-за трудностей экспериментального определения важных характеристик поверхности раздела, другая группа проблем — из-за того, что неясно, как на основе экспериментальных значений данных характеристик предсказать прочность композита. Это — сложные проблемы драктического и теоретического характера, однако начало их решению может быть положено определением характеристик композита при внеосном растяжении и исследованием разрушенных образцов, что позволяет установить роль поверхности раздела в разрушении композита при растяжении. Результаты ряда таких исследований рассмотрены ниже.  [c.203]

Химическая реакция, влияние на прочность и характеристики поверхности раздела в системах псевдопервого класса 179 ------при продольном нагружении систем лсевдопервого кла.сса  [c.436]

Характеристика поверхностей раздела будет полней, если рассмотреть вопрос о природе сил связи между волокном и матрицей. Тип связи в композиционных материалах, естественно, зависит от технологии их получения. Например, если композиция алюминий—борное волокно получена заливкой пучка волокон расплавленным алюминием, то она относится к третьей группе, и связь в ней осуществляется в результате химической реакции борного волокна с расплавом алюминия волокно частично растворяется с образованием диборида алюминия AlBj. Однако если эта же композиция получена по оптимальной технологии горячего прессования, то она имеет все характеристики псевдопервой группы,  [c.58]

Термодинамическая характеристика поверхности раздела двух фаз, определяемая работой обратимого изотермического образования единицы площади этой поверхности, называется поверхностным натяжением и измеряется в Дж/м или Н/м. В случае жидкой поверхности раздела поверхностное натяжение можно рассматривать также как силу, действующую на единицу длины контура поверхности и стремящуюся сократить поверхность до минимума при заданных объемах фаз. Работа образования новой поверхности затрачивается на преодоление сил межмо-лекулярного сцепления (когезии) при переходе молекул вещества из объема тела в поверхностный слой. Равнодействующая межмолекулярных сил в поверхностном слое не равиа нулю, как в объеме тела, а направлена во внутрь той фазы, в которой силы сцепления больше. Для подвижных жидкостей поверхностное натяжение -величина, тождественно равная свободной поверхностной энергии. Благодаря поверхностному натяжению жидкость при отсутствии внешних воздействий принимает форму шара, обеспечивая минимальную площадь поверхности и минимальное значение свободной поверхностной энергии. На легкоподвижных границах жид-  [c.15]

П.-а. в, изменяют поверхностные св-ва в-в (см. Поверхностные явления) и применяются в качестве смачивателей (см. Смачивание), фтолационных реагентов, пенообразователей, дис-пергаторов — понизителей твёрдости, пластифицирующих добавок, модификаторов кристаллизации и др. ПОВЕРХНОСТНОЕ ДАВЛЕНИЕ (плоское давление, двумерное давление), сила, действующая на единицу длины границы раздела (барьера) чистой поверхности жидкости и поверхности той же жидкости, покрытой адсорбц. слоем поверхностно-активного вещества. П. д. направлено в сторону поверхности чистой жидкости перпендикулярно барьеру. Определяется разностью поверхностных натяжений чистой жидкости и жидкости с адсорбц. мономолекулярным слоем. ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ, термодинамич. характеристика поверхности раздела 2 фаз (тел), опреде ляемая работой обратимого изотермич. образования единицы площади этой поверхности. Измеряется в Дж/м или Н/м. В случае жидкой поверхности  [c.551]

Хотя расчеты по модели авторов работы (39 и модели Левина 38 мало различаются, модель (1.3.29) интересна тем, что подзверждает наличие двух характерных размеров при течении систем с поверхносг1)Ю раздела, что было доказано ранее. Причем, один из характерных размеров обусловлен физико-химическими свойствами поведения поверхности пленки жидкости и, вероятно, является одной из важных характеристик течений с поверхностью раздела фаз.  [c.27]

Массоперенос в режиме восходящего прямоточного течения. В высокопроизводительных высокоскоростных массообменных аппаратах массоперенос в пленку жидкости осуществляется в интенсивных гидродинамических режимах. Пленка жидкости при значительных касательных напряжениях на поверхности раздела фаз поднимается вверх. Происходит движение пленки жидкости в спутном потоке газа. За счет интенсивного взаимодействия газа массоперенос значительно ускоряется. Коэф-фиг(иент массопереноса зависит от режимных параметров обеих фаз. Вопрос о механизме ускорения массопередачи до настоящего времени остается откр(.1тым, хотя известна гипотеза, объясняющая ускорение влиянием газового потока на волновые характеристики, имеющие в снутном потоке характер случайных величин [1, 44, 45 .  [c.29]

Под поверхностным наптжснием понимают силу, под действием которой пиоерхность жидкости стремится сократиться. Эта сила действует но касательной к поверхности раздела фаз. Поверхностное натяжение является физической характеристикой вещества, оно убывает с увеличением температуры. При 20 С поверхностное натяжение воды 0,068 Н/м, ртути — 0,47 Н/м, хладагента R12 — 0,009 Н/м, аммиака — 0,028 Н/м.  [c.102]

Основной характеристикой гидродинамики водяного объема при барботаже является истинное объемное паросодер-ж а н и е ф. Значения ф в различных точках слоя пароводяной смеси при барботаже даже при стационарном режиме не одинаковы. Если барботажный слой расположен непосредственно над трубами греющих элементов, то (вследствие неравномерности распределения тепловых потоков в греющих элементах, а также различий в числе вертикальных рядов труб в пучке) в разных точках сечения, непосредственно расположенного над греющими элементами, устанавливаются уже не одни и те же значения ф. В дальнейшем, по мере продвижения пара к поверхности раздела фаз (зеркалу испарения), скорость его изменяется и соответственно изменяются локальные значения истинного паросодержания ф. Для одного и того же общего расхода пара при неравномерном распределении его по сечению барботера унос капельной влаги паром значительно выше, чем при равномерном распределении. Поэтому в тех случа-  [c.79]


В книге рассмотрены вопросы строения поверхностей раздела и типы связи между компонентами, физико-химические процессы, протекающие на поверхностях раздела при получении и эксплуатации композитов, механическое взаимодействие между компонентами через поверхность раздела и его влияние на механические свойства и характеристики разрушения. Следует подчеркнуть, что, наряду с обширным экспериментальным материалом, в книге впервые анализируются некоторые полуколичественные теории, например, теории поверхностей раздела в композитах псевдопервого и третьего классов.  [c.5]

О том, насколько молодой является эта область знаний, можно судить по темам, которые не удалось осветить в книге. Так, хотя влиянию поверхности раздела на продольную и поперечную прочность, а также на характеристики разрушения посвяш ены отдельные главы, недостаток информации об ее влиянии на характеристики усталости и ползучести не позволил рассмотреть эти вопросы в соответствуюш их главах. По той же причине не оказалось возможным и подробно обсудить представления об идеальной поверхности раздела. Такой принцип построения книги одобрен всеми ее авторами, сознаюш ими, что учение о поверхности раздела нуждается в развитии. Конечно, и суш ествуюш ий уровень знаний может обеспечить первые шаги новой технологии тем не менее, необходимость дальнейших исследований не вызывает сомнений.  [c.9]

Четкое деление между классами не всегда возможно, однако такая систематизация удобна для обсуждения характеристик композитов. Примеры каждого класса композитов содержатся в табл. 1, а рис. 1 иллюстрирует названные классы соответствующими примерами из работы Петрашека и Уитона [29] по композициям медный сплав — вольфрам. Отметим, что эвтектики включены во второй класс, однако для некоторых эвтектик предельная растворимость каждой из фаз в другой может быть столь низкой, что их предпочтительнее отнести к первому классу. Аналогичным образом система медь (титан)—вольфрам включена в третий класс, поскольку, как показано на рис. 1, на поверхности раздела образуется химическое соединение. Однако при малом содержании титана и медь, и вольфрам образуют с ним твердые растворы.  [c.15]

Применительно к условиям, существующим на поверхности раздела, можно оценить величину двух механических характеристик, изученных достаточно детально. Этим характеристикам, а именно, пределам прочности при продольном и поперечном нагружении, посвящены гл. 4 и 5. Для системы псевдопервого класса алюминиевый сплав 6061 — бор показано, что прочность как при продольном, так и при поперечном растяжении достигает максимума тогда, когда начинается разрушение псевдостабильной поверхности раздела. Через исходную поверхность раздела прорастают многочисленные, изолированные друг от друга иглы ди-  [c.25]

Снайд [35] изучал совместимость изготовленных им волокон диборида титана с титаном. Совместимость в данной системе оказалась существенно выше, чем в системе титан —бор, однако в дальнейшем это направление не развивалось под действием ряда факторов. Главный из них — низкая прочность и высокая плотность волокон диборида титана. Поэтому основное внимание стали уделять второму и третьему из перечисленных выше направлений. Разработка покрытий, особенно для высокотемпературных применений, связана с трудностями, поскольку при наличии покрытия вместо одной поверхности раздела появляются две. Однако удачный выбор покрытия, совместимого с упрочнителем, позволяет свести проблему совместимости матрицы с волокном к совместимости матрицы с покрытием. С этой точки зрения волокна бора с покрытием из карбида кремния (торговое наименование борсик ) должны взаимодействовать с титаном так же, как карбид кремния. Значит, поверхность раздела должна удовлетворять тем же гЬизико-химическим требованиям, и в дальнейшем обсуждение может быть ограничено характеристиками композитных систем либо типа матрица — покрытие, либо типа матрица — волокно. В табл. 1 есть примеры системы, в которой волокно защищено покрытием (алюминий — бор, покрытый нитридом бора), и системы, в которой, как полагают, покрытие взаимодействует с матрицей так же, как волокно (система алюминий — карбид кремния, характеризующая поведение системы алюминий — бор, покрытый карбидом кремния).  [c.28]


Смотреть страницы где упоминается термин Характеристики поверхностей раздела : [c.70]    [c.30]    [c.98]    [c.178]    [c.228]    [c.267]    [c.353]    [c.32]    [c.356]    [c.6]    [c.20]    [c.33]   
Смотреть главы в:

Металловедение и термическая обработка стали Т1  -> Характеристики поверхностей раздела



ПОИСК



Влияние поверхности раздела на характеристики композита в упругоилаетяческой области

Поверхности раздела в эвтектиках характеристика

Поверхность раздела

Раздел двенадцатый Ремонт оборудования систем пылеприготовлеиия Раздел четырнадцатый Химическая очистка внутренних поверхностей нагрева котла 14-1. Основные характеристики отложений

Связь распределения скоростей с характеристиками волн на поверхности раздела

Упругопластические характеристики поверхности раздела

Химическая реакция, влияние прочность и характеристики Поверхности раздела в системах



© 2025 Mash-xxl.info Реклама на сайте